

Certificate #4298 01

Product: Wireless Speaker with lighting and MIC Trade Mark: N/A Model No.: Al6012 Family Model: N/A Report No.: S24013103501001 Issue Date: Feb 29, 2024

Prepared for

Shenzhen Bobotel Technology Dev. Co.,Ltd.

101, Bobeite Technology, No.20, Xiuling 1st Street, Xiuxin Community, Kengzi Subdistrict, Pingshan District, Shenzhen, Guangdong, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

I

TABLE OF CONTENTS

ST RESULT CERTIFICATION	3
MMARY OF TEST RESULTS	4
CILITIES AND ACCREDITATIONS	5
FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5
NERAL DESCRIPTION OF EUT	6
SCRIPTION OF TEST MODES	8
FUP OF FOUIPMENT UNDER TEST	9
BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	9 10
ST REOUIREMENTS	13
CONDUCTED EMISSIONS TEST. RADIATED SPURIOUS EMISSION NUMBER OF HOPPING CHANNEL HOPPING CHANNEL SEPARATION MEASUREMENT AVERAGE TIME OF OCCUPANCY (DWELL TIME) 20DB BANDWIDTH TEST PEAK OUTPUT POWER CONDUCTED BAND EDGE MEASUREMENT. SPURIOUS RF CONDUCTED EMISSION ANTENNA APPLICATION FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	13 15 24 26 26 28 29 30 31 32 33
ST RESULTS	34
DWELL TIME MAXIMUM CONDUCTED OUTPUT POWER -20DB BANDWIDTH OCCUPIED CHANNEL BANDWIDTH CARRIER FREQUENCIES SEPARATION NUMBER OF HOPPING CHANNEL BAND EDGE BAND EDGE BAND EDGE	44 50 62 62 68 71 78
	MMARY OF TEST RESULTS

NTEK 北测

1 **TEST RESULT CERTIFICATION**

Shenzhen Bobotel Technology Dev. Co.,Ltd.
101, Bobeite Technology, No.20, Xiuling 1st Street, Xiuxin Community, Kengzi Subdistrict, Pingshan District, Shenzhen, Guangdong,China
Shenzhen Bobotel Technology Dev. Co.,Ltd.
101, Bobeite Technology, No.20, Xiuling 1st Street, Xiuxin Community, Kengzi Subdistrict, Pingshan District, Shenzhen, Guangdong,China
Wireless Speaker with lighting and MIC
AI6012
N/A
S240131035001
Jan 31, 2024 ~ Feb 29, 2024

Measurement Procedure Used:

APPLICABLE STANDARDS

STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	Complied

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Prepared <u>Mukzi Lee</u> By: <u>Mukzi Lee</u> (Dreject Engineer) Reviewed <u>By</u>: <u>Aaron Cheng</u> (Supervisor) <u>Approved</u> <u>Approved</u> <u>Alex Li</u> (Manager)

(Manager)

(Project Engineer)

(Supervisor)

FCC Part15 (15.247), Subpart C					
Standard Section	Standard Section Test Item				
15.207	Conducted Emission	N/A			
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS			
15.247(a)(1)	Hopping Channel Separation	PASS			
15.247(b)(1)	15.247(b)(1) Peak Output Power				
15.247(a)(iii)	a)(iii) Number of Hopping Frequency				
15.247(a)(iii) Dwell Time		PASS			
15.247(a)(1)	Bandwidth	PASS			
15.247 (d)	Band Edge Emission	PASS			
15.247 (d)	Spurious RF Conducted Emission	PASS			
15.203	Antenna Requirement	PASS			

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification			
Equipment Wireless Speaker with lighting and MIC			
Trade Mark N/A			
FCC ID	2AS3H-AI6012		
Model No.	AI6012		
Family Model	N/A		
Model Difference	N/A		
Operating Frequency 2402MHz~2480MHz			
Modulation GFSK, π/4-DQPSK, 8-DPSK			
Number of Channels 79 Channels			
Antenna Type PCB Antenna			
Antenna Gain -0.59 dBi			
Adapter N/A			
Battery DC 3.7V, 1200mAh, 4.44Wh			
Power supply DC 3.7V from battery or DC 5V from Micro USB.			
HW Version	N/A		
SW Version	N/A		

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Revision History				
Report No.	Version	Description	Issued Date	
S24013103501001	Rev.01	Initial issue of report	Feb 29, 2024	

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For Radiated Test Cases			
Final Test Mode Description			
Mode 1	normal link mode		
Mode 2	CH00(2402MHz)		
Mode 3	CH39(2441MHz)		
Mode 4	CH78(2480MHz)		

Note: For radiated test cases, the worst mode data rate 3Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

6 SETUP OF EQUIPMENT UNDER TEST6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
For Radiated Test Cases	
EUT	
For Conducted Test Cases	
Measurement C-1 EUT	
Note: 1. The temporary antenna connector is soldered on the PCB board in order to and this temporary antenna connector is listed in the equipment list. 2. EUT built-in battery-powered, the battery is fully-charged.	perform conducted tests

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
EUT	Wireless Speaker with lighting and MIC	Al6012	N/A	EUT

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

adiatio		estequipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Agilent	E4440A	MY41000130	2023.03.27	2024.03.26	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2023.05.29	2024.05.28	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2023.03.27	2024.03.26	1 year
4	Test Receiver	R&S	ESPI7	101318	2023.03.27	2024.03.26	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2023.03.16	2024.03.15	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2025.03.30	3 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.11.07	2025.11.06	3 year
9	Amplifier	EMC	EMC051835 SE	980246	2023.05.29	2024.05.28	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2023.11.03	2026.11.06	3 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2023.05.29	2024.05.28	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2023.05.06	2026.05.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2023.05.06	2026.05.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2023.03.27	2026.03.26	3 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2023.03.27	2024.03.26	1 year
2	LISN	R&S	ENV216	101313	2023.03.27	2024.03.26	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2023.03.27	2024.03.26	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2023.05.06	2026.05.05	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year

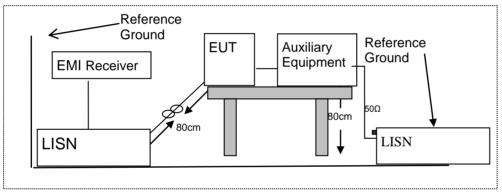
Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)


