

RADIO PERFORMANCE TEST REPORT

Test Report No.	: OT-218-RWD-014
Reception No.	: 2103001143
Applicant	: 3i Inc
Address	: 3-321 523, Dongdaegu-ro, Dong-gu, Daegu, Korea
Manufacturer	: 3i Inc
Address	: 3-321 523, Dongdaegu-ro, Dong-gu, Daegu, Korea
Type of Equipment	: Pivo Remote Control
FCC ID.	: 2AS3Q-PIVORC1
Model Name	: PIVO-RC-1
Multiple Model Name	: N/A
Serial number	: N/A
Total page of Report	: 25 pages (including this page)
Date of Incoming	: July 13, 2021
Date of issue	: August 10, 2021

SUMMARY

The equipment complies with the regulation; *FCC PART 15 SUBPART C Section 15.247* This test report only contains the result of a single test of the sample supplied for the examination. It is not a generally valid assessment of the features of the respective products of the mass-production.

Tested by / Sieon Lee / Assistant Manager ONETECH Corp.

Approved by

Reviewed by / Ha-Ram Lee / Manager ONETECH Corp.

/ Ki-Hong, Nam / General Manager ONETECH Corp.

This Report is not correlated with the authentication of KOLAS It should not be reproduced except in full, without the written approval of ONETECH Corp.

OTC-TRF-RF-001(0)

ONETECH Corp.: 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599)

CONTENTS

PAGE

1. VERIFICATION OF COMPLIANCE	5
2. TEST SUMMARY	6
2.1 TEST ITEMS AND RESULTS	6
2.2 Additions, deviations, exclusions from standards	6
2.3 RELATED SUBMITTAL(S) / GRANT(S)	6
2.4 PURPOSE OF THE TEST	6
2.5 TEST METHODOLOGY	6
2.6 TEST FACILITY	6
3. GENERAL INFORMATION	7
3.1 PRODUCT DESCRIPTION	7
3.2 ALTERNATIVE TYPE(S)/MODEL(S); ALSO COVERED BY THIS TEST REPORT	7
4. EUT MODIFICATIONS	7
5. SYSTEM TEST CONFIGURATION	8
5.1 JUSTIFICATION	8
5.2 PERIPHERAL EQUIPMENT	8
5.3 MODE OF OPERATION DURING THE TEST	8
6. PRELIMINARY TEST	10
6.1 AC POWER LINE CONDUCTED EMISSIONS TESTS	
6.2 GENERAL RADIATED EMISSIONS TESTS	
7. MINIMUM 6 DB BANDWIDTH	
7.1 OPERATING ENVIRONMENT	11
7.2 TEST SET-UP	11
7.3 TEST DATE	11
7.4 TEST DATA	
8. MAXIMUM PEAK OUTPUT POWER	13
8.1 OPERATING ENVIRONMENT	
8.2 TEST SET-UP	
8.3 TEST DATE	13
8.4 TEST DATA	14
9. 100 KHZ BANDWIDTH OUTSIDE THE FREQUENCY BAND	15
9.1 OPERATING ENVIRONMENT	15

This Report is not correlated with the authentication of KOLAS It should not be reproduced except in full, without the written approval of ONETECH Corp.

OTC-TRF-RF-001(0)

ONETECH Corp.: 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599)

ONETECH

Page 3 of 25

9.2 TEST SET-UP FOR CONDUCTED MEASUREMENT	15
9.3 TEST SET-UP FOR RADIATED MEASUREMENT	15
9.4 TEST DATE	15
9.5 TEST DATA FOR CONDUCTED EMISSION	16
9.6.1 Radiated Emission which fall in the Restricted Band	
9.6.2 Spurious & Harmonic Radiated Emission	
10. PEAK POWER SPECTRAL DENSITY	20
10.1 Operating environment	
10.2 TEST SET-UP	
10.3 TEST DATE	
10.4 Test data	21
11. RADIATED EMISSION TEST	22
11.1 OPERATING ENVIRONMENT	
11.2 TEST SET-UP	
11.3 TEST DATE	
11.4 Test data for 30 MHz ~ 1000 MHz	23
11.5 TEST DATA FOR BELOW 30 MHz	24
11.6 Test data for above 1 GHz	24
12. LIST OF TEST EQUIPMENT	25

