

TEST REPORT

FCC PART 15 SUBPART C 15.247

Test report On Behalf of Shenzhen Bobotel Technology DEV. Co., Ltd. For wireless portable party speaker Model No.: V60033BT

FCC ID: 2AS3H-V60033BT

Prepared for : Shenzhen Bobotel Technology DEV. Co., Ltd. No.20, Xiuling No.1 Road, Kengzi Street, Pingshan District, Shenzhen, Guangdong, 518118 China

Prepared By :Shenzhen HUAK Testing Technology Co., Ltd.1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street,
Bao'an District, Shenzhen, China

 Date of Test:
 Jan. 29, 2021 ~Mar. 26, 2021

 Date of Report:
 Mar. 26, 2021

 Report Number:
 HK2101290701-E

TEST RESULT CERTIFICATION

Applicant's name Shenzhen Bobotel Technology DEV. Co., Ltd.

Manufacture's Name. Shenzhen Bobotel Technology DEV. Co., Ltd.

Address...... No.20, Xiuling No.1 Road, Kengzi Street, Pingshan District, Shenzhen, Guangdong, 518118 China

Product description

Trade Mark: VIVITAR

Product name wireless portable party speaker

Model and/or type V60033BT

Standards...... 47 CFR FCC Part 15 Subpart C 15.247

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test Date (s) of performance of tests.... Jan. 29, 2021 ~Mar. 26, 2021 Date of Issue Mar. 26, 2021 Test Result Pass

Prepared by:

(John Qian

Project Engineer

Reviewed by:

Edan Hu

Approved by:

Technical Director

Table of Contents

Page

1. SU	MMARY	5
1.1.	TEST STANDARDS	5
1.2.	TEST DESCRIPTION	5
1.3.	TEST FACILITY	6
1.4.	STATEMENT OF THE MEASUREMENT UNCERTAINTY	6
2. GE	NERAL INFORMATION	7
2.1.	ENVIRONMENTAL CONDITIONS	7
2.2.	GENERAL DESCRIPTION OF EUT	7
2.3.	DESCRIPTION OF TEST MODES AND TEST FREQUENCY	8
2.4.	EQUIPMENTS USED DURING THE TEST	9
2.5.	RELATED SUBMITTAL(S) / GRANT (S)	
2.6.	MODIFICATIONS	
2.7.	DESCRIPTION OF TEST SETUP	10
3. TES	ST CONDITIONS AND RESULTS	
3.1.	CONDUCTED EMISSIONS TEST	
3.2.	RADIATED EMISSIONS AND BAND EDGE	
3.3.	MAXIMUM PEAK CONDUCTED OUTPUT POWER	25
3.4.	20DB BANDWIDTH	
3.5.	FREQUENCY SEPARATION	
3.6.	NUMBER OF HOPPING FREQUENCY	
3.7.	TIME OF OCCUPANCY (DWELL TIME)	
3.8.	OUT-OF-BAND EMISSIONS	
3.9.	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	44
3.10.	ANTENNA REQUIREMENT	45
4. TES	ST SETUP PHOTOS OF THE EUT	
5. PH	OTOS OF THE EUT	

** Modifited History **

Revison	Description	Issued Data	Remark	
Revsion 1.0	Initial Test Report Release	Mar. 26, 2021	Jason Zhou	

1. SUMMARY

1.1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10:2013 : American National Standard for Testing Unlicensed Wireless Devices.

1.2. TEST DESCRIPTION

FCC PART 15.247					
FCC Part 15.207	PASS				
FCC Part 15.215	20dB Bandwidth& 99% Bandwidth	PASS			
FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS			
FCC Part 15.247(b)	PASS				
FCC Part 15.247 (a) (1)	PASS				
FCC Part 15.247(a)(1)(iii) Number of hopping frequency& Time of Occupancy		PASS			
FCC Part 15.247(a)(1)	Frequency Separation	PASS			
FCC Part 15.205/15.209 Radiated Emissions		PASS			
FCC Part 15.247(d)	PASS				

1.3. TEST FACILITY

1.3.1 Address of the test laboratory

Shenzhen HUAK Testing Technology Co., Ltd. Add.: 1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an District, Shenzhen, China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.10 and CISPR 32/EN 55032 requirements.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 21210

The 3m alternate test site of Shenzhen HUAK Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 21210 on May 24, 2016.

1.4. STATEMENT OF THE MEASUREMENT UNCERTAINTY

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen HUAK Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Test	Measurement Uncertainty	Notes
Transmitter power conducted	±0.37dB	(1)
Transmitter power Radiated	±3.35dB	(1)
Conducted spurious emission 9KHz-40 GHz	±2.20dB	(1)
Occupied Bandwidth	±3.68%	(1)
Radiated Emission 30~1000MHz	±3.90dB	(1)
Radiated Emission Above 1GHz	±4.28dB	(1)
Conducted Disturbance0.15~30MHz	±2.71dB	(1)

Hereafter the best measurement capability for HUAK laboratory is reported:

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2. GENERAL INFORMATION

2.1. ENVIRONMENTAL CONDITIONS

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2. GENERAL DESCRIPTION OF EUT

Product Name:	wireless portable party speaker			
Model/Type reference:	V60033BT			
Serial Model:	N/A			
Model Difference:	N/A			
Power supply:	DC 3.7V from battery or DC 5V from USB			
Version:	Supported EDR			
Modulation:	GFSK, π/4DQPSK, 8DPSK			
Operation frequency:	2402MHz~2480MHz			
Channel number:	79CH			
Channel separation:	1MHz			
Antenna type:	PCB Antenna			
Antenna gain:	-0.68dBi			
Hardware Version:	V2.1			
Software Version:	V1.0			

Note: For more details, refer to the user's manual of the EUT.

2.3. DESCRIPTION OF TEST MODES AND TEST FREQUENCY

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. There are 79 channels provided to the EUT and Channel 00/39/78 was selected for testing.

Operation Frequency :

Channel	Frequency (MHz)	
00	2402	
01	2403	
:	:	
38	2440	
39	2441	
40	2442	
:	:	
77	2479	
78	2480	

Note: The line display in grey were the channel selected for testing.

Preliminary tests were performed in each mode and packet length of BT, and found worst case as bellow, finally test were conducted at those mode and recorded in this report.