7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

7.1.5 Test Results

Pass

7.1.6 Test Results

EUT:	Wireless Speaker with lighting and MIC	Model Name :	AI6012
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	N/A
Test Voltage :	N/A	Test Mode:	N/A

Note: Not Applicable

7.2 RADIATED SPURIOUS EMISSION

7.2.1 **Applicable Standard**

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in \$15.205(a), must also comply with the radiated emission limits specified in \$15.209(a) (see \$15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance	
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300	
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30	
1.705~30.0	30	29.5	30	
30-88	100	40	3	
88-216	150	43.5	3	
216-960	200	46	3	
Above 960	500	54	3	
Limits of Radiated Emission Measurement(Above 1000MHz)				

	Frequency(MHz)	Class B (dBuV/m) (at 3M)		
		PEAK	AVERAGE	
	Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz:

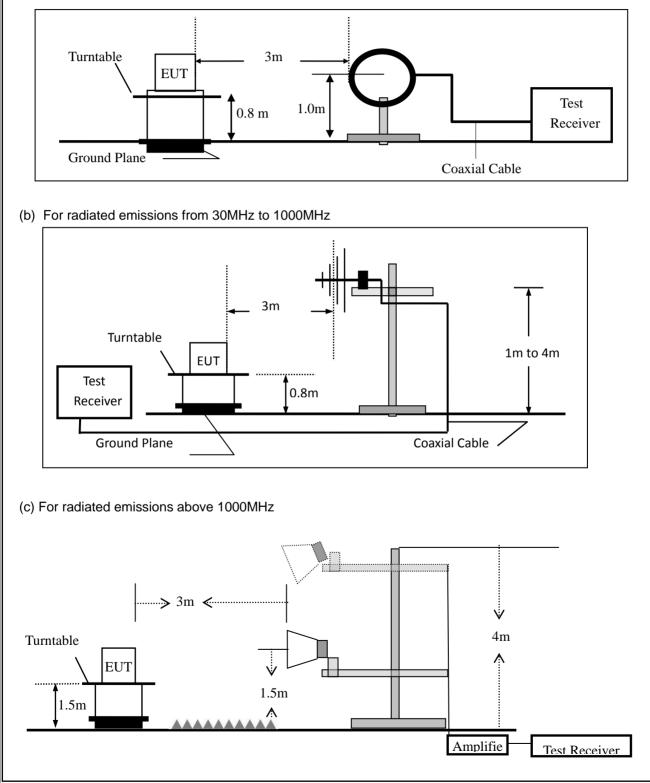
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

NTEK 北测

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

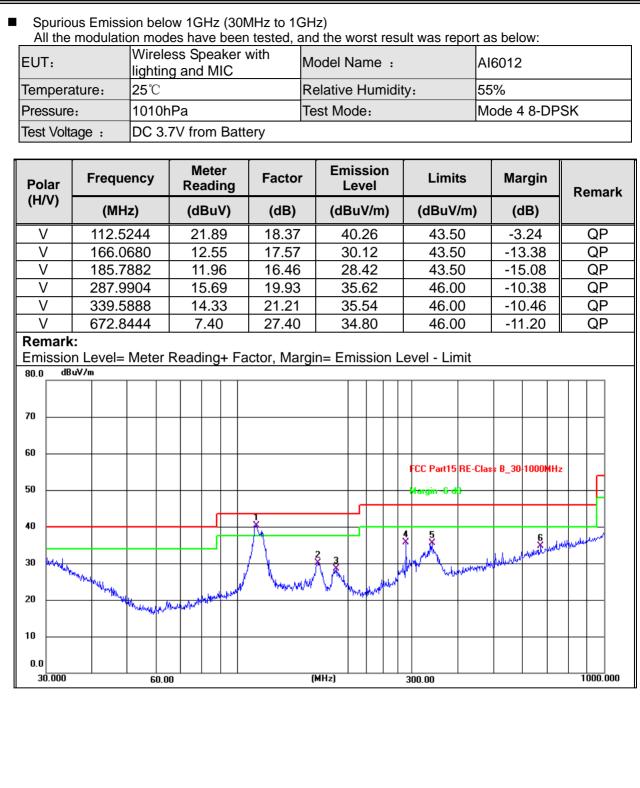
Report No.: S24013103501001

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:					
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth		
30 to 1000	QP	120 kHz	300 kHz		
Ab aug 4000	Peak	1 MHz	1 MHz		
Above 1000	Average	1 MHz	1 MHz		

Certificate #4298.01

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results


Spurious Emission below 30MHz (9KHz to 30MHz)					
	Wireless Speaker with lighting and MIC	Model No.:	Al6012		
Temperature:	20 ℃	Relative Humidity:	48%		
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee		

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

NTEK 北测[®]

Polar	Freque	ency		lete adir	-	Facto	or E	mis: Lev		n		Limi	ts	Ма	argin		Re	mark
(H/V)	(MH	z)	(d	Bu∖	/)	(dB)	(0	Bu	V/m	I)		(dBuV	/m)	(0	dB)			
Н	112.13	303	22	2.77	7	18.3	5	41.	12			43.5	0	-2	2.38		(QP
Н	164.3	301	2	1.18	3	17.67	7	38.	85			43.5	0	-4	1.65		(QP
Н	188.4	124	22	2.55	5	16.36	6	38.9	91			43.5	0	-4	1.59		(QP
Н	287.9	904	23	3.82	2	19.93	3	43.	75			46.0	0	-2	2.25		(QP
Н	319.9	370	23	3.41	1	20.39	9	43.8	80			46.0	0	-2	2.20			QP
H Remarl	332.5	187	23	3.15	5	20.82	2	43.9	97			46.0	0	-2	2.03		(QP
	on Level= BuV/m	Meter	Read	ing-	+ Fa	actor, Ma	argin= E	mis	sio	n L	_e\	vel - Lin	nit	1				_
70																		_
60					_						_	FCC Part15	RE-Clas	⊧≈ B_30	+1000	IHz		
50											×	tangin-6-d	•					
40						Å	2 3	t		~*/	V	wana			NIM	mark	nander	Man
30 H	www.weither			gente	and the second	have	A V	- Nym	₩.				mund	Party M	Note			
		mananethy	Y-14-	<u>*1*</u>														
0.0																		
30.000		60.0)n				(MHz)				3	00.00					10	00.000