Revision History

F	Rev. No.	Issue Report No.	Issued Date	Revisions	Section Affected
	0	OT-218-RWD-014	August 10, 2021	Initial Release	All

1. VERIFICATION OF COMPLIANCE

Applicant : 3i Inc

Address : 3-321 523, Dongdaegu-ro, Dong-gu, Daegu, Korea

Contact Person : Hyekang Park / Manager

Telephone No. : +82-10-7540-8593

FCC ID : 2AS3Q-PIVORC1

Model Name : PIVO-RC-1

Brand Name : N/A

Serial Number : N/A

Date : August 10, 2021

EQUIPMENT CLASS	DTS – DIGITAL TRNSMISSION SYSTEM
E.U.T. DESCRIPTION	Pivo Remote Control
THIS REPORT CONCERNS	Original Grant
MEASUREMENT PROCEDURES	ANSI C63.10: 2013
TYPE OF EQUIPMENT TESTED	Pre-Production
KIND OF EQUIPMENT	
AUTHORIZATION REQUESTED	Certification
EQUIPMENT WILL BE OPERATED	FCC PART 15 SUBPART C Section 15.247
UNDER FCC RULES PART(S)	KDB 558074 D01 15.247 Meas Guidance v05r02
Modifications on the Equipment to Achieve	N
Compliance	None
Final Test was Conducted On	3 m, Semi Anechoic Chamber

-. The above equipment was tested by ONETECH Corp. for compliance with the requirement set forth in the FCC Rules and Regulations. This said equipment in the configuration described in this report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

2. TEST SUMMARY

2.1 Test items and results

SECTION	TEST ITEMS	RESULTS
15.247 (a) (2)	Minimum 6 dB Bandwidth	Met the Limit / PASS
15.247 (b) (3)	Maximum Peak Conducted Output Power	Met the Limit / PASS
15.247 (d)	100 kHz Bandwidth Outside the Frequency Band	Met the Limit / PASS
15.247 (d)	Radiated Emission which fall in the Restricted Band	Met the Limit / PASS
15.247 (e)	Peak Power Spectral Density	Met the Limit / PASS
15.209	Radiated Emission Limits	Met the Limit / PASS
15.207	Conducted Limits	Met the Limit / PASS
15.203	Antenna Requirement	Met requirement / PASS

2.2 Additions, deviations, exclusions from standards

No additions, deviations or exclusions have been made from standard.

2.3 Related Submittal(s) / Grant(s)

Original submittal only

2.4 Purpose of the test

To determine whether the equipment under test fulfills the requirements of the regulation stated in FCC PART 15 SUBPART C Section 15.247.

2.5 Test Methodology

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10: 2013. Radiated testing was performed at a distance of 3 m from EUT to the antenna.

2.6 Test Facility

The Onetech Corp. has been designated to perform equipment testing in compliance with ISO/IEC 17025.

The Electromagnetic compatibility measurement facilities are located at 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea.

-. Site Filing:

VCCI (Voluntary Control Council for Interference) - Registration No. R-20122/ C-14617/ G-10666/ T-11842

ISED (Innovation, Science and Economic Development Canada) – Registration No. Site# 3736A-3

KOLAS (Korea Laboratory Accreditation Scheme) - Accreditation NO. KT085

FCC (Federal Communications Commission) - Accreditation No. KR0013

RRA (Radio Research Agency) - Designation No. KR0013

ONETECH Corp.: 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599)

3. GENERAL INFORMATION

3.1 Product Description

The 3i Inc, Model PIVO-RC-1 (referred to as the EUT in this report) is a Pivo Remote Control. The product specification described herein was obtained from product data sheet or user's manual.

Device Type	Pivo Remote Control
Operating Frequency	2 440 MHz (Only Tx)
RF Output Power	-9.67 dBm
Number of Channel	1 Channels
Modulation Type	GFSK
Antenna Type	PCB Antenna
Antenna Gain	0.00 dBi
Rated Supply Voltage	DC 3.0 V
List of each Osc. or crystal	
Freq.(Freq. >= 1 MHz)	16 MHz

3.2 Alternative type(s)/model(s); also covered by this test report.

-. None

4. EUT MODIFICATIONS

-. None

5. SYSTEM TEST CONFIGURATION

5.1 Justification

This device was configured for testing in a typical way as a normal customer is supposed to be used. During the test, the

following components were installed inside of the EUT.