Test Items	Worst case		
Conducted Emissions	DH5 High channel		
Radiated Emissions and Band Edge	DH5 Low channel		
Maximum Conducted Output Power	DH5/2DH5/3DH5		
20dB Bandwidth&99% Bandwidth	DH5/2DH5/3DH5		
Frequency Separation	DH5/2DH5/3DH5 Middle channel		
Number of hopping frequency	DH5/2DH5/3DH5		
Time of Occupancy (Dwell Time)	DH1/DH3/DH5 Middle channel 2DH1/2DH3/2DH5 Middle channel 3DH1/3DH3/3DH5 Middle channel		
Out-of-band Emissions	DH5/2DH5/3DH5		

2.4. EQUIPMENTS USED DURING THE TEST

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N. Artificial Mains Network	R&S	ENV216	HKE-002	Jun. 18, 2020	1 Year
2.	Receiver	R&S	ESCI 7	HKE-010	Jun. 18, 2020	1 Year
3.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Jun. 18, 2020	1 Year
4.	Spectrum analyzer	R&S	FSP40	HKE-025	Jun. 18, 2020	1 Year
5.	Spectrum analyzer	Agilent	N9020A	HKE-048	Jun. 18, 2020	1 Year
6.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Jun. 18, 2020	1 Year
7.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Jun. 18, 2020	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Jun. 18, 2020	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Jun. 18, 2020	1 Year
10.	Horn Antenna	Schwarzbeck	9120D	HKE-013	Jun. 18, 2020	1 Year
11.	Pre-amplifier	EMCI	EMC051845 SE			1 Year
12.	Pre-amplifier	Agilent	83051A	HKE-016	Jun. 18, 2020	1 Year
13.	EMI Test Software EZ-EMC	Tonscend	JS1120-B Version	HKE-083	Jun. 18, 2020	N/A
14.	Power Sensor	Agilent	E9300A	HKE-086	Jun. 18, 2020	1 Year
15.	Spectrum analyzer	Agilent	N9020A	HKE-048	Jun. 18, 2020	1 Year
16.	Signal generator	Agilent	N5182A	HKE-029	Jun. 18, 2020	1 Year
17.	Signal Generator	Agilent	83630A	HKE-028	Jun. 18, 2020	1 Year
18.	Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 17, 2020	3 Year
19.	Power meter	Agilent	E4419B	HKE-085	Jun. 18, 2020	1 Year
20.	High gain antenna	Schwarzbeck LB-180400 KF HKE-054 Jun. 18, 2020		1 Year		

The calibration interval was one year.

2.5. RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.6. MODIFICATIONS

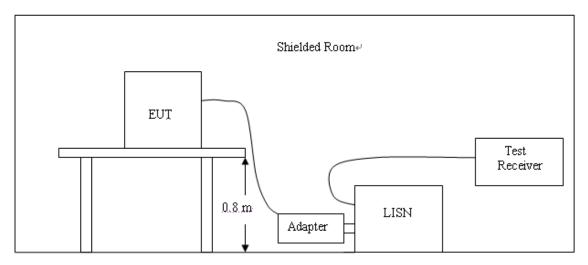
No modifications were implemented to meet testing criteria.

2.7. DESCRIPTION OF TEST SETUP

Operation of EUT during conducted testing and radiation below 1GHz testing:
AC Plug Adapter EUT
Operation of EUT during radiation above 1GHz testing:
EUT
Adapter information Model: HW-059200CHQ Input: 100-240V, 50-60Hz, 0.5A Output: 5VDC, 2A
The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position.

3. TEST CONDITIONS AND RESULTS

3.1. CONDUCTED EMISSIONS TEST


<u>LIMIT</u>

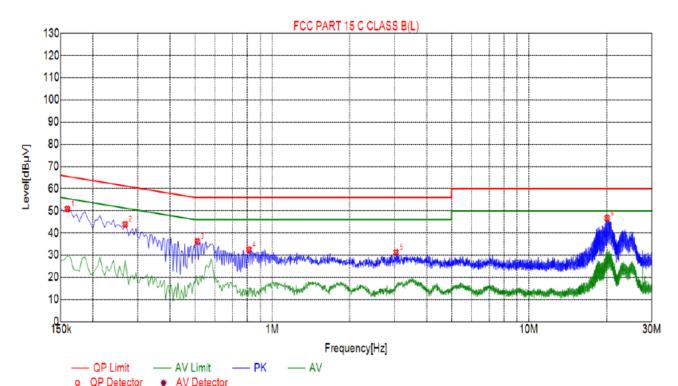
According to FCC CFR Title 47 Part 15 Subpart C Section 15.207 and RSS Gen 8.8, AC Power Line Conducted Emissions Limits for Licence-Exempt Radio Apparatus as below:

Frequency range (MHz)	Limit (dBuV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

* Decreases with the logarithm of the frequency.

TEST CONFIGURATION

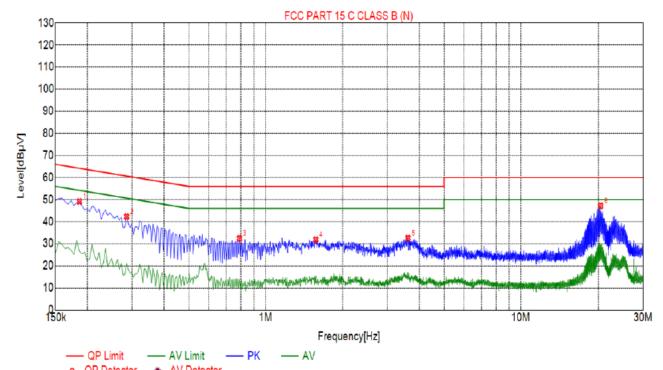
TEST PROCEDURE


- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- 4. The adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST RESULTS

Remark: All modes of GFSK, Pi/4 DQPSK, and 8DPSK were test at Low, Middle, and High channel; only the worst result of GFSK High Channel was reported as below:

Test Specification: Line



Suspected List								
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре
1	0.1590	50.80	20.01	65.52	14.72	30.79	PK	L
2	0.2670	43.87	20.03	61.21	17.34	23.84	PK	L
3	0.5100	36.14	20.04	56.00	19.86	16.10	PK	L
4	0.8115	32.55	20.06	56.00	23.45	12.49	PK	L
5	3.0390	31.29	20.22	56.00	24.71	11.07	PK	L
6	20.0670	46.71	20.11	60.00	13.29	26.60	PK	L

Remark: Margin = Limit – Level Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