Report No.: S24013103501001

UT:	Wire		GHz (1GHz aker with /IIC	Model	•	AI60	12		
emperature:				Relati	ve Humidity	y: 48%			
est Mode:	Mod	le2/Mode	3/Mode4	Test E		Mukz	i Lee		
Il the modula								N:	
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
		!	Low Chann	el (2402 MI	Hz)(8-DPSK	()Above 10	3		
4804	69.81	5.21	35.59	44.30	66.31	74.00	-7.69	Pk	Vertical
4804	48.15	5.21	35.59	44.30	44.65	54.00	-9.35	AV	Vertical
7206	68.9	6.48	36.27	44.60	67.05	74.00	-6.95	Pk	Vertical
7206	50.41	6.48	36.27	44.60	48.56	54.00	-5.44	AV	Vertical
4804	70.87	5.21	35.55	44.30	67.33	74.00	-6.67	Pk	Horizonta
4804	46.43	5.21	35.55	44.30	42.89	54.00	-11.11	AV	Horizonta
7206	70.35	6.48	36.27	44.52	68.58	74.00	-5.42	Pk	Horizonta
7206	50.43	6.48	36.27	44.52	48.66	54.00	-5.34	AV	Horizonta
			Mid Channe	əl (2441 MI	Hz)(8-DPSK)Above 10	;		
4882	68.29	5.21	35.66	44.20	64.96	74.00	-9.04	Pk	Vertical
4882	45.53	5.21	35.66	44.20	42.20	54.00	-11.80	AV	Vertical
7323	70.76	7.10	36.50	44.43	69.93	74.00	-4.07	Pk	Vertical
7323	49.82	7.10	36.50	44.43	48.99	54.00	-5.01	AV	Vertical
4882	69.87	5.21	35.66	44.20	66.54	74.00	-7.46	Pk	Horizonta
4882	49.8	5.21	35.66	44.20	46.47	54.00	-7.53	AV	Horizonta
7323	70.21	7.10	36.50	44.43	69.38	74.00	-4.62	Pk	Horizonta
7323	48.4	7.10	36.50	44.43	47.57	54.00	-6.43	AV	Horizonta
			-	el (2480 MI	Hz)(8-DPSK	() Above 1	G		
4960	70.81	5.21	35.52	44.21	67.33	74.00	-6.67	Pk	Vertical
4960	49.08	5.21	35.52	44.21	45.60	54.00	-8.40	AV	Vertical
7440	68.26	7.10	36.53	44.60	67.29	74.00	-6.71	Pk	Vertical
7440	50.11	7.10	36.53	44.60	49.14	54.00	-4.86	AV	Vertical
4960	69.9	5.21	35.52	44.21	66.42	74.00	-7.58	Pk	Horizonta
4960	50.34	5.21	35.52	44.21	46.86	54.00	-7.14	AV	Horizonta
7440	70.57	7.10	36.53	44.60	69.60	74.00	-4.40	Pk	Horizonta
7440	49.17	7.10	36.53	44.60	48.20	54.00	-5.80	AV	Horizonta

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

Report No.: S24013103501001

UT:	Wireless 3	Speaker	with ligh	ting Mod	el No.:		AI60	12		
omporatura							48%			
emperature:					tive Humidit	у.		• •		
est Mode:	Mode2/ M			Test	,		Mukz			
All the modu						ult wa	is rep	ort as bel	OW:	
Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lir	nits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	ıV/m)	(dB)	Туре	
			3	Mbps(8-DF	SK)-Non-hopp	oing				
2310.00	68.06	2.97	27.80	43.80	55.03	7	'4	-18.97	Pk	Horizontal
2310.00	46.79	2.97	27.80	43.80	33.76	5	54	-20.24	AV	Horizontal
2310.00	68.87	2.97	27.80	43.80	55.84	7	'4	-18.16	Pk	Vertical
2310.00	47.95	2.97	27.80	43.80	34.92	5	54	-19.08	AV	Vertical
2390.00	69.19	3.14	27.21	43.80	55.74	7	'4	-18.26	Pk	Vertical
2390.00	46.1	3.14	27.21	43.80	32.65	5	54	-21.35	AV	Vertical
2390.00	68.79	3.14	27.21	43.80	55.34	7	'4	-18.66	Pk	Horizontal
2390.00	49.69	3.14	27.21	43.80	43.80 36.24		64	-17.76	AV	Horizontal
2483.50	70.7	3.58	27.70	44.00	57.98	7	'4	-16.02	Pk	Vertical
2483.50	45.33	3.58	27.70	44.00	32.61	54		-21.39	AV	Vertical
2483.50	68.86	3.58	27.70	44.00	56.14	7	'4	-17.86	Pk	Horizontal
2483.50	47.93	3.58	27.70	44.00	35.21	5	54	-18.79	AV	Horizontal
				3Mbps(8-	DPSK)-hopping	g				
2310.00	69.27	2.97	27.80	43.80	56.24	7	'4	-17.76	Pk	Horizontal
2310.00	46.95	2.97	27.80	43.80	33.92	5	64	-20.08	AV	Horizontal
2310.00	68.85	2.97	27.80	43.80	55.82	7	'4	-18.18	Pk	Vertical
2310.00	48.71	2.97	27.80	43.80	35.68	5	54	-18.32	AV	Vertical
2390.00	69.82	3.14	27.21	43.80	56.37	7	'4	-17.63	Pk	Vertical
2390.00	48.51	3.14	27.21	43.80	35.06	5	54	-18.94	AV	Vertical
2390.00	69.16	3.14	27.21	43.80	55.71	7	'4	-18.29	Pk	Horizontal
2390.00	49.89	3.14	27.21	43.80	36.44	5	54	-17.56	AV	Horizontal
2483.50	70.86	3.58	27.70	44.00	58.14	7	'4	-15.86	Pk	Vertical
2483.50	50.55	3.58	27.70	44.00	37.83	5	64	-16.17	AV	Vertical
2483.50	70.59	3.58	27.70	44.00	57.87	7	'4	-16.13	Pk	Horizontal
2483.50	46.99	3.58	27.70	44.00	34.27	5	54	-19.73	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