DEVICE TYPE	MANUFACTURER	MODEL/PART NUMBER	FCC ID
Main Board	3i Inc	N/A	N/A

5.2 Peripheral equipment

Defined as equipment needed for correct operation of the EUT, but not considered as tested:

Model	Manufacturer	Description	Connected to
PIVO-RC-1	3i Inc	Pivo Remote Control (EUT)	-
PROBOOK	HP	Notebook PC	-

5.3 Mode of operation during the test

For the testing, software used to control the EUT for staying in continuous transmitting is programmed.

For final testing, the EUT was set at 2 440 MHz to get a maximum emission levels from the EUT. The EUT was moved throughout the XY, XZ, and YZ planes and the worst case is "XY" axis, but the worst data was recorded in this report.

-. Frequency / Channel Operations

Channel	Frequency
1	2 440

-. Duty Cycle

Mode	Tx On Time	Tx Off Time	Duty Cycle	Correction Factor
Mode	[ms]	[ms]	[%]	[dB]
GFSK	0.36	2.33	15.45	8.11

Note – Duty Cycle : (Tx On Time / (Tx On Time + Tx Off Time)) * 100

Correction Factor : 10 * Log(1 / (Duty Cycle / 100))

-. Test Plot

Ref Le	evel :	.0.00 dBr	n Offset	1.00 dB	🔵 RBW 28 M	/Hz							
Att			B 👄 SWT		VBW 28 M								
TRG: VI	D												
●1Pk Vi	зw												
-			1				П)5[1]				_	-0.28 d
							_						3000 m
0 dBm—							N	11[1]					.22 dBr
1 D2 -10 <mark>1</mark> dBm	03	D4			D <u>5</u>			_			0	.000	00000
-TOUBII		4 G -15.00			1								
-20 dBm		G -15.00											
20 001													
-30 dBm						_						_	
-40 dBm			how was had at a set of the set o	a alaa	للطلع ومراجل والمراجب		www.	a alt		all and		I	al hur
<mark>կլիպ</mark> -50 dBm		wardersald	httypullestrallation the	munapphan	hlathan transmulter	when	NW	[MMULICATION OF	banat art the	-mp-port	enliptorapitheou	mar	þiv
-30 UBI													
-60 dBm													
00 401													
-70 dBm	_					_		_				_	
-80 dBm						_						—	
	F GHz				100)1 pts						500	0.0 µs/
CF 2.44													
CF 2.44 Marker			X-value	• I	Y-value		Fund	ction		Fund	tion Resu	lt	
Marker	Ref	Trc											
Marker	Ref	Trc 1	A Value	0.0 s	-10.22 (dBm							
Marker Type M1 D2	M1	1	18	0.0 s 30.0 µs	0.62	2 dB							
Marker Type M1 D2 D3	M1 M1	1 1 1	18 52	0.0 s 30.0 µs 20.0 µs	0.62	dB dB							
Marker Type M1 D2	M1	1	18 52 70	0.0 s 30.0 µs	0.62	dB dB dB							

5.4 Configuration of Test System

Radiated Emission Test:Preliminary radiated emissions test were conducted using the procedure in ANSI C63.10:
2013 to determine the worse operating conditions. Final radiated emission tests were
conducted at 3 meter Semi Anechoic Chamber.
The turntable was rotated through 360 degrees and the EUT was tested by positioned
three orthogonal planes to obtain the highest reading on the field strength meter. Once
maximum reading was determined, the search antenna was raised and lowered in both
vertical and horizontal polarization.

5.5 Antenna Requirement

For intentional device, according to section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Construction:

The antenna of the EUT is PCB Antenna on the main board in the EUT, so no consideration of replacement by the user.

6. PRELIMINARY TEST

6.1 AC Power line Conducted Emissions Tests

- It is not need to test this requirement, because the power of the EUT is supplied from a DC battery.

6.2 General Radiated Emissions Tests

During Preliminary Test, the following operating mode was investigated.

Operation Mode	The Worse operating condition (Please check one only)
Transmitting Mode	Х

7. MINIMUM 6 dB BANDWIDTH

7.1 Operating environment

Temperature	:	25 °C
Relative humidity	:	48 % R.H.