Test Specification: Neutral

	o QP Detector	AV Detector									
Sus	Suspected List										
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре			
1	0.1860	49.16	20.05	64.21	15.05	29.11	PK	Ν			
2	0.2850	42.26	20.04	60.67	18.41	22.22	PK	Ν			
3	0.7890	32.41	20.05	56.00	23.59	12.36	PK	N			
4	1.5720	31.85	20.11	56.00	24.15	11.74	PK	N			
5	3.6105	32.54	20.25	56.00	23.46	12.29	PK	Ν			
6	20.4180	47.20	20.12	60.00	12.80	27.08	PK	Ν			

Remark: Margin = Limit – Level Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

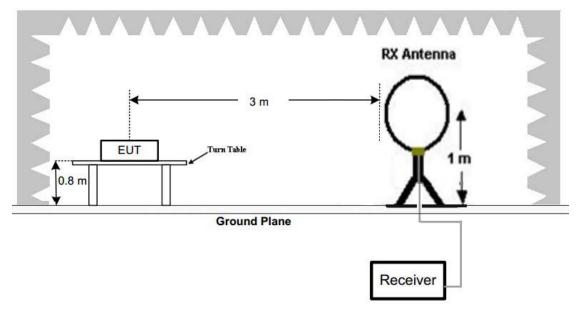
3.2. RADIATED EMISSIONS AND BAND EDGE

<u>Limit</u>

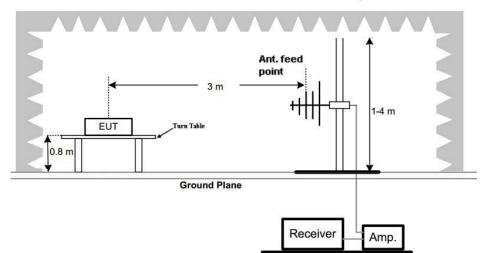
For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in table below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

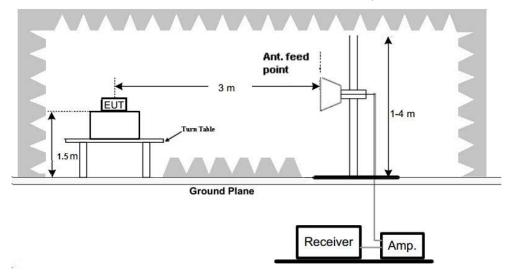

Unwanted emissions that fall into restricted bands shall comply with the limits specified in RSS-Gen; and Unwanted emissions that do not fall within the restricted frequency bands shall comply either with the limits specified in the applicable RSS or with those specified in this RSS-Gen.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)					
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)					
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)					
1.705-30	3	20log(30)+ 40log(30/3)	30					
30-88	3	40.0	100					
88-216	3	43.5	150					
216-960	3	46.0	200					
Above 960	3	54.0	500					


Radiated emission limits

TEST CONFIGURATION

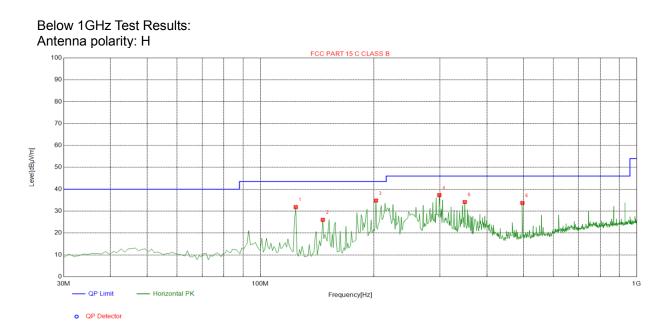
(A) Radiated Emission Test Set-Up, Frequency Below 30MHz



(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

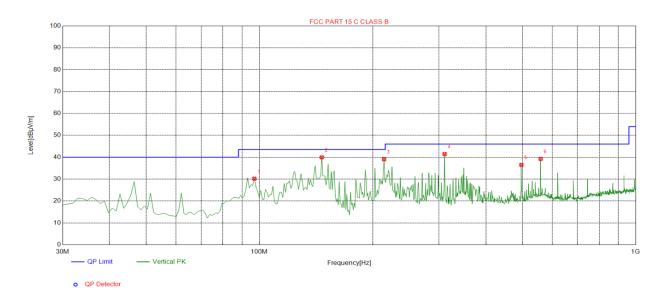
Test Procedure


- The EUT was placed on turn table which is 0.8m above ground plane for below 1GHz test, and on a low permittivity and low loss tangent turn table which is 1.5m above ground plane for above 1GHz test.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.

TEST RESULTS

Remark:

- 1. Radiated Emission measured at GFSK, $\pi/4$ DQPSK and 8DPSK mode from 9 KHz to 10th harmonic of fundamental and recorded worst case at GFSK DH5 mode.
- 2. There is no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.
- 3. For below 1GHz testing recorded worst at GFSK DH5 low channel.


-		
Cilei	pected	liet
Jus	Decleu	LISU

	cted List					
eading Level	Freq. Factor Reading	Level Limit	Margin	Height	Angle	Polarity
3μV/m] [dBμV/m] [[MHz] [dB] [dBµ√/m	BμV/m] [dBμV/m]	[dB]	[cm]	[°]	Polarity
9.57 31.85	124.1842 -17.72 49.57	31.85 43.50	11.65	100	66	Horizontal
26.02	146.5165 -19.02 45.04	26.02 43.50	17.48	100	133	Horizontal
9.81 34.82	202.8328 -14.99 49.81	34.82 43.50	8.68	100	79	Horizontal
50.09 37.34	298.9590 -12.75 50.09	37.34 46.00	8.66	100	277	Horizontal
5.85 34.16	349.4494 -11.69 45.85	34.16 46.00	11.84	100	162	Horizontal
2.12 33.75	497.0370 -8.37 42.12	33.75 46.00	12.25	100	268	Horizontal
50.09 37.34 15.85 34.16	298.9590 -12.75 50.09 349.4494 -11.69 45.85	37.34 46.00 34.16 46.00	8.66 11.84	100 100	277 162	

Remark: Factor = Cable loss + Antenna factor – Preamplifier; Level = Reading + Factor; Margin = Limit – Level

Antenna polarity: V

Suspe	Suspected List										
NO.	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Delevity		
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
1	96.9970	-15.90	46.11	30.21	43.50	13.29	100	348	Vertical		
2	146.5165	-19.02	58.98	39.96	43.50	3.54	100	138	Vertical		
3	214.4845	-14.69	53.79	39.10	43.50	4.40	100	234	Vertical		
4	310.6106	-12.58	54.05	41.47	46.00	4.53	100	251	Vertical		
5	497.0370	-8.37	44.89	36.52	46.00	9.48	100	325	Vertical		
6	559.1792	-6.70	45.92	39.22	46.00	6.78	100	341	Vertical		

Remark: Factor = Cable loss + Antenna factor – Preamplifier; Level = Reading + Factor; Margin = Limit – Level

Harmonics and Spurious Emissions

Frequency Range (9 kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)

Note:1. Emission Level=Reading+ Cable loss+ Antenna factor-Amp factor.