EUT:		ess Spea		Model	No.:	AI	6012		
Temperature	: 20 °C			Relativ	e Humidity	<i>ı</i> : 48	%		
Test Mode:	Mode	e2/ Mode4	1	Test B	est By: Mukzi Lee				
All the modulation modes have been tested,				l, and 8-D	PSK is wo	rst resu	lt , report as	below:	
Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/n	1) (dB)	Туре	
3260	69.04	4.04	29.57	44.70	57.95	74	-16.05	Pk	Vertical
3260	47.18	4.04	29.57	44.70	36.09	54	-17.91	AV	Vertical
3260	68.04	4.04	29.57	44.70	56.95	74	-17.05	Pk	Horizontal
3260	46.65	4.04	29.57	44.70	35.56	54	-18.44	AV	Horizontal
3332	70.21	4.26	29.87	44.40	59.94	74	-14.06	Pk	Vertical
3332	49.04	4.26	29.87	44.40	38.77	54	-15.23	AV	Vertical
3332	68.94	4.26	29.87	44.40	58.67	74	-15.33	Pk	Horizontal
3332	50.91	4.26	29.87	44.40	40.64	54	-13.36	AV	Horizontal
17797	48.43	10.99	43.95	43.50	59.87	74	-14.13	Pk	Vertical
17797	33.3	10.99	43.95	43.50	44.74	54	-9.26	AV	Vertical
17788	60.84	11.81	43.69	44.60	71.74	74	-2.26	Pk	Horizontal
17788	31.6	11.81	43.69	44.60	42.50	54	-11.50	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

7.3.6 Test Results

EUT:	Wireless Speaker with lighting and MIC	Model No.:	Al6012
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Mukzi Lee

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

Certificate #4298 01

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW

Sweep = auto

Detector function = peak Trace = max hold

7.4.6 Test Results

TETTT	Wireless Speaker with lighting and MIC	Model No.:	Al6012
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 Test Results

EUT:	Wireless Speaker with lighting and MIC	Model No.:	Al6012
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4 DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

	Wireless Speaker with lighting and MIC	Model No.:	Al6012
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge the 20 dB$ bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

	Wireless Speaker with lighting and MIC	Model No.:	Al6012
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Wireless Speaker with lighting and MIC	Model No.:	Al6012
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Mukzi Lee

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached PCB antenna (Gain: -0.59dBi). It comply with the standard requirement.

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

7.11.2 Frequency Hopping System

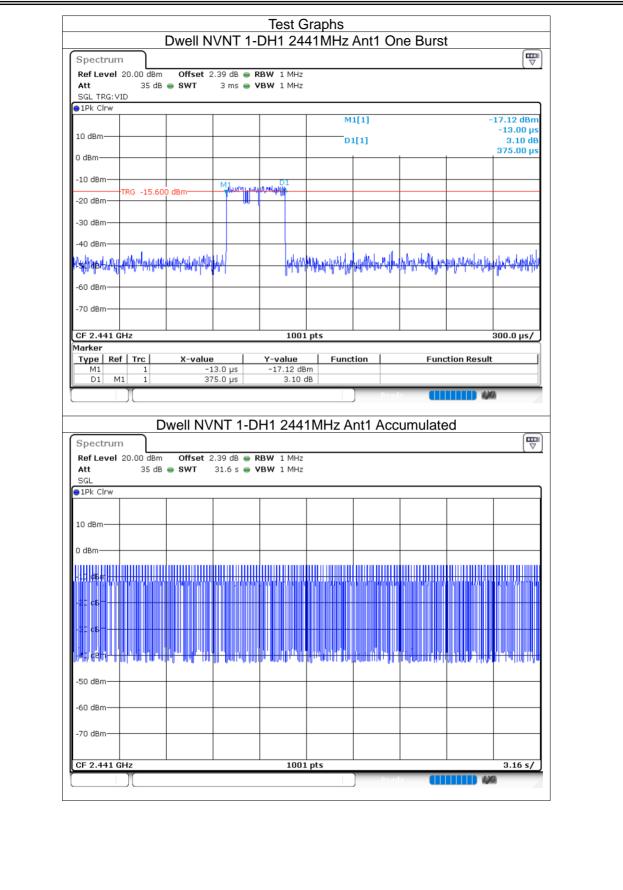
This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.


8 TEST RESULTS

8.1 Dwell Time

Condition	Mode	Frequency (MHz)	Antenna	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
NVNT	1-DH1	2441	Ant1	0.375	79.125	211	31600	400	Pass
NVNT	1-DH3	2441	Ant1	1.63	211.9	130	31600	400	Pass
NVNT	1-DH5	2441	Ant1	2.88	247.68	86	31600	400	Pass
NVNT	2-DH1	2441	Ant1	0.387	78.948	204	31600	400	Pass
NVNT	2-DH3	2441	Ant1	1.64	205	125	31600	400	Pass
NVNT	2-DH5	2441	Ant1	2.888	262.808	91	31600	400	Pass
NVNT	3-DH1	2441	Ant1	0.387	77.4	200	31600	400	Pass
NVNT	3-DH3	2441	Ant1	1.64	198.44	121	31600	400	Pass
NVNT	3-DH5	2441	Ant1	2.888	233.928	81	31600	400	Pass

4 1					М	1[1]			-5.70 dBm
10 dBm					D	1[1]			00000000 s -0.11 dB
0 dBm	4	1			D1			1	63000 ms
-10 dBm					<u>A</u>				
-20 dBm	-15.60	0 dBm							
-30 dBm									
-40 dBm							and the second second	ragentingebeing	Allow particular
ARE HERE WAR	hilliwhilli				hikkenskydd	han analy and the state of the			
-60 dBm									
-70 dBm									
CF 2.441 GHz				1001	nts				500.0 μs/
Marker		VI	. 1			tion 1	F		
Type Ref 1 M1 D1 M1	1	1 0.0 s -5.70 dBm							
DI MI	1	1	.03 ms	-0.11 d	в	Read	ly 📶		1
	_								
		well NV	'NI 1-D	H3 2441	MHz A	nt1 Acc	cumulate	d	
Spectrum Ref Level 20.	DO dBm	Offset 2	2.39 dB 🥃 R	BW 1 MHz					
Att SGL			31.6 s 😑 🖌						
●1Pk Clrw							1		
10 dBm									
			1				1		
0 dBm									
				11111111111111111111111111111111111111					
		11							
0 dBm									
0 dBm									
0 dBm									
0 dBm						1 A			
0 dBm						1 A			
0 dBm -10 cBm -20 cBm -30 cBm -50 dBm -60 dBm						1 A			
0 dBm -10 c8m -20 c3m -30 c3m -30 c3m -50 dBm						1 A			
0 dBm				1001		1 A			3.16 s/
0 dBm -10 cBm -20 dBm -30 dBm -50 dBm -70 dBm						1 A			3.16 s/

