

FCC Dynamic Frequency Selection (DFS) TEST REPORT

Product Name	Miko Mini Robot		
Trademark	MIKO		
Model and /or type reference	EMK401		
FCC ID	2AS3S-EMK401		
Features	Input rating: 5,0 V; 3,0 A or 9,0 V; 2,0 A or 12,0 V; 1,5 A. Internal Li-ion battery (18650): 2400 mAh; 3,7 V; 8,88 Wh.		
Applicant´s name / address	RN Chidakashi Technologies Private Limited		
	Flat No - 4, StambhTirth Building, Plot No 82, R.A. Kidwai Road Wadala, Mumbai, 400031, India		
Test method requested, standard	FCC CFR Title 47 Part 15 Subpart E Section 15.407		
Verdict Summary	IN COMPLIANCE		
Tested by (name & signature)	Jazz Liang		
Approved by (name & signature)	Tim Yan		
Date of issue	2023-11-13		
Report template No	Template_Part 15E-DFS-RF-V1.0		

INDEX

page

Gene	eral conditions	3
Envir	ronmental conditions	3
Poss	sible test case verdicts	3
Abbr	eviations	3
Docu	ument History	5
Rem	arks and Comments	5
Usec	d Equipment	6
Unce	ertainty	7
1	General Information	8
	1.1 General Description of the Item(s)	8
2	UNII Device Description	
3	Test description	14
3.1	Test Setup	14
3.2	Limits	15
3.3	Client Device requreiment	21
3.4	Radar Waveform Calibration	22
4	Channel Move Time , Channel Closing Transmission Time and Non-Occupancy Period	23
4.1	Test Procedure	23
4.2	Test Requirement	23
4.3	Test Result of Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period	24

GENERAL CONDITIONS

Test Location	DEKRA Testing and Certification (Shanghai) Ltd. Guangzhou Branch Block 5, No.3, Qiyun Road, Huangpu District, Guangzhou, Guangdong, China FCC Designation Number: CN1324;	
Date of receipt of test item	2023-09-12	
Date (s) of performance of tests	2023-09-12 to 2023-11-13	
	Normal sample: EMK401 (lab no.4909379-1)	
Test sample	RF conducted sample: EMK401 (lab no.4909379-1)	
	RF radiated sample: EMK401 (lab no.4909379-1)	

- 1. This report is only referred to the item that has undergone the test.
- 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or Competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of DEKRA.
- 4. This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of DEKRA.

ENVIRONMENTAL CONDITIONS

The climatic conditions during the tests are within the limits specified by the manufacturer for the operation of the EUT and the test equipment. The climatic conditions during the tests were within the following limits:

Ambient temperature	15 °C – 35 °C
Relative Humidity air	30% - 60%

If explicitly required in the basic standard or applied product / product family standard the climatic values are recorded and documented separately in this test report.

POSSIBLE TEST CASE VERDICTS

Test case does not apply to test object	N/A
Test object does meet requirement	P (Pass) / PASS
Test object does not meet requirement	F (Fail) / FAIL
Not measured	N/M

ABBREVIATIONS

For the purposes of the present document, the following abbreviations apply:

EUT	:	Equipment Under Test
QP	:	Quasi-Peak
CAV	:	CISPR Average
AV	:	Average
CDN	:	Coupling Decoupling Network
SAC	:	Semi-Anechoic Chamber
OATS	:	Open Area Test Site
BW	:	Bandwidth
AM	:	Amplitude Modulation
PM	:	Pulse Modulation
HCP	:	Horizontal Coupling Plane
VCP	:	Vertical Coupling Plane
U _N	:	Nominal voltage
Тx	:	Transmitter
Rx	:	Receiver
N/A	:	Not Applicable
N/M	:	Not Measured

DOCUMENT HISTORY

Report nr.	Date	Description
4909379.60	2023-11-13	First release.

REMARKS AND COMMENTS

- 1. The equipment under test (EUT) does meet the essential requirements of the stated standard(s)/test(s).
- 2. The measurement result is considered in conformance with the requirement if it is within the prescribed limit, It is not necessary to account the uncertainty associated with the measurement result.
- 4. The test results presented in this report relate only to the object tested.
- 5. This report will not be used for social proof function in China market.
- 6. DEKRA declines any responsibility with the following test data provided by customer that may affect the validity of result:
 - Chapter 1.1 General Description of the Item(s);
 - Chapter 1.2 Antenna Informaion.