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

For 1GHz to 25GHz

CH Low (2402MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type		
4804.00	50.07	-3.65	46.42	74.00	-27.58	peak		
4804.00	43.78	-3.65	40.13	54.00	-13.87	AVG		
7206.00	52.91	-0.95	51.96	74.00	-22.04	peak		
7206.00	38.51	-0.95	37.56	54.00	-16.44	AVG		
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type		
4804.00	54.91	-3.65	51.26	74.00	-22.74	peak		
4804.00	42.48	-3.65	38.83	54.00	-15.17	AVG		
7206.00	51.25	-0.95	50.30	74.00	-23.70	peak		
7206.00	37.66	-0.95	36.71	54.00	-17.29	AVG		
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

CH Middle (2441MHz)

Horizontal:

Meter Reading	Factor	Emission Level	Limits	Margin	Datastas
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
50.66	-3.54	47.12	74.00	-26.88	peak
45.99	-3.54	42.45	54.00	-11.55	AVG
48.83	-0.81	48.02	74.00	-25.98	peak
39.18	-0.81	38.37	54.00	-15.63	AVG
	Reading (dBµV) 50.66 45.99 48.83	Reading Factor (dBµV) (dB) 50.66 -3.54 45.99 -3.54 48.83 -0.81	(dBµV) (dB) (dBµV/m) 50.66 -3.54 47.12 45.99 -3.54 42.45 48.83 -0.81 48.02	Reading Factor Emission Level Limits (dBμV) (dB) (dBμV/m) (dBμV/m) 50.66 -3.54 47.12 74.00 45.99 -3.54 42.45 54.00 48.83 -0.81 48.02 74.00	Reading Factor Emission Level Limits Margin (dBμV) (dB) (dBμV/m) (dBμV/m) (dB) 50.66 -3.54 47.12 74.00 -26.88 45.99 -3.54 42.45 54.00 -11.55 48.83 -0.81 48.02 74.00 -25.98

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type		
4882.00	53.23	-3.54	49.69	74.00	-24.31	peak		
4882.00	42.79	-3.54	39.25	54.00	-14.75	AVG		
7323.00	51.56	-0.81	50.75	74.00	-23.25	peak		
7323.00	37.12	-0.81	36.31	54.00	-17.69	AVG		
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

CH High (2480MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4960.00	50.69	-3.43	47.26	74.00	-26.74	peak
4960.00	43.56	-3.44	40.12	54.00	-13.88	AVG
7440.00	54.14	-0.77	53.37	74.00	-20.63	peak
7440.00	35.32	-0.77	34.55	54.00	-19.45	AVG
	r - Antonno Fo	star i Cabla I a	Dro omplifion			

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type		
4960.00	52.11	-3.43	48.68	74.00	-25.32	peak		
4960.00	42.17	-3.44	38.73	54.00	-15.27	AVG		
7440.00	52.77	-0.77	52.00	74.00	-22.00	peak		
7440.00	35.87	-0.77	35.10	54.00	-18.90	AVG		
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

Remark :

(1) Measuring frequencies from 1 GHz to the 25 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.

(3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

(7)All modes of operation were investigated and the worst-case emissions are reported.

Radiated Band Edge Test:

Hopping

Horizontal (Worst case)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
2310.00	56.43	-5.81	50.62	74	-23.38	peak		
2310.00	/	-5.81	/	54	/	AVG		
2390.00	55.32	-5.84	49.48	74	-24.52	peak		
2390.00	1	-5.84	/	54	/	AVG		
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
2310.00	56.55	-5.81	50.74	74	-23.26	peak	
2310.00	/	-5.81	/	54	/	AVG	
2390.00	57.41	-5.84	51.57	74	-22.43	peak	
2390.00	/	-5.84	/	54	/	AVG	
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

Horizontal (Worst case)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
2483.50	55.61	-5.81	49.8	74	-24.2	peak	
2483.50	/	-5.81	1	54	1	AVG	
2500.00	53.75	-6.06	47.69	74	-26.31	peak	
2500.00	/	-6.06	1	54	1	AVG	
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
2483.50	55.17	-5.81	49.36	74	-24.64	peak	
2483.50	/	-5.81	/	54	1	AVG	
2500.00	56.38	-6.06	50.32	74	-23.68	peak	
2500.00	/	-6.06	/	54	1	AVG	
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							
Remark: All the	Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.						

NO hopping

Operation Mode: TX CH Low (2402MHz)

Horizontal (Worst case)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
2310.00	54.29	-5.81	48.48	74	-25.52	peak		
2310.00	/	-5.81	/	54	1	AVG		
2390.00	55.15	-5.84	49.31	74	-24.69	peak		
2390.00	/	-5.84	/	54	/	AVG		
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
2310.00	56.13	-5.81	50.32	74	-23.68	peak		
2310.00	1	-5.81	/	54	1	AVG		
2390.00	55.83	-5.84	49.99	74	-24.01	peak		
2390.00	/	-5.84	/	54	/	AVG		
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

Operation Mode: TX CH High (2480MHz)

Horizontal (Worst case)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
2483.50	54.39	-5.81	48.58	74	-25.42	peak	
2483.50	1	-5.81	/	54	1	AVG	
2500.00	55.22	-6.06	49.16	74	-24.84	peak	
2500.00	1	-6.06	/	54	1	AVG	
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
2483.50	56.42	-5.81	50.61	74	-23.39	peak	
2483.50	/	-5.81	/	54	1	AVG	
2500.00	55.31	-6.06	49.25	74	-24.75	peak	
2500.00	/	-6.06	/	54	1	AVG	
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.							
Remark: All the	Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.						

3.3. MAXIMUM PEAK CONDUCTED OUTPUT POWER

<u>Limit</u>

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	-4.237		
GFSK	39	-4.065	21.00	Pass
	78	-3.125		
	00	-5.166		
π/4DQPSK	39	-6.392	21.00	Pass
	78	-5.012		
	00	-5.442		
8DPSK	39	-5.682	21.00	Pass
	78	-7.369		

Note: 1.The test results including the cable lose.