SGL TRG:VID PIPk Clrw	SWT 8 ms 🖷 V	BW 1 MHz					
10 dBm				[1]		0.0	-5.72 dBm
0 dBmM1			D1	[1]		2	-0.14 dB .88000 ms
-10 dBm		D1					
TRG -15.700 d	Bm						
-30 dBm							
-40 dBm							
with land with the second s		lių	nspharpphale	bullehaulted	phathallandustation	phillippelphilli	ybelloutertually
-60 dBm							
-70 dBm							
CF 2.441 GHz		1001	pts				800.0 µs/
Marker Type Ref Trc	X-value	Y-value	Funct	ion	Fund	tion Result	
M1 1 D1 M1 1	0.0 s 2.88 ms	-5.72 dB -0.14 d					
				Read	v (II		•
Dw	ell NVNT 1-D	H5 244′	IMHz A	nt1 Acc	umulate	d	
Spectrum							
Ref Level 20.00 dBm Att 35 dB Image: State Sta	Offset 2.39 dB ● R SWT 31.6 s ● V						
SGL IPk Clrw							
10 dBm							
0 dBm							
+10 dBm			. 		uu dh lin		
-20 581* *******************************							
-30 5BY							
	LING AND		MUMUUM	to the second		hijania	i Muniti Alladit Parti,
-50 dBm							
-60 dBm							
-70 dBm							
-yo ubiii							
CF 2.441 GHz		1001	pts				3.16 s/
			,				

●1Pk Clrw				M	1[1]			-6.23 dBm
10 dBm					L[1]			-1.00 µs -1.46 dB
0 dBm		M1						387.00 µs
-10 dBm	00 d8m	~~	HUTHUR WURD					
-20 dBm								
-30 dBm								
-40 dBm		4.5	1.	ilia li a	a di sat	و المحمد الم		In the Head
ulladygethylyddynyddydd	nnh lleannadh a	W W 1	<u> են</u> եր	hite and the second second	haffel before and a	₩₩₩₩₩₩₩	HARAMAR AND	nolling and the
-60 dBm								
-70 dBm								
CF 2.441 GHz Marker			1001	L pts				300.0 µs/
Type Ref Trc M1 1	X-value	9 00.0 ns	Y-value -6.23 dB	Funct	tion	Fund	tion Result	
D1 M1 1		37.0 µs	-1.46					
					Read			• ///
	Dwell NV	'NT 2-0	DH1 244	1MHz A	nt'i Acc	umulate	bd	
Spectrum					nt1 ACC	umulate	d	
Spectrum Ref Level 20.00 dBr		2.39 dB 👄				umulate	d	
Spectrum Ref Level 20.00 dBr	n Offset 2	2.39 dB 👄	RBW 1 MHz					
Spectrum Ref Level 20.00 dBr Att 35 d SGL PIPk Clrw	n Offset 2	2.39 dB 👄	RBW 1 MHz					
Spectrum Ref Level 20.00 dBr Att 35 d SGL	n Offset 2	2.39 dB 👄	RBW 1 MHz					
Spectrum Ref Level 20.00 dBr Att 35 d SGL PIPk Clrw	n Offset 2	2.39 dB 👄	RBW 1 MHz					
Spectrum Ref Level 20.00 dBr Att 35 d SGL P 1Pk Clrw 10 dBm	n Offset 2	2.39 dB 👄	RBW 1 MHz					
Spectrum Ref Level 20.00 dBr Att 35 d SGL P 1Pk Clrw 10 dBm	n Offset 2	2.39 dB 👄	RBW 1 MHz					
Spectrum Ref Level 20.00 dBr Att 35 d SGL IPk Clrw 10 dBm 0 dBm 0 dBm	n Offset 2	2.39 dB 👄	RBW 1 MHz					
Spectrum Ref Level 20.00 dBr Att 35 d SGL IPk Clrw 10 dBm 0 dBm 0 dBm	n Offset 2	2.39 dB 👄	RBW 1 MHz					
Spectrum Ref Level 20.00 dBr Att 35 d SGL IPk Clrw 10 dBm 0 dBm 0 dBm	n Offset 2	2.39 dB 👄	RBW 1 MHz					
Spectrum Ref Level 20.00 dBr Att 35 d SGL IPk Clrw 10 dBm 0 dBm 0 dBm	n Offset 2	2.39 dB 👄	RBW 1 MHz					
Spectrum Ref Level 20.00 dBn Att 35 d SGL ID dBm 0 dBm 10 dBm 21 cB ST cB	n Offset 2	2.39 dB 😑	RBW 1 MHz					
Spectrum Ref Level 20.00 dBn SGL ID dBm 0 dBm 10 dBm 21 c6 ST c6 ST c6 ST c6 ST c6 ST c6 ST c6	n Offset 2	2.39 dB 😑	RBW 1 MHz					
Spectrum Ref Level 20.00 dBn Att 35 d SGL ID dBm 0 dBm 0 dBm 10 dBm 21 cBr -50 dBm -60 dBm -70 dBm	n Offset 2	2.39 dB 😑	RBW 1 MHz VBW 1 MHz I I Mz I I I Mz I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I <td></td> <td></td> <td></td> <td></td> <td></td>					
Spectrum Ref Level 20.00 dBr Att 35 d SGL IPk Clrw 0 dBm 0 dBm 21 dBr 32 cBr -50 dBm -60 dBm	n Offset 2	2.39 dB 😑	RBW 1 MHz VBW 1 MHz I I Mz I I I Mz I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I <td></td> <td></td> <td></td> <td></td> <td>3.16 s/</td>					3.16 s/