USED EQUIPMENT

FOR RF

Instrumentation	Manufacturer	Model	Serial no.	DEKRA No.	Cal Due date
Spectrum analyzer	R&S	FSV	SN101012	G/L1235	2024/01/09
Chamber	ETS	/	/	G/L856	2024/06/04
Horn antenna (1GHz-18GHz)	R&S	HF907	102306	G/L1236	2024/04/10
Horn antenna preamplifier	Schwarzbeek	SCU-18	102234	G/L1236-1	2024/02/21
Horn antenna (18GHz-26.5GHz)	ETS	3160-09	00164643	G/L1237	2024/01/09
Horn antenna preamplifier	/	SCU-26D	1879064	G/L1237-1	2024/01/08
EMI receiver	R&S	ESCI	101205	G/L857	2024/07/02
Antenna	SCHWARZBECK	VULB9168	01229	GZ2018	2024/03/12
(30MHz-2GHz)					
Antenna	SCHWARZBECK	VULB9163	506	G/L864	2023/12/05
(30MHz-3GHz)					
OSP	R&S	OSP 150	101907	GZ1894	2024/02/23
Signal generator	R&S	SMB 100A	181317	GZ1895	2024/02/23
Vector signal	R&S	SMBV100A	263671	GZ1896	2024/02/23
generator					
Wireless connectivity	R&S	CMW 270	100990	GZ1893	2024/02/23
tester					
Manual step	Keysight	8494B	TH60074118	GZ2086	2024/07/07
attenuator					
(11dB)					
Manual step	Keysight	8495D	TH60074471	GZ2087	2024/07/07
attenuator					
(70dB)					
Programmable	ASTUOD	TT-5166	52689	GZ2209	2024/05/08
Temperature &					
Humidity Chamber					
Test software	R&S	EMC32			Version
					11.30.00

UNCERTAINTY

Test Item	Uncertainty
Occupied Channel Bandwidth	±0,7%
RF Output power, conducted	±0,6dB
Power Spectral Density, Conducted	±0,6dB
Unwanted Emissions, Conducted	±0.7dB
Spurious (30-1000MHz)	±4,4dB
Spurious (1-12,75GHz)	±4,4dB

1 GENERAL INFORMATION

1.1 General Description of the Item(s)

Description of the item:	Miko Mini Robot	
Trademark:	MIKO	
Model / Type number:	EMK401	
FCC ID	2AS3S-EMK401	
Hardware:	N/A	
Software:	N/A	
Firmware	N/A	
Ratings	Input rating: 5,0 V; 3,0 A or 9,0 V; 2,0 A or 12,0 V; 1,5 A.	
	Internal Li-ion battery (18650): 2400 mAh; 3,7 V; 8,88 Wh.	
Manufacturer:	Same as applicant	
Factory 1	Pacific Industries Zhongshan Limited	
	Xincun Factory Area, Baishawan Industrial Park, Eastern District,	
	528400, Zhongshan, Guangdong, China.	
Factory 2	Kaynes Electronics Manufacturing Private Limited	
	26-27. Bandanguppe-kellamballi Industrial Area, State Code:	
	29 ,571313,Chamarajanagara,India	

Rated power supply:	Voltage and Frequency		Reference poles				
	Volta	ge and riequency	L1	L2	L3	N	PE
		AC: 100-240 V, 50/60 Hz	\square			\square	
		AC:					
		DC: 5 V					
		Battery:					
Mounting position:	\square	Table top equipment					
		Wall/Ceiling mounted equipment					
		Floor standing equipment					
		Hand-held equipment					
		Other:					

Wireless module Characteristic

Wireless module No	SKI.WB800DS2.1_800M
Operating frequency range(s) – Tx :	2412 – 2462 MHz for 2.4G WIFI WLAN 5GHz Band: 5180 MHz ~ 5320 MHz, 5500 MHz ~ 5700 MHz, 5745 MHz ~ 5825 MHz; 2402 – 2480 MHz for Bluetooth
Operating frequency range(s) – Rx :	2412 – 2462 MHz for 2.4G WIFI WLAN 5GHz Band: 5180 MHz ~ 5320 MHz, 5500 MHz ~ 5700 MHz, 5745 MHz ~ 5825 MHz;