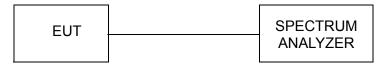
3.4. 20DB BANDWIDTH

<u>Limit</u>

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.


The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

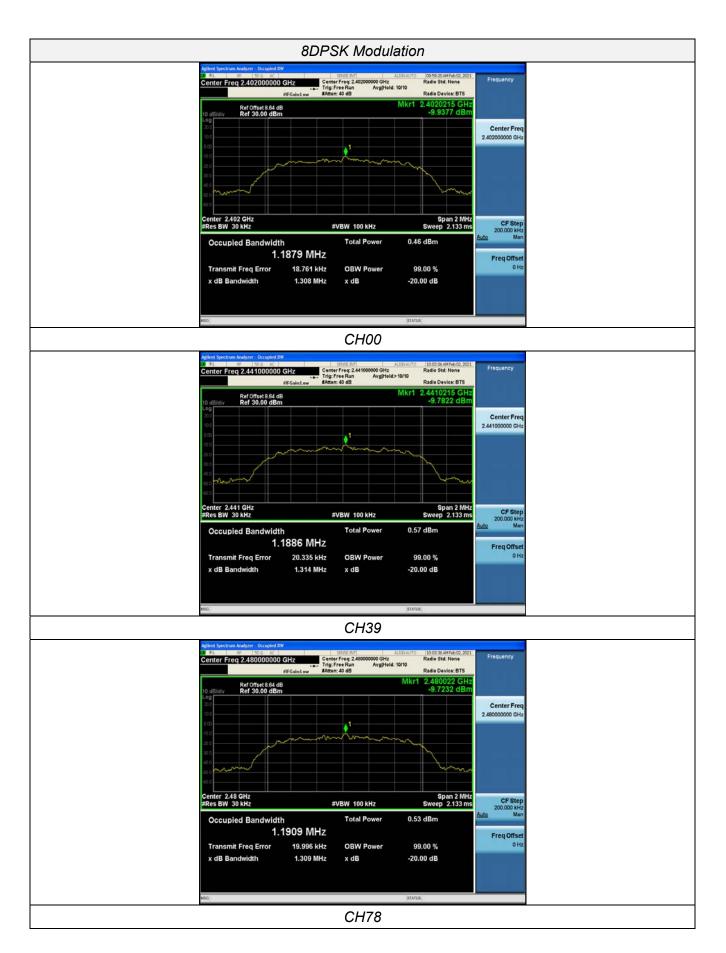
RBW=1% to 5% of the OBW VBW=approximately 3 X RBW Detector=Peak Trace Mode: Max Hold

Use the 99% power bandwidth function of the instrument to measure the Occupied Bandwidth and recoded.

Test Configuration


Test Results

Modulation	Channel	20dB bandwidth (MHz)	Result
	CH00	0.9439	
GFSK	CH39	0.9469	
	CH78	0.9474	
	CH00	1.315	
π/4DQPSK	CH39	1.323	Pass
	CH78	1.318	
	CH00	1.308	
8DPSK	CH39	1.314	
	CH78	1.309	



20dB bandwidth

3.5. FREQUENCY SEPARATION

<u>LIMIT</u>

Frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 300 KHz RBW and 1MHz VBW.

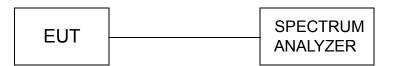
TEST CONFIGURATION

TEST RESULTS

Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result
GFSK	Middle Channel	1.000	2/3*20dB bandwidth	Pass
π/4DQPSK	Middle Channel	1.002	2/3*20dB bandwidth	Pass
8DPSK	Middle Channel	1.002	2/3*20dB bandwidth	Pass

Note: We have tested all mode at high, middle and low channel, and recorded worst case at middle.

3.6. NUMBER OF HOPPING FREQUENCY


<u>Limit</u>

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz.

Test Configuration

Test Results

Modulation	Number of Hopping Channel	Limit	Result
GFSK	79		
π/4DQPSK	79	≥15	Pass
8DPSK	79		

GFSK M	odulation	
Agilent Spectrum Analyzer - Swept SA	ALIONAUTO 10-20-00 AM Feb 02, 2021	Francisco
Start Freq 2.40000000 GHz Trig: Free Run IFGaincLow Trig: Free Run Atten: 12 dB	Avg Type: Log-Pwr Avg Hold>100/100 TVPE Det	Frequency Auto Tune
10 dB/dIV Ref 10.00 dBm	ΔMkr1 78.406 5 MHz 2.662 dB	Auto Tune
	102 701677000000000000000000000000000000000	Center Freq 2.441750000 GHz
	****************	Start Freq
400 600		2.400000000 GHz
400	_	Stop Freq 2.483500000 GHz
Start 2.40000 GHz #Res BW 100 kHz #VBW 300 kHz	Stop 2.48350 GHz Sweep 8.000 ms (1001 pts)	CF Step 8.350000 MHz
	UNCTION FUNCTION WIDTH FUNCTION VALUE	<u>Auto</u> Man
3		Freq Offset 0 Hz
	STATUS	
π/4DQPSK	Modulation	
Agthent Spectrum Analyzer - Swept SA A L BA - BB - 500 AC	ALISNAUTO 10:26:43 AM Feb 02, 2021 Avg Type: Log-Pwr Availle.do: 1001000 TVE Concerned	Frequency
PN0: Fast Trig: Free Kun IFGain:Low Atten: 12 dB	Avg Hold>100/100 Type Der Printered	Auto Tune
Ref Offset 8.64 dB 10 dB/d/w Ref 10.00 dBm ↓ 0 dB/d/w Ref 10.00 dBm	-0.374 dB	Center Freq
	waxaanaa waxaa ahaanaa waxaa waxa	2.441750000 GHz
-0.0		Start Freq 2.400000000 GHz
400		Stop Freq
40.0		2.483500000 GHz
Start 2.40000 GHz #Res BW 100 kHz #VBW 300 kHz	Stop 2.48350 GHz Sweep 8.000 ms (1001 pts)	CF Step 8.350000 MHz Auto Man
Δ2 1 Γ Γ (Δ) 78 239 5 MHz (Δ) -0.374 dB 2 F 1 Γ 2.401 837 0 GHz -7.965 dBm 3		Freq Offset
4 5 6 7		0 Hz
e Misc	STATUS	
	lodulation	
Aglent Sportum Analyzer - Swyst 3A DI RL 950 AC 970 Start Freq 2.40000000 GHz FR0: Fat Car Trig: Free Run IF Gainet curw Atten 12 dB	ALIGNAUTO 10:24:49 AM Feb 02, 2021 Avg Type: Log-Pwr TRACE 12:4 C 0 Avg Hold:>100/100 Tve	Frequency
IFGallet nov Attent: 12 dB 10 d5/dlv Ref 0ffset 9.64 dB 10 d5/dlv Ref 10.00 dBm	ΔMkr1 78.239 5 MHz 0.758 dB	Auto Tune
0.00	142	Center Freq
	And And Specify and produced and produced and and a second second second second second second second second se	2.441750000 GHz
		Start Freq 2.400000000 GHz
460 -		Stop Freq 2.483500000 GHz
Start 2.40000 GHz	Stop 2.48350 GHz	CF Step
#Res BW 100 kHz #VBW 300 kHz	Sweep 8.000 ms (1001 pts)	8.350000 MHz Auto Man
1 Δ2 1 1 / (Δ) 78.2395 MHz (Δ) 0.759 dB 2 F 1 / 2.4019205 GHz -10.377 dBm 3 4		Freq Offset 0 Hz
	v	
MSG	STATUS	