10 dBm 0.111 5.66 dBm 0 dBm 0.111 3.41 dB 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 11 5.66 dBm 20 dBm 11 11 30 dBm 11 11 40 dBm 11 11 <th>SGL TRG: VID 9 1Pk Clrw</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	SGL TRG: VID 9 1Pk Clrw								
0 dbm 10 dbm 1.64000 ms 1.04000	10 dBm				M:	L[1]		0.0	
10 dBm TKG -15,300 dBm Image: section of the sect					D1	[1]		1	
TPG - 15.300 dBm		* I	anan yakar ay	pypohen-hubble	™ 2 }1				
-30 dBm -40	TRG -15.30	00 dBm			*				
40 d8m	-20 dBm				_				
Log type of an object Life type Life type Life type Life type Life type Life type Solo.0 µs/ CF 2.441 GHz 1001 pts 500.0 µs/ Solo.0 µs/ Solo.0 µs/ Marker Type Ref Tr X-value Function Function Result Solo.0 µs/ D1 1 1 0.0 s -5.68 dbm Function Function Result Solo.0 µs/ Marker Type Ref Tr X-value Function Function Result Solo.0 µs/ DWell NVNT 2-DH3 2441MHz Ant1 Accumulated Solo Solo Solo Solo Solo Dwell NVNT 2-DH3 2441MHz Ant1 Accumulated Solo Swy 31.6 s VBW 1 MHz Solo Solo Solo Swy Solo Swy Solo Swy Solo Swy	-30 dBm								
60 dBm 70 dBm					Luk a	June 1.		dia na alta	talte di
-70 dBm	upersite and the second se	h <mark>.</mark>			- Markelah	waththyangto	andindavia	whimmen hours	a halana halan na
CF 2.441 GHz 1001 pts 500.0 µs/ Marker Type [Ref Trc X-value Second	-60 dBm								
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 0.0 s -5.68 dbm -3.41 db -	-70 dBm								
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 0.0 s -5.68 dbm -3.41 db -	CF 2.441 GHz			1001	pts				500.0 µs/
M1 1 0.0 s -5.68 dbm D1 M1 1 1.64 ms -3.41 db Dwell NVNT 2-DH3 2441MHz Ant1 Accumulated Spectrum Ref Level 20.00 dbm Offset 2.39 db RBW 1 MHz Att 35 db SWT 31.6 s VBW 1 MHz Att 35 db SWT 31.6 s VBW 1 MHz SGL I D dbm 0 dbm <		X-value		-value	- Eunct	ion	Euno	tion Result	
Dwell NVNT 2-DH3 2441MHz Ant1 Accumulated Spectrum Image: Comparison of the second seco	M1 1	0.	0 s	-5.68 dBr	n		rune	cion Result	
Spectrum Provide and the second		1.01		0.110		Read			
Spectrum Provide and the second									1111
Ref Level 20.00 dBm Offset 2.39 dB RBW 1 MHz Att 35 dB SWT 31.6 s VBW 1 MHz SGL Image: second secon		Jwell NVN	T 2-DH	3 2441	MHz A	nt1 Acc	umulate	d	
Att 35 dB SWT 31.6 s VBW 1 MHz SGL ID RC Crw ID dBm ID dBm <t< th=""><th></th><th>Offcot 2 20</th><th></th><th></th><th></th><th></th><th></th><th></th><th>(▽)</th></t<>		Offcot 2 20							(▽)
	Att 35 dB								
0 dBm									
0 dBm									
10 d8 m mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm <t< td=""><td>10 dBm</td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	10 dBm	+							
ac de y	0 dBm								
SC d8 n -50 d8m - -70 d8m -									
SC d8 n -50 d8m - -70 d8m -									
-50 dBm									
-50 dBm	-BC dBM				Se A M	r Anti II a	i a oran		tu ar a la r
-50 dBm	, 								
-60 dBm	-50 dBm								
-70 dBm									
	-60 dBm								
CF 2.441 GHz 1001 pts 3.16 s/									
1001 pts 3.10 sy	-70 dBm			1001	nte				2 16 5/
Ready (1001	prs	Read			

				м	1[1]			17.29 dBm
10 dBm								-16.00 μs
0 dBm				U.	1[1]		2	-4.00 dB 2.88800 ms
-10 dBm								
TR6 -15.	.300 dBm	ant of the state o	anthrough the					
-20 dBm			1					
-30 dBm								
			LIN		ANNAL ANNALA	4 MAR MARY	WWW.midlu.a.a	Manual
			<u> </u>	ht of the band	en filolonia le tra	ano diffici e alla		a material at a
-60 dBm								
-70 dBm								
CF 2.441 GHz			1001	. pts				800.0 µs/
Marker Type Ref Trc M1 1	X-value -1	е – – – – – – – – – – – – – – – – – – –	Y-value -17.29 dB	Func m	tion	Fund	tion Result	
D1 M1 1		388 ms	-4.00 (lВ		411		7
					Reard			
	Dwell NV	'NT 2-D	H5 244 ⁻	1MHz A	nt1 Acc	umulate	ed	_
Spectrum								
Ref Level 20.00 dB Att 35 (3m Offset 2 dB 👄 SWT	2.39 dB 👄 R 31.6 s 👄 V						
0.01								
SGL IPk Clrw								
●1Pk Clrw								
1Pk Clrw 10 dBm 0 dBm								
● 1Pk Clrw 10 dBm								
1Pk Clrw 10 dBm 0 dBm								
1Pk Clrw 10 dBm 0 dBm								
1Pk Clrw 10 dBm 0 dBm								
1Pk Cirw 10 dBm 0 dBm -10 dBm -20 dBm -2								
1Pk Clrw 10 dBm 0 dBm								
1Pk Cirw 10 dBm 0 dBm -10 dBm -20 dBm -2								
1Pk Cirw 10 dBm 0 dBm -20 dBm -20 dBm -20 dBm -20 dBm -20 dBm -50 dBm								
1Pk Cirw 10 dBm 0 dBm -20 dBm -20 dBm -20 dBm -50 dBm -60 dBm -70 dBm								
1Pk Cirw 10 dBm 0 dBm -20 dBm -20 dBm -20 dBm -50 dBm -60 dBm -60 dBm				. pts				3.16 s/
				pts				