7.2 Test set-up

The antenna output of the EUT was connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz, and peak detection was used. The 6 dB bandwidth is defined as the total spectrum over which the power is higher than the peak power minus 6 dB.

7.3 Test Date

7.4 Test data

Channel	Frequency (MHz)	Measured Value (kHz)	Limit (kHz)	Margin (kHz)
Low	2 440.00	574.40	500.00	74.40

Remark. Margin = Measured Value - Limit

Ref Level 10.00 d	iBm Offset 1.00 dB	3 👄 RBW 100 kHz			
	dB SWT 19 բ։	5 👄 VBW 300 kHz	Mode Auto FFT		
●1Pk View					
0 dBm			M1[1]	2.43999	.69 dBn 500 GH: 6.00 dB
		M1	ndB Bw	574.400000	
-10 dBm		T¥ V	Q factor		4247.
-20 dBm					
-30 dBm			<u> </u>		
-40 dBm					
-50 dBm					
-60 dBm					
-70 dBm					
-80 dBm					
CF 2.44 GHz		1001 pt	s	Span 5	.0 MHz
Marker		1			
Type Ref Trc	X-value	Y-value	Function	Function Result	4 4 14 1
M1 1 T1 1	2.439995 GHz 2.4397303 GHz		ndB down ndB		4.4 kHz 6.00 dB
T2 1	2.4403047 GHz		Q factor		6.00 ив 4247.7

8. MAXIMUM PEAK OUTPUT POWER

8.1 Operating environment

Temperature	:	25 °C
Relative humidity	:	48 % R.H.

8.2 Test set-up

The antenna output of the EUT was connected to the spectrum analyzer.

The resolution bandwidth is set to \geq DTS Bandwidth, the video bandwidth is set to 3 times the resolution bandwidth.

8.3 Test Date

8.4 Test data

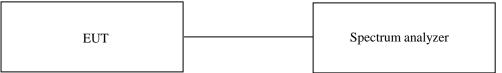
-. Test Result

Channel	Frequency	6 dB Bandwidth	Measured Value	Limit	Margin
Channel	(MHz)	(kHz)	(dBm)	(dBm)	(dB)
Low	2 440.00	574.40	-9.67	30.00	39.67

Remark. Margin = Limit – Measured value (=Receiver Reading + Cable Loss)

: Pass

RefLevel 10.00 dBm Att 20 dB	Offset 1.00 dB 👄 SWT 635.4 ns 👄	KBW 3 MHZ VBW 10 MHZ Mod	e Auto FET	
●1Pk View	GAT 033.1115		e Autorri	
			M1[1]	-9.67 dBm 2.43980520 GHz
0 dBm				
-10 dBm		M1		
-10 dbm				
-20 dBm				
-30 dBm				
-40 dBm				
-50 dBm				
-60 dBm				
-70 dBm				
-80 dBm				
CF 2.44 GHz	1	1001 pts		Span 5.0 MHz


9. 100 kHz BANDWIDTH OUTSIDE THE FREQUENCY BAND

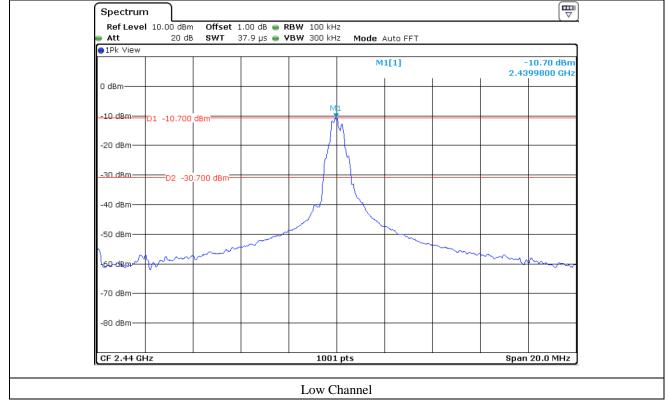
9.1 Operating environment

Temperature	:	25 °C
Relative humidity	:	48 % R.H.