3.7. TIME OF OCCUPANCY (DWELL TIME)

<u>Limit</u>

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 3MHz VBW, Span 0Hz.

Test Configuration

FUT	SPECTRUM
LUI	ANALYZER

Test Results

Modulation	Packet	Pulse time (ms)	Dwell time (second)	Limit (second)	Result
GFSK	DH1	0.40	0.128		Pass
	DH3	1.65	0.264	0.40	
	DH5	2.89	0.308		
π/4DQPSK	2-DH1	0.40	0.128		Pass
	2-DH3	1.65	0.264	0.40	
	2-DH5	2.90	0.309		
8DPSK	3-DH1	0.40	0.128		
	3-DH3	1.65	0.264	0.40	Pass
	3-DH5	2.90	0.309		

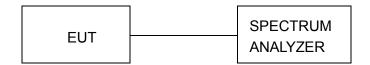
Note:

1. We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second for DH1, 2-DH1, 3-DH1
 Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second for DH3, 2-DH3, 3-DH3
 Dwell time=Pulse time (ms) × (1600 ÷ 6 ÷ 79) ×31.6 Second for DH5, 2-DH5, 3-DH5

3.8. OUT-OF-BAND EMISSIONS

<u>Limit</u>

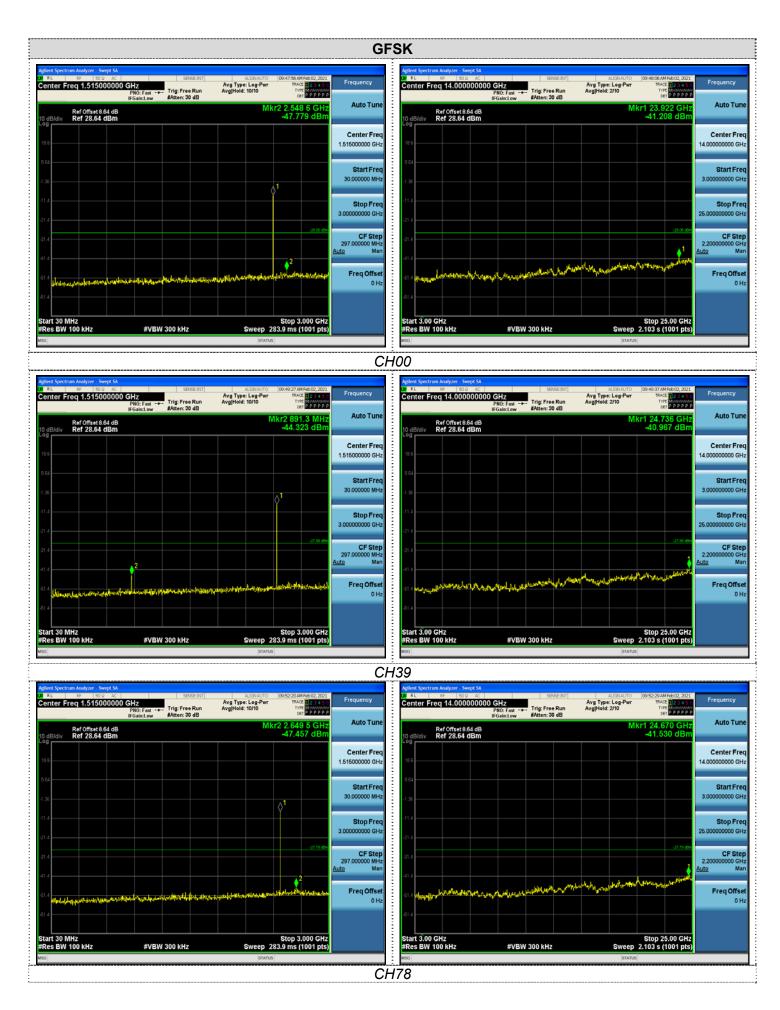

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

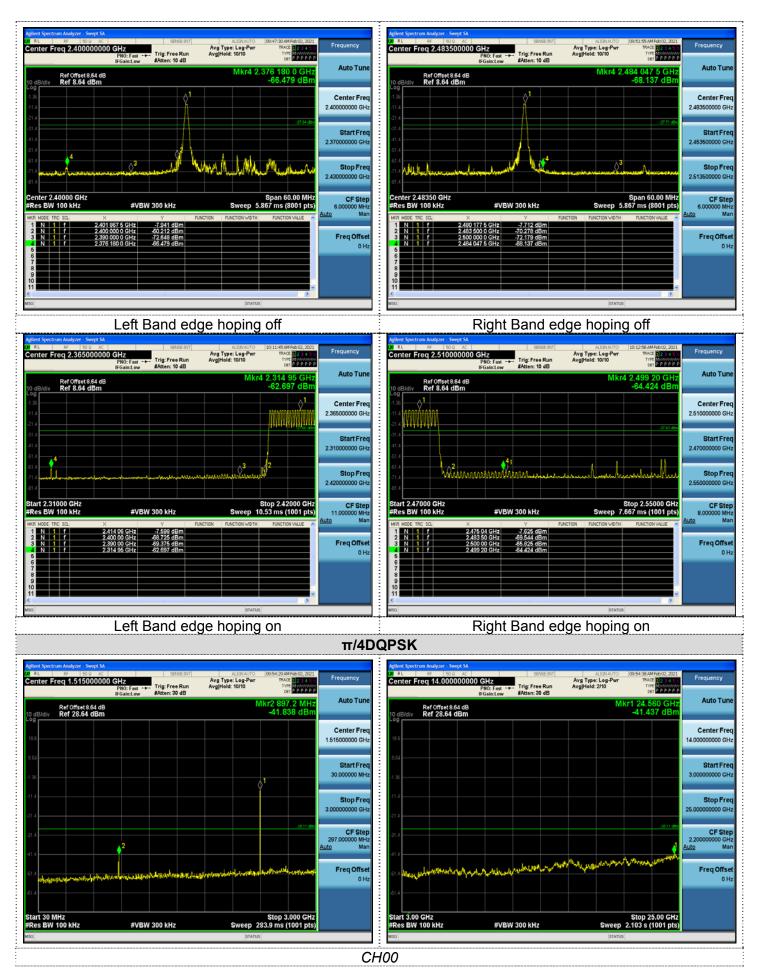
Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