	2402 – 2480 MHz for Bluetooth
Type of Modulation:	WLAN 2.4GHz : IEEE 802.11b: DSSS (CCK, QPSK, BPSK); IEEE 802.11g: OFDM (BPSK, QPSK, 16QAM, 64QAM); IEEE 802.11n HT20/40: OFDM (BPSK, QPSK, 16QAM, 64QAM) IEEE 802.11ax (HE20/40): OFDMA (1024QAM, 256QAM, 64QAM, 16QAM, QPSK, BPSK) WLAN 5GHz : IEEE 802.11a: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20, HT40: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ac (VHT20/40): OFDM (256QAM, 64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ax (HE20/40): OFDMA (256QAM, 64QAM, 16QAM, QPSK, BPSK); Bluetooth LE:GFSK
Antenna type:	FPC antenna
Antenna gain:	2,3 dBi for 2.4GHz 2,48 dBi for 5GHz
Operation temperature range	-20 − 70 °C

Antenna List

Antenna Model No.	LJF(LJF02-23062508-R0A			
Antenna Manufacturer	She	Shenzhen Lejin radio frequency technology Co., LTD			
Antenna Delivery	\square	1*TX+1*R	X	2*TX+2*RX 3*TX+3*RX	
Antenna Technology	\square	SISO			
				Basic methodology	
				Sectorized antenna systems	
				Cross-polarized antennas	
				Unequal antenna gains, with equal transmit powers	
				Spatial Multiplexing	
				Cyclic Delay Diversity (CDD)	
Antenna Type	FPC	FPC antenna			
Antenna Gain	Antenna Gain				
Antonno Tochnology		Ant Gain(eth1)			
		(dBi)			
	1	2,3 dBi for 2.4GHz			
	2,48 dBi for 5GHz				
	2	-			

The WIFI mode operating channels are:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2412	7	2447
1	2417	8	2452
2	2422	9	2457
3	2427	10	2462
4	2432	-	-
5	2437	-	-
6	2442	-	-

802.11a/n/ac/ax(20MHz) Working Frequency of Each Channel:							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
36	5180 MHz	40	5200 MHz	44	5220 MHz	48	5240 MHz
52	5260 MHz	56	5280 MHz	60	5300 MHz	64	5320 MHz
100	5500 MHz	104	5520 MHz	108	5540 MHz	112	5560 MHz
116	5580 MHz	120	5600 MHz	124	5620 MHz	128	5640 MHz
132	5660 MHz	136	5680 MHz	140	5700 MHz	149	5745 MHz
153	5765 MHz	157	5785 MHz	161	5805 MHz	165	5825 MHz
802.11n/ac/a	ax(40MHz) Wo	rking Frequei	ncy of Each Cha	annel:			
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
38	5190 MHz	46	5230 MHz	54	5270 MHz	62	5310 MHz
102	5510 MHz	110	5550 MHz	118	5590 MHz	126	5630 MHz
134	5670 MHz	151	5755 MHz	159	5795 MHz	N/A	N/A

The radio module (Bluetooth) operating channels are: BLE:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	14	2430	28	2458
1	2404	15	2432	29	2460
2	2406	16	2434	30	2462
3	2408	17	2436	31	2464
4	2410	18	2438	32	2466
5	2412	19	2440	33	2468
6	2414	20	2442	34	2470
7	2416	21	2444	35	2472
8	2418	22	2446	36	2474
9	2420	23	2448	37	2476
10	2422	24	2450	38	2478

11	2424	25	2452	39	2480
12	2426	26	2454	-	-
13	2428	27	2456	-	-

Intended use of the Equipment Under Test (EUT)

The apparatus as supplied for the test is Miko Mini Robot which intended for residential use, the product contains electronic circuitry and with earth connection. It contains a Wireless module, so it would be controlled by other Wi-Fi devices through APPs.

Hence, model EMK401 which contains this certified module SKI.WB800DS2.1_800M was chosen for full test.

Copy of marking plate:

The artwork below may be only a draft. The use of certification marks on a product must be authorized by the respective NCBs that own these marks.

3.The EU/EFTA importer (and manufacture, if it is different)'s ①company name, ②registered trade name or registered trademark and ③the postal address will be marked on the products before being place on the market. The contact details shall be in a language easily understood by end-users and market surveillance authorities.