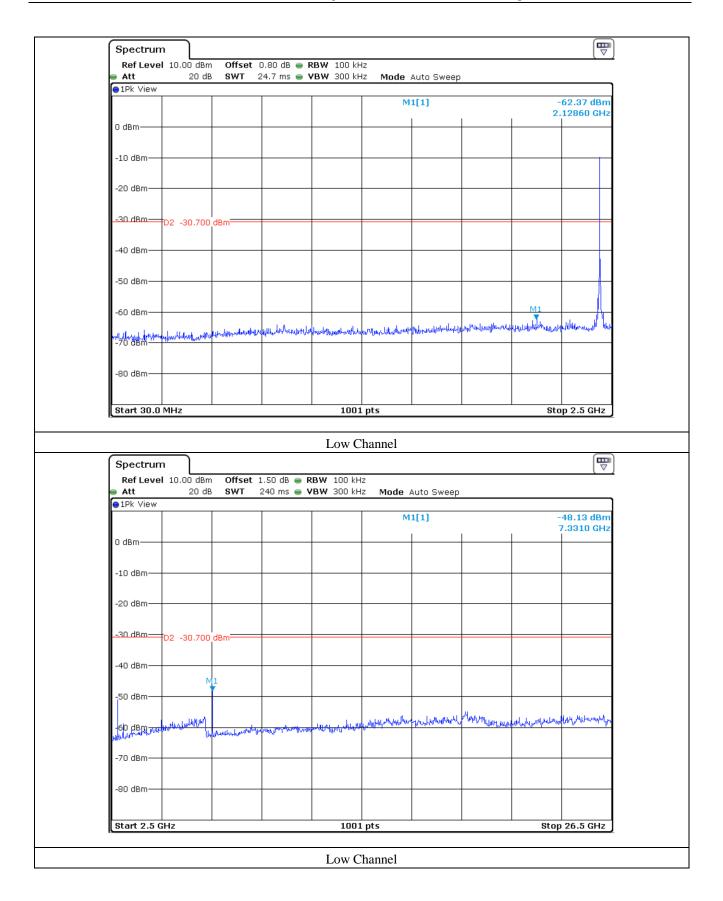
9.2 Test set-up for conducted measurement

The antenna output of the EUT was connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz, the video bandwidth is set to 3 times the resolution bandwidth and peak detection was used.

9.3 Test set-up for radiated measurement


The radiated emissions measurements were performed on the 3 m semi anechoic chamber. The EUT was placed on turntable approximately 1.5 m above the ground plane.

The frequency spectrum from 30 MHz to 26.5 GHz was scanned and maximum emission levels at each frequency recorded. The system was rotated 360°, and the antenna was varied in the height between 1.0 m and 4.0 m in order to determine the maximum emission levels. This procedure was performed for horizontal and vertical polarization of the receiving antenna.


9.4 Test Date

9.5 Test data for conducted emission

This Report is not correlated with the authentication of KOLAS

It should not be reproduced except in full, without the written approval of ONETECH Corp.

9.6 Test data for radiated emission

9.6.1 Radiated Emission which fall in the Restricted Band

Resolution bandwidth	: 1 MHz and Peak Detector for Peak Mode
	1 MHz and RMS Detector for Average Mode

-. Video bandwidth : 3 MHz for Peak and Average Mode

-. Measurement distance : 3 m

-. Duty Cycle : 15.45 %

-. Result : <u>PASSED</u>

Frequency	Reading	Detector	Ant. Pol.	Ant.	Cable	AMP	Duty Factor	Total	Limits	Margin	
(MHz)	(dBµV)	Mode	(H/V)	Factor	Loss	Gain	(dB)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
	Test Data for Low Channel										
2 342.14	51.61	Peak	Н	28.30	8.20	46.15	-	41.96	74.00	32.04	
2 337.91	41.93	Average	Н	28.30	8.20	46.15	8.11	40.39	54.00	13.61	
2 352.84	51.45	Peak	v	28.30	8.20	46.15	-	41.80	74.00	32.20	
2 386.01	41.83	Average	v	28.30	8.20	46.15	8.11	40.29	54.00	13.71	
			r	Test Data	for Low	Channe	1				
2 490.79	51.18	Peak	Н	28.70	8.33	46.06	-	42.15	74.00	31.85	
2 488.78	41.55	Average	Н	28.70	8.33	46.06	8.11	40.63	54.00	13.37	
2 497.51	50.98	Peak	v	28.70	8.33	46.06	-	41.95	74.00	32.05	
2 493.13	41.53	Average	V	28.70	8.33	46.06	8.11	40.61	54.00	13.39	