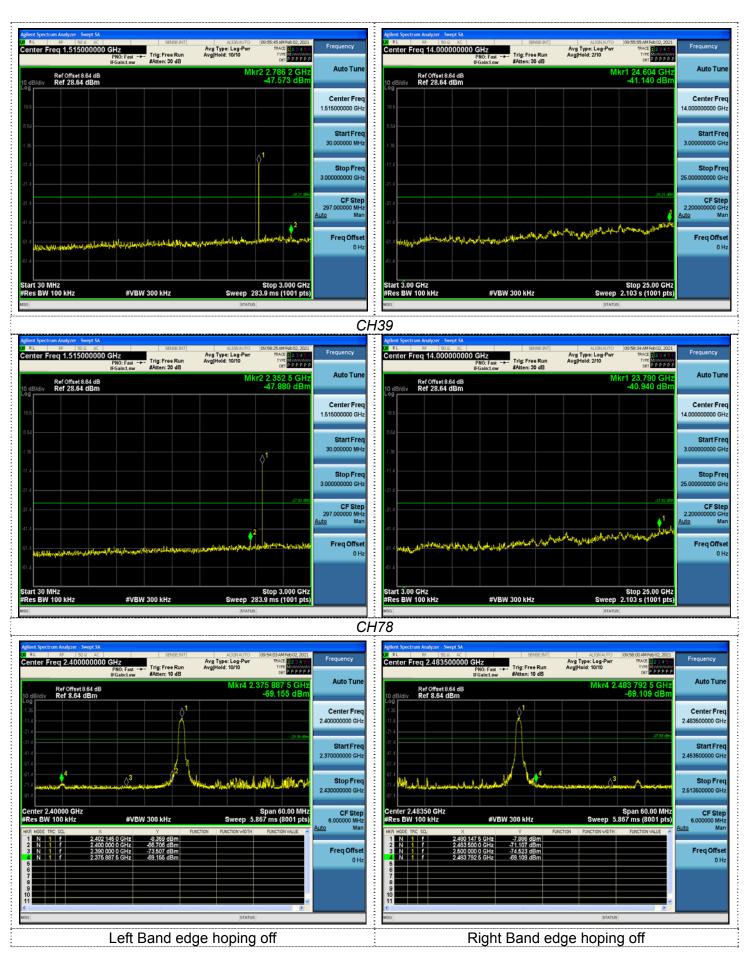
Test Configuration


Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.


We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5, 2DH5 and 3DH5.

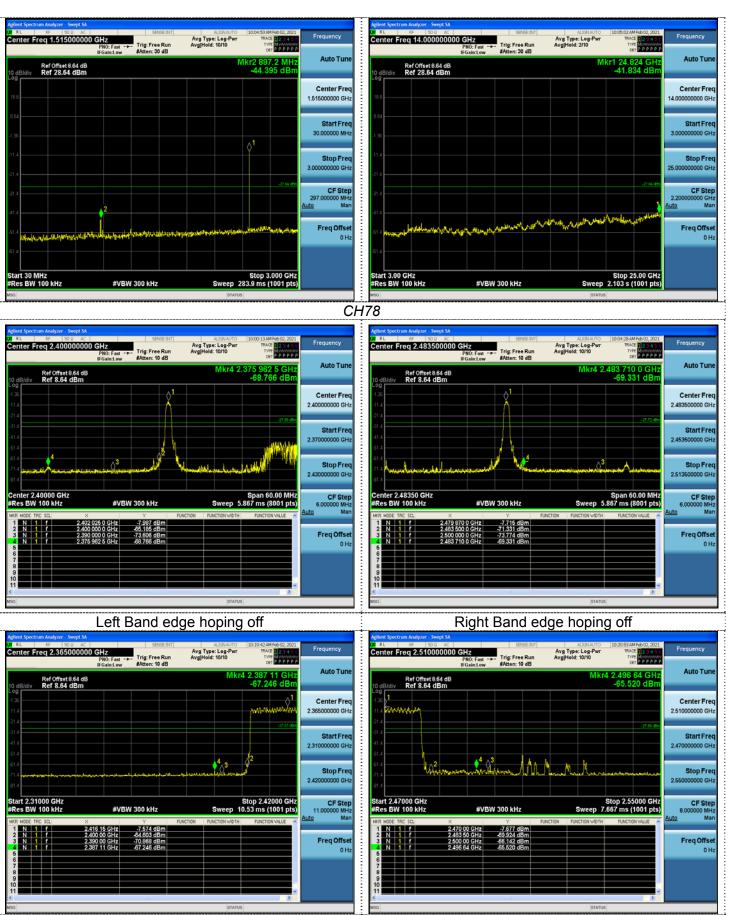
Test plot as follows:




Page 41 of 48

Page 42 of 48

Agilent Spectrum Analyzer - Swept SA			Agilent Spectrum Analyzer - Swept SA		
Center Freq 2.365000000 GHz PNO: Fast IFGain:Low #Atten:	ENCEDIT AUSNAUTO 10:14:15 AM Reduct, 20:21 Avg Type: Log-Pwr TRACE 12:24 S ee Run Avg[Hold: 10:10 TYPE 10 dB TYPE Dependent	Frequency	Dist R4 H5 S00 AC SEREEAT[ALEMANTO D015/84/AC Frequency Center Freq 2.510000000 GHz FR0: Fail +> Trig: Free Run #Atten: 10 dB Avg Hold: 10/10 Trig: Free Run Reference Frequency Frequency Frequency December 2.510000000 GHz FR0: Failet ew Trig: Free Run #Atten: 10 dB Mitra 2.498 0B GHz Auto Tune		
R#f0ffset864.dB 10 dBldiv Ref 8.64 dBm 130	-60.109 dBm 1 ///////////////////////////////////	Center Freq 2.36500000 GHz	Ref Offset 8.64 dB Inkt 9 2.490 db GH2 10 dB/div Ref 5.569 dBm -65 -65.569 dBm -114 -65.569 dBm		
31.4 41.4 51.4		Start Freq 2.31000000 GHz	31.4 31.4 41.4		
81.4 71.6 81.4 Start 2.31000 GHz	Stop 2.42000 GH	Stop Freq 2.42000000 GHz CF Step	Start 2.47000 GHz Stop 2.55000 GHz CF Step		
HTCL #VBW 300 kHz #Res BW 100 kHz #VBW 300 kH HV71 M00F TRC SCL X 1 N 1 f 2.420 00 GHz -7.676 c 2 N 1 f 2.400 00 GHz -7.676 c	Z Sweep 10.53 ms (1001 pts FUNCTION FUNCTION WIDTH FUNCTION VALUE	11.000000 MHz Auto Man	#Res BW 100 kHz #VBW 300 kHz Sweep 7.667 ms (1001 pts) 8.000000 MHz M07, M00E, TRL SQL X Y Function Punction visition Auto Man 1 N 1 f 2.479 12 GHz -7.084 dBm Auto Man 2 N f 2.4395 GHz -696 / 2.48m Auto Man		
3 N 1 f 2.390.00 CHz -71.069 N 1 f 2.358.40 CHz -60.109 -6	dBm	Freq Offset 0 Hz	3 N 1 f 22500 00 GHz 489 480 48m Freq Offset 0 Hz 6 1 2.498 08 GHz 65 569 48m 0 Hz 0 Hz 0 Hz 7 </td		
so status			MSG STATUS		
Left Band edge hoping on			Right Band edge hoping on		


Stop Freq 3.00000000 GHz Stop Freq 25.00000000 GHz CF Step 297.000000 MHz <u>ito</u> Man -----CF Step 2.2000 M Freq Offset Freq Offse 0 Hz 0 Ha Stop 3.000 GHz Sweep 283.9 ms (1001 pts) Stop 25.00 GHz Sweep 2.103 s (1001 pts) Start 3.00 GHz #Res BW 100 kHz Start 30 MHz #Res BW 100 kHz #VBW 300 kHz #VBW 300 kHz

CH39

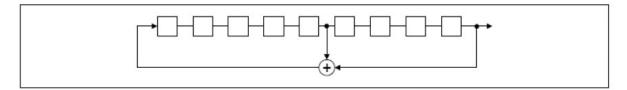
Page 43 of 48

Right Band edge hoping on

Left Band edge hoping on

3.9. PSEUDORANDOM FREQUENCY HOPPING SEQUENCE

TEST APPLICABLE


For 47 CFR Part 15C section 15.247 (a) (1):

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of pseudorandom frequency hopping sequence as follows:

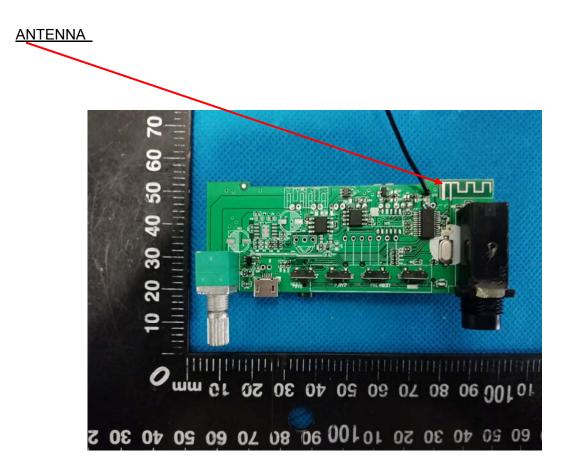
0 2	2	4	6	62 64	78 1	73 75 77
	Т					

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

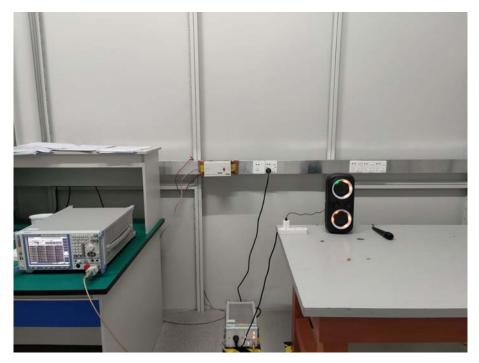
3.10. ANTENNA REQUIREMENT

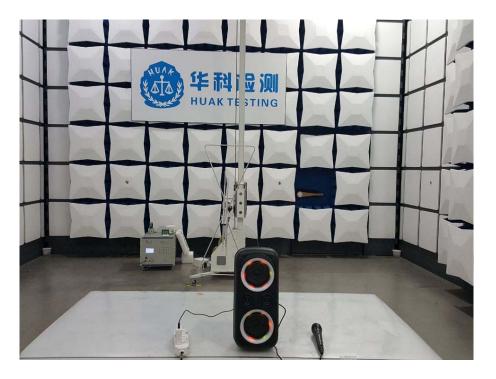
Standard Applicable

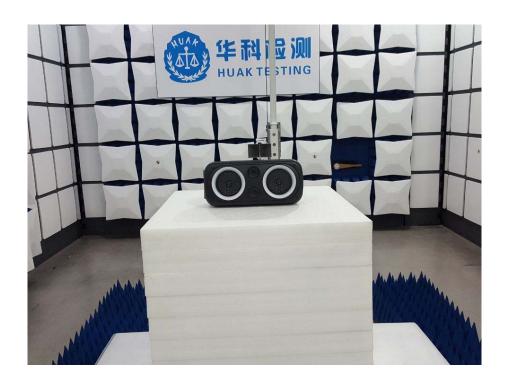

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247, if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.


Antenna Connected Construction


The antenna used in this product is a PCB Antenna which permanently attached. It conforms to the standard requirements. The directional gains of antenna used for transmitting is -0.68dBi.



4. TEST SETUP PHOTOS OF THE EUT

5. PHOTOS OF THE EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

-----End of test report------