2 UNII DEVICE DESCRIPTION

The UUT operates in the following band:

- 1. 5250-5350 MHz
- 2. 5470-5725 MHz

The UUT is a Client Device that does not have radar detection capability and ad-hoc function. The highest gain antenna assembly utilized with the EUT has a maximum gain refer to clause 1.3. The 50-ohm Tx/Rx antenna port is connected to the test system to perform conducted tests. TPC is not required since the maximum EIRP is less than 500mW (27dBm).

The UUT utilizes 802.11a/n/ac/ax IP based architecture. Three nominal channel bandwidths, 20 MHz, 40MHz are implemented.

The master device is an ASUS 802.11a/b/g/n/ac/ax Access Point. The ASUS Access Point FCC ID: MSQ-RTAXHP00

The UUT is a client device without radar detection therefore the interference threshold level is not required.

Statement: Information regarding the parameters of the detected Radar Waveforms is not available to the end user.

3 TEST DESCRIPTION

3.1 Test Setup

DFS Set-up Photo: Slave and Spectrum Analyzer

3.2 Limits

According to §15.407(h), 905462 D02 UNII DFS Compliance Procedures New Rules v01, 905462 D03 UNII Clients Without Radar Detection New Rules v01r02 and FCC 14-30 APPENDIX "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED NATIONAL INFORMATION INFRASTRUCTURE DEVICES OPERATING IN THE 5250-5350 MHz AND 5470-5725MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION".

Applicability of DFS requirements prior to use of a channel

	Operational Mode			
Requirement	Master	Client (without radar	Client (with radar	
		detection)	detection)	
Non-Occupancy	Vec	Not Poquirod	Ves	
Period	165	Not Required		
DFS Detection	Ves	Not Required	Yes	
Threshold	103	Not Required		
Channel Availability	Vec	Not Poquirod	Not Required	
Check Time	165	Not Required		
U-NII Detection	Vee	Not Poquirod	Vee	
Bandwidth	165	Not Required	res	

Applicability of DFS requirements during normal operation

	Operational Mode			
Requirement	Master or Client (with radar detection)	ection) Client (with radar Client (without radar detection)		
DFS Detection	Ves	Not Poquirod		
Threshold	163	Not Required		
Channel Closing	Ves	Vas		
Transmission Time	165	165		
Channel Move Time	Yes	Yes		
U-NII Detection	Ves	Not required		
Bandwidth	165	Notrequired		

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client (without radar detection)		
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required		
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link		
All other tests	Any single BW mode	Not required		
Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in all 20 MHz channel blocks and a null frequencies between the bonded 20 MHz channel blocks.				

DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

Maximum Transmit Power	Value (see note)
EIRP ≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm
EIRP < 200 milliwatt that do not meet the power spectral density requirement	-62 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

DFS Response requirement values

Parameter Value			
Non-Occupancy Period	Minimum 30 minutes		
Channel Availability Check Time	60 Seconds		
Channel Move Time	10 Seconds		
	(See Note1)		
	200 milliseconds + an aggregate of 60		
Channel Closing Transmission Time	milliseconds over remaining 10 second period.		
	(See Notes 1 and 2)		
LL NIL Detection Randwidth	Minimum 100% of the U-NII 99% transmission		
	power bandwidth. See Note 3.		
 Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst. Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions. Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are 			
Note 3: During the U-NII Detection Bandwidth each frequency step the minimum percentage performed with	detection test, radar type 0 should be used. For of detection is 90 percent. Measurements are no data traffic.		

Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note 1	See Note
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values	Roundup $\begin{cases} \left(\frac{1}{360}\right) \\ \left(\frac{19 \cdot 10^{6}}{\text{PRI}_{\mu w c}}\right) \end{cases}$	60%	30
		randomly selected within the range of 518-3066 u sec. with a			
		minimum increment of 1			
		μ sec, excluding PRI			
		values selected in			
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
agregate	Radar Type	\$1-4)		80%	120

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

For example if in Short Pulse Radar Type 1 Test B a PRI of 3066 usec is selected, the number of

```
pulses would be = Roundup \left\{ \left(\frac{1}{360}\right), \left(\frac{19 \cdot 10^6}{3066}\right) \right\} = \text{Roundup}\{17.2\} = 18.
```


Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)
1	1930, 5	518
2	1858.7	538
3	1792.1	558
4	1730. 1	578
5	1672. 2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432. 7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193. 3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066, 1	938
23	326.2	3066

Table 5a - Pulse Repetition Intervals Values for Test A

The aggregate is the average of the percentage of successful detections of Short Pulse Radar Types 1-4.