Tabulated test data for Restricted Band

Remark: "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Total Level (dB μ V/m)

Total Level = Reading + Antenna Factor + Cable Loss + Duty Factor - AMP Gain

9.6.2 Spurious & Harmonic Radiated Emission

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

1 MHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 3 MHz for Peak and Average Mode

: PASSED

-. Frequency range : 1 GHz ~ 26.5 GHz

-. Measurement distance : 3 m

-. Duty Cycle : 15.45 %

-. Result

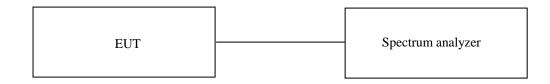
Frequency (MHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	AMP Gain	Duty Factor (dB)	Total (dBµV/m)	Limits (dBµV/m)	Margin (dB)
Test Data for Low Channel										
4 880.00	51.90	Peak	Н	33.50	11.23	45.80	-	50.83	74.00	23.17
4 880.00	40.89	Average	Н	33.50	11.23	45.80	8.11	47.93	54.00	6.07
4 880.00	51.69	Peak	V	33.50	11.23	45.80	-	50.62	74.00	23.38
4 880.00	40.74	Average	V	33.50	11.23	45.80	8.11	47.78	54.00	6.22

Remark: "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Total Level (dB μ V/m)

Total Level = Reading + Antenna Factor + Cable Loss + Duty Factor - AMP Gain

10. PEAK POWER SPECTRAL DENSITY


10.1 Operating environment

Temperature	:	25 °C
Relative humidity	:	48 % R.H.

10.2 Test set-up

The antenna output of the EUT was connected to the spectrum analyzer.

The resolution bandwidth is set to 3 kHz \leq RBW \leq 100 kHz, the video bandwidth is set to 3 times the resolution bandwidth.

10.3 Test Date


10.4 Test data

-. Test Result

: Pass : Continuous transmitting mode -. Operating Condition

Channel	Frequency	Measured Value	Limit	Margin
Channel	(MHz)	(dBm)	(dBm)	(dB)
Low	2 440.00	-23.58	8.00	31.58

Remark. Margin = Limit – Measured value (=Receiver Reading + Cable Loss)

11. RADIATED EMISSION TEST

11.1 Operating environment

Temperature	:	25 °C
Relative humidity	:	48 % R.H.

11.2 Test set-up

The radiated emissions measurements were on the 3 m semi anechoic chamber. The EUT and other support equipment were placed on a non-conductive turntable above the ground plane. The interconnecting cables from outside test site were inserted into ferrite clamps at the point where the cables reach the turntable.

The frequency spectrum from 30 MHz to 26.5 GHz was scanned and emission levels maximized at each frequency recorded. The system was rotated 360°, and the antenna was varied in height between 1.0 m and 4.0 m in order to determine the maximum emission levels. This procedure was performed for both horizontal and vertical polarization of the receiving antenna.

11.3 Test Date

Page 23 of 25

11.4 Test data for 30 MHz ~ 1000 MHz

	est data	101 50				ΠZ								_		
umidi	ity Level		: <u>4</u>	: <u>48 % R.H.</u> Temperature: <u>7</u>									ture: <u>25</u>			
imits a	apply to		: <u>F</u>	FCC C	FR 47	7, PAR'	<u>T 15, SUB</u>	PART C	C, SECT	<u>FION 15</u>	5.247					
esult			: <u>P</u>	PASSE	D											
UT			: F	vivo R	emote	e Contro	ol									
etecto	or		: C	CISPR	Quas	i-Peak	(6 dB Ban	dwidth:	120 kH	z)						
60	[dBuV/m]		< <qp< td=""><td>DATA</td><td>4>></td><td></td><td></td><td>-</td><td></td><td>O HO</td><td>RIZON</td><td>TAL.</td><td>/ ×</td><td>VER</td><td>TICAL</td></qp<>	DATA	4>>			-		O HO	RIZON	TAL.	/ ×	VER	TICAL
60																-
50			,	_											-	
40																
30				_				2							0	
													Bal. Su	-	and an	
20	5						marty	Manaukor		-	equility of	Non salv				+
10		2	m	~~~	all a	m	map 1 a	nomental	www.wm			-	-			
0	ом		DM N	70M		100M		20	ом	3001		50	OM	70	OM	1G
3	UM	50		70101		1001		20	UM	300	vi	50	UM			cy[Hz]