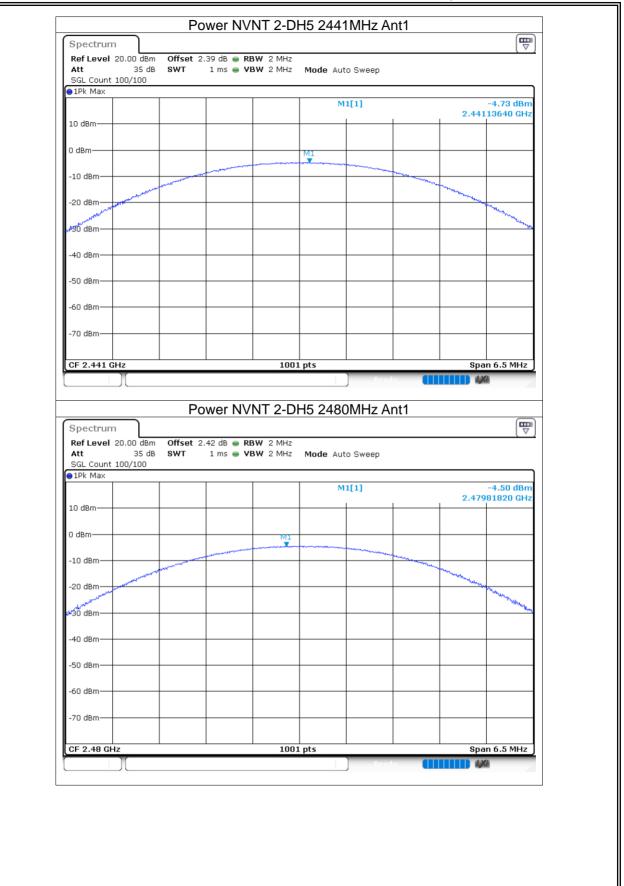
⊜1Pk Clrw					М	1[1]		-	17.65 dBm
10 dBm						1[1]			-7.00 μs -0.28 dB
0 dBm									387.00 µs
-10 dBm—			and add	ally set and					
-20 dBm—	-TRG -14.90	0 dBm	- Martin	well-menter					
-30 dBm—									
-40 dBm—									
		danuluh tehni	μh	March	hite water the state of the sta	L. W. Mahar Ja	ildelateligen ger	All Automatic	Aladdada a
-60 dBm-		100 W		.001	A II II MANU	אן יש ועריי א		a.ll m fra	ւ լակետեր
-70 dBm-									
-70 0011									
CF 2.441 Marker	GHz			1001	pts				300.0 µs/
Type Re M1	ef Trc	X-value	e -7.0 μs	Y-value -17.65 dB	Func m	tion	Fund	tion Result	
	M1 1		37.0 µs	-0.28 (<u> </u>			
						Read			
	D	well NV	'NT 3-D	0H1 244	1MHz A	nt1 Acc	umulate	ed	
Spectru	m								
Ref Level Att	l 20.00 dBm 35 dB			RBW 1 MHz VBW 1 MHz					(♥)
Att SGL									
Att SGL									
Att SGL 9 1Pk Clrw									
Att SGL ● 1Pk Clrw 10 dBm				VBW 1 MHz					
Att SGL 1Pk Clrw 10 dBm 0 dBm ,11, dBr,				VBW 1 MHz					
Att SGL 1Pk Clrw 10 dBm-				VBW 1 MHz			(), (), (), (), (), (), (), (), (), (),	рит	
Att SGL 1Pk Clrw 10 dBm				VBW 1 MHz					
Att SGL 1Pk Clrw 10 dBm 0 dBm 0 dBm 20 dBm				VBW 1 MHz					
Att SGL ● 1Pk Clrw 10 dBm 0 dBm 				VBW 1 MHz					
Att SGL 1Pk Clrw 10 dBm 0 dBm 110 dBm 20 dBm 20 dBm -50 dBm				VBW 1 MHz					
Att SGL ● 1Pk Clrw 10 dBm 0 dBm 				VBW 1 MHz					
Att SGL 1Pk Clrw 10 dBm 0 dBm 20 dBm 20 dBm 20 dBm 30 dBm -50 dBm				VBW 1 MHz					
Att SGL 91Pk Clrw 10 dBm 0 dBm 20 dBm 20 dBm -50 dBm -60 dBm -70 dBm	35 dB			VBW 1 MHz					
Att SGL 1Pk Clrw 10 dBm 0 dBm 110 dBm 10 dBm 20 dBm 20 dBm -50 dBm -60 dBm	35 dB			VBW 1 MHz					3.16 s/

			M	1[1]			-5.73 dBm
10 dBm			Di	l[1]			0000000 s -1.21 dB
0 dBm M1	hunderster and the start of the	Hardenterstanderterstanderterstander	D1			2	.88800 ms
-10 dBm	-15.000 dBm	Insurant free confidence of the and decision	~ ≩				
-20 dBm							
-30 dBm							
-40 dBm			Walnumburguthy	و مرابل مسمو	diacontaca	teaker teaning	etto alta trac
Test all the second				r-Warmandory	ntratika katika kati Katika katika	alueary and	hten her
-60 dBm							
-70 dBm							
CF 2.441 GHz		1	001 pts				800.0 µs/
Marker Type Ref Tre		Y-valu		tion	Fund	tion Result	
			dBm 21 dB				
				Read	y (11		1
	Dwell NVN	NT 3-DH5 24	41MHz A	nt1 Acc	umulate	ed	
Spectrum)						
Ref Level 20.00 Att		39 dB 👄 RBW 1 M 1.6 s 👄 VBW 1 M					
SGL							
10 dBm							
0 dBm							
10, d₿m							
-20 c8m							
-20 cBm		i (_e letti e ti ee ^p i i t	8.0.0.10.4	T THE REPAIR			J 1174 A 141
-40 camb on							
Around March (arthrough							
-50 dBm							
-50 dBm							
-60 dBm							
-60 dBm		1	001 pts				3.16 s/)
-60 dBm		1	001 pts	Read	v (11		<u> </u>

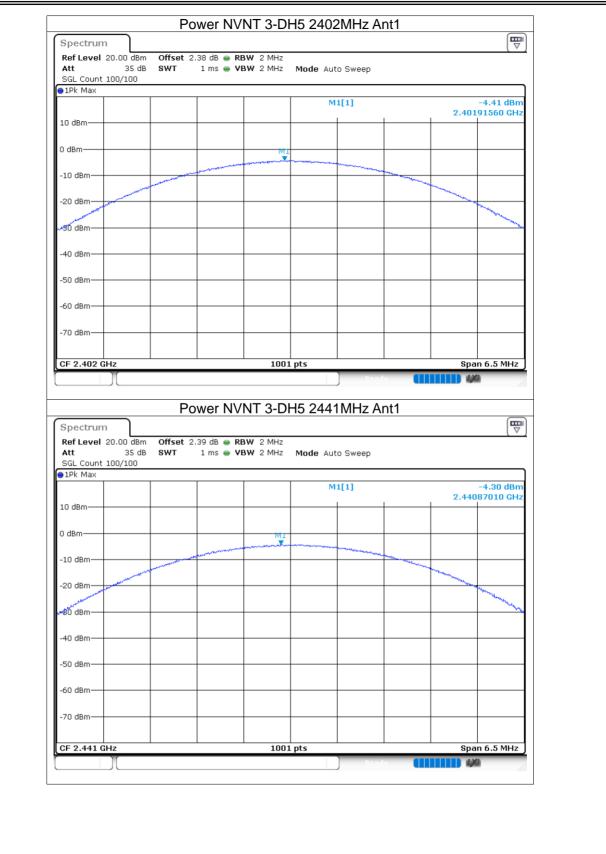
8.2 Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant1	-5.74	21	Pass
NVNT	1-DH5	2441	Ant1	-5.58	21	Pass
NVNT	1-DH5	2480	Ant1	-5.33	21	Pass
NVNT	2-DH5	2402	Ant1	-4.78	21	Pass
NVNT	2-DH5	2441	Ant1	-4.73	21	Pass
NVNT	2-DH5	2480	Ant1	-4.5	21	Pass
NVNT	3-DH5	2402	Ant1	-4.41	21	Pass
NVNT	3-DH5	2441	Ant1	-4.3	21	Pass
NVNT	3-DH5	2480	Ant1	-4.07	21	Pass