Long Pulse Radar Test Signal

Radar Wavefor m	Bursts	Pulses Per Burst	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Minimum Percentage of Successful Detection	Minimum Trials
5	8-20	1-3	50-100	5-20	1000-2000	80%	30

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the long pulse radar test signal. If more than 30 waveforms are used for the long pulse radar test signal, then each additional waveform must also be unique and not repeated from the previous waveforms.

Frequency Hopping Radar Test Signal

Radar	Pulse	PRI	Hopping	Pulses	Hopping	Minimum	Minimum
Wavefor	Width	(μsec)	Sequence	Per Hop	Rate	Percentage	Trials
m	(μsec)		Length		(kHz)	of	
			(msec)			Successful	
						Detection	
6	1	333	300	9	0.333	70%	30

For the Frequency Hopping Radar Type, the same *Burst* parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm:

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 – 5724 MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.

3.3 Client Device requreiment

a) A Client Device will not transmit before having received appropriate control signals from a Master Device.

b) A Client Device will stop all its transmissions whenever instructed by a Master Device to which it is associated and will meet the Channel Move Time and Channel Closing Transmission Time requirements. The Client Device will not resume any transmissions until it has again received control signals from a Master Device.

c) If a Client Device is performing In-Service Monitoring and detects a Radar Waveform above

the DFS Detection Threshold, it will inform the Master Device. This is equivalent to the Master Device detecting the Radar Waveform and d) through f) of section 5.1.1 apply.

d) Irrespective of Client Device or Master Device detection the Channel Move Time and Channel Closing Transmission Time requirements remain the same.

e) The client test frequency must be monitored to ensure no transmission of any type has occurred for 30 minutes. Note: If the client moves with the master, the device is considered compliant if nothing appears in the client non-occupancy period test. For devices that shut down (rather than moving channels), no beacons should appear.

3.4 Radar Waveform Calibration

The following equipment setup was used to calibrate the conducted radar waveform. A spectrum analyzer was used to establish the test signal level for each radar type. During this process there were replace 50ohm terminal from master and client device and no transmissions by either the master or client device. The spectrum analyzer was switched to the zero span (time domain) at the frequency of the radar waveform generator. Peak detection was utilized. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to 3MHz and 3 MHz.

The signal generator amplitude was set so that the power level measured at the spectrum analyzer was -61dBm due to the interference threshold level is not required.

Conducted Calibration Setup

4 CHANNEL MOVE TIME ,CHANNEL CLOSING TRANSMISSION TIME AND NON-OCCUPANCY PERIOD

4.1 Test Procedure

These tests define how the following DFS parameters are verified during In-Service Monitoring; Channel Closing Transmission Time and Channel Move Time.

The steps below define the procedure to determine the above mentioned parameters when a radar burst with a level -61dBm is generated on the operating channel of the U-NII device.

A U-NII device operating as a Client device will associate with the Master device at 5500MHz.

During the in-service monitoring detection probability and channel moving tests the system was configured with a streaming video file from the master device (sourced by the PC connected to the master device via an Ethernet interface) to the client device. The streamed file was the "FCC" test file and the client device was using Media Player Classic as required by FCC Part 15 Subpart E.

Observe the transmissions of the EUT at the end of the radar burst on the operating channel for duration greater than 10 seconds. Measure and record the transmissions from the spectrum analyzer during the observation time (Channel Move Time). Compare the channel move time and channel closing transmission time results to the limits defined in the DFS Response requirement values table.

The client and DFS-certified master device are associated, and a movie can be streamed as specified in the DFS Order for a non-occupancy period test

The test frequency has been monitored to ensure no transmission of any type has occurred for 30 minutes. Note: If the client moves with the master, the device is considered compliant if nothing appears in the client non-occupancy period test. For devices that shut down (rather than moving channels), no beacons should appear.