No.	FREQ	READING QP	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
	Horizo	ntal								
1	127.970		19.0				43.5		400	75
2	192.960	28.4	16.0	2.4	32.0	0 14.8	43.5	28.7	200	0
3	290.930	28.6	18.9	3.0	32.0	0 18.5	46.0	27.5	100	23
4	509.181	29.3	23.2	3.9	32.	3 24.1	46.0	21.9	100	339
5	562.529	29.6	23.8	4.1	32.	4 25.1	46.0	20.9	400	192
6	751.673	29.3	26.4	4.8	32.	1 28.4	46.0	17.6	200	264
	Vertic	al								
7	79.470	30.0	12.9	1.7	32.	0 12.6	40.0	27.4	400	52
8	139.610	28.1	19.5	2.1	32.0	0 17.7	43.5	25.8	200	359
9	250.190	30.0	17.8	2.8	32.0	0 18.6	46.0	27.4	100	0
10	358.830	28.8	20.1	3.3	32.	1 20.1	46.0	25.9	100	358
11	708.025	28.2	25.7				46.0	19.7	200	306
12	822.481	29.0	27.2	5.0	31.	9 29.3	46.0	16.7	400	269

This Report is not correlated with the authentication of KOLAS

It should not be reproduced except in full, without the written approval of ONETECH Corp.

11.5 Test data for Below 30 MHz

-. Resolution bandwidth 200 Hz (from 9 kHz to 0.15 MHz), 9 kHz (from 0.15 MHz to 30 MHz)

-. Frequency range : 9 kHz ~ 30 MHz

- -. Measurement distance : 3 m
- -.Operating mode : Transmitting mode

Frequency	Reading	Ant. Pol.	Ant.	Angle	Ant. Factor	Cable	Emission	Limits	Margin
(MHz)	(dBµV)	(H/V)	Height (m)	(°)	(dB/m)	Loss	Level(dBµV/m)	(dBµV/m)	(dB)
Emission from the EUT more than 20 dB below the limit in each frequency range.									

11.6 Test data for above 1 GHz

- -. Resolution bandwidth : 1 MHz for Peak and Average Mode
- -. Video bandwidth : 3 MHz for Peak and Average Mode
- -. Frequency range : 1 GHz ~ 26.5 GHz
- -. Measurement distance : 3 m
- -.Operating mode : Transmitting mode

Frequency	Reading	Ant. Pol.	Ant.	Angle	Ant. Factor	Cable	Emission	Limits	Margin
(MHz)	(dBµV)	(H/V)	Height (m)	(°)	(dB/m)	Loss	Level(dBµV/m)	(dBµV/m)	(dB)
Emission from the EUT more than 20 dB below the limit in each frequency range.									

12. LIST OF TEST EQUIPMENT

Model Number	Manufacturer	Description	Serial Number	Last Cal.(Interval)
FSV40-N	Rohde & Schwarz	Signal Analyzer	101457	Apr. 16, 2021 (1Y)
ESW 44	Rohde & Schwarz	EMI Test Receiver	101851	Mar. 23, 2021 (1Y)
310N	Sonoma Instrument	Pre-Amplifier	312544	Mar. 16, 2021 (1Y)
SCU18	Rohde & Schwarz	Signal Conditioning unit	102266	Jul. 14, 2021 (1Y)
PAM-840A	Com-Power	Pre-Amplifier	461339	Oct. 16, 2020 (1Y)
DT3000-3t	Innco System	Turn Table	DT3000/093	N/A
MA-4000XPET	Innco System	Antenna Master	MA4000/509	N/A
HLP-2008	TDK RF Solutions	Hybrid Antenna	131316	Feb. 27, 2020 (2Y)
AH-118	Com-Power	Horn Antenna	10050061	Oct. 15, 2020 (1Y)
BBHA9170	Schwarzbeck	Horn Antenna	BBHA9170178	Jan. 07, 2021(1Y)
FMZB 1513	Schwarzbeck	Loop Antenna	1513-235	Mar. 24, 2020 (2Y)
HPF 3GHz	Rohde & Schwarz	High Pass Filter	N/A	Feb. 08, 2021 (1Y)