R	
Parameter	Value
Channel Move Time	10 Seconds
Channel Closing Transmission	200 milliseconds + approx. 60 milliseconds over
Time	remaining 10 seconds period
	······
Non-Occupancy	the device is considered compliant if
	nothing appears in the client non-occupancy period
	test

4.2 Test Requirement

4.3 Test Result of Channel Move Time , Channel Closing Transmission Time and Non-Occupancy Period

DFS In-Service Monitoring (5270 MHz; 15.000 dBm; 40 MHz)

Test according to FCC title 47 part 15 15.407(h), KDB 905462 D02 U-NII DFS Compliance Procedures New Rules v02

Measurement Summary

ĺ	DUT Frequency	Radar Type	Type of Measurement value	Overall	Overall Comment
	(MHz)	No.		Result	
	5270.000000	0	First of all Transmitt Test	PASS	DUT is transmitting
	5270.000000	0	Channel Move Time	PASS	
	5270.000000	0	Channel Closing Transmission Time	PASS	
	5270.000000	0	Non-occupancy period	PASS	

Channel Move Time Detailed Result

DUT Frequency	Radar Type	CMT Tx	CMT Limit	CMT Result
(MHz)	No.	Time	(s)	
		(0)		
5270.000000	0	0.000	10.000	PASS

(continuation of the "Channel Move Time Detailed Result" table from column 5 ...)

DUT Frequency	CMT Comment
(MHz)	
5270.000000	Tx Time value is last trailing edge
	found within sweep. See Note 1.

Channel Closing Transmission Time Detailed Results

DUT Frequency (MHz)	Radar Type No.	CCTT Type of Value	CCTT No. of Pulses found	CCTT Tx Time
	-			(me)
5270.000000	0	first 200 ms	8	0.868
5270.000000	0	remaining 10.0 second(s) period	0	0.000

(continuation of the "Channel Closing Transmission Time Detailed Results" table from column 5 ...)

DUT Frequency (MHz)	CCTT Tx Time Limit	CCTT Result	CCTT Comment
5270.000000	200.000	PASS	See Note 1.
5270.000000	60.000	PASS	See Note 1.

Non-occupancy period Detailed Results

DUT Frequency	Radar Type	NOP No. of Pulses	NOP No. of	NOP Tx	NOP Tx
(MHz)	No.	found	Pulses Limit	Time	Time Limit
				(c)	(c)
5270.000000	0	0	0	0.000	0.000

(continuation of the "Non-occupancy period Detailed Results" table from column 6 ...)

DUT Frequency	NOP Result
(MHz)	
5270.000000	PASS

Transmitting Test Detailed Results

DUT Frequency (MHz)	Tx-Test Tx OnTime	Tx-Test Tx OnTime Limit	Tx-Test No. of Pulses found	Tx-Test Result	Tx-Test Comment
5270.000000	130.000	>0.000 s	24	PASS	

Radar level verification

Description / Formula	Value	Unit
IF(({DFS Mode(0/1/2)}=0)or((DFS Mode(0/1/2)}=1) /F(/dB=2)N//	Given setting / formula	
{Nominal Power[dBm]}>0.2) , -64 , IF(({Configured PSD[dBm]}<10) , -62 , -64))+ {Attenuation Vector Generator to DUT[dB]} , -50+	to calculate Vector Generator level	
{Attenuation Vector Generator to COMPIdBI})+		
Configured DUT EIRP:	31.62	mW
Configured DUT PSD:	5.00	dBm/MHz
Requirement of the Detection threshold value for this given values acc. to FCC clause 5.2 / Table 3	-62	dBm
Vector Generator level setting	-1.09	dBm
Configured overall pathloss from Vector Generator	34.73	dB
Given additional level added to the amplitude of the waveform to account for variations in measurement	1.00	dB
This results in the following radar signal level at the DUT	-35.81	dBm

Additional Information

Note	Description
Note 1:	Because of the radar pulse event at the beginning, the investigation of the trace begins with an offset of 28.7 ms conforming to the end of the Radar burst.
Note 2:	Channel move time (CMT) / channel closing transmission time (CCTT) measurement was made with hi resolution video sweep using OSP DAQ channel
Note 3:	Because of the substantially higher sampling rate of the video signal the results for CCTT and CMT are more accurate than in the graphics visible. Reached timing accuracy of the video trace: approx 4 μ s
Note 4:	The Non-Occupancy Period trace starts at the end of the Channel move time trace (20.000 secs.) Labeling of the x-axis (time) is relative to its beginning (0 secs.)

Transmitt Test Sweep

Transmitt Test Sweep

Threshold

Channel Move Time first 200ms

The End