Spectrun	n								
Att SGL Count	20.00 dBm 35 dB 100/100	Offset 2 SWT	38 dB 👄 RE 1 ms 👄 VE	BW 2 MHz BW 2 MHz	Mode Aut	to Sweep			
∎1Pk Max					M	1[1]			-5.74 dBm
10 dBm								2.40	217480 GHz
0 dBm					M1				
-10 dBm—				······					
-29 dBm—									
-30 dBm—									
-40 dBm—									
-50 dBm—									
-60 dBm—									
-70 dBm—									
CF 2.402 (<u> </u>								
		Po	ower NV	1001 NT 1-DI] Rear 1MHz A	nt1	spa	an 5.0 MHz
Spectrun Ref Level Att	n 20.00 dBm 35 dB		.39 dB 😑 RE	NT 1-DI	H5 244		nt1		an 5.0 MHz
Spectrun Ref Level Att SGL Count	n 20.00 dBm 35 dB	Offset 2	.39 dB 😑 RE	NT 1-DI	H5 244		nt1	5pa	
Spectrun Ref Level Att SGL Count JPk Max	n 20.00 dBm 35 dB	Offset 2	.39 dB 😑 RE	NT 1-DI	H5 244 Mode Aut		nt1		
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm	n 20.00 dBm 35 dB	Offset 2	.39 dB 😑 RE	NT 1-DI	H5 244	to Sweep	nt1		-5.58 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm	n 20.00 dBm 35 dB	Offset 2	.39 dB 😑 RE	NT 1-DI	H5 244 Mode Aut	to Sweep	nt1		-5.58 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm	n 20.00 dBm 35 dB	Offset 2	.39 dB 😑 RE	NT 1-DI	H5 244	to Sweep	nt1		-5.58 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm- 0 dBm- -10 dBm-	n 20.00 dBm 35 dB	Offset 2	.39 dB 😑 RE	NT 1-DI	H5 244	to Sweep	nt1		-5.58 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm	n 20.00 dBm 35 dB	Offset 2	.39 dB 😑 RE	NT 1-DI	H5 244	to Sweep	nt1		-5.58 dBm
Spectrun Ref Level Att SGL Count JPk Max	n 20.00 dBm 35 dB	Offset 2	.39 dB 😑 RE	NT 1-DI	H5 244	to Sweep	nt1		-5.58 dBm
Spectrum Ref Level Att SGL Count SGL Count 10 dBm	n 20.00 dBm 35 dB	Offset 2	.39 dB 😑 RE	NT 1-DI	H5 244	to Sweep	nt1		-5.58 dBm
Spectrum Ref Level Att SGL Count SGL Count 10 dBm	n 20.00 dBm 35 dB	Offset 2	.39 dB 😑 RE	NT 1-DI	H5 244	to Sweep	nt1		-5.58 dBm
Spectrum Ref Level Att SGL Count 10 dBm	n 20.00 dBm 35 dB	Offset 2	.39 dB 😑 RE	NT 1-DI	H5 244	to Sweep	nt1		-5.58 dBm

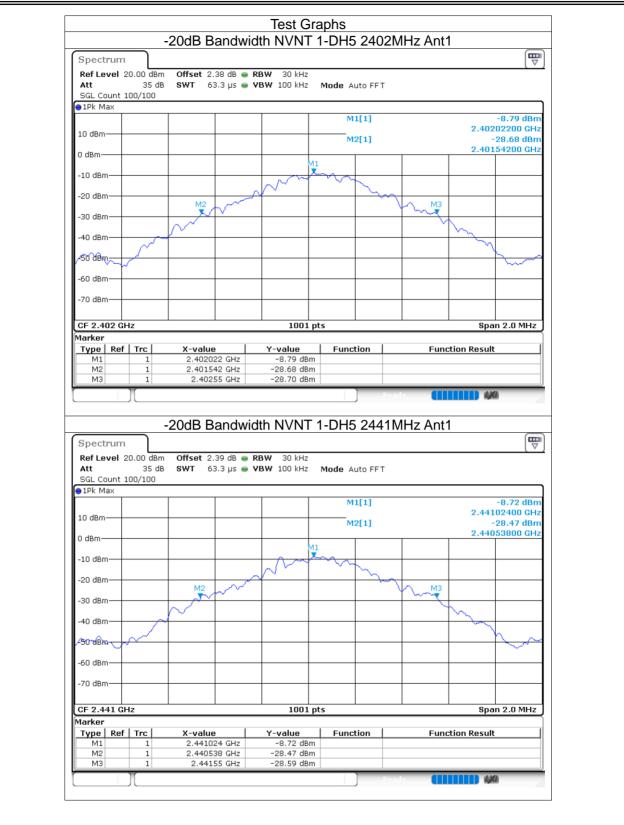


Att 35 dB SGL Count 100/100		dB 🖷 RBW 2 MHz ms 🖷 VBW 2 MHz	Mode Auto	o Sweep			
●1Pk Max			MI	L[1]			-5.33 dBm
10 dBm				-() 		2.480	121480 GHz
10 dbin							
0 dBm			M1				
-10 dBm							
-20 dBm							
-30 dBm							
-40 dBm							
-50 dBm							
-60 dBm							
-70 dBm							
CF 2.48 GHz		100:	1 pts			Spa	n 5.0 MHz
							M
Ref Level 20.00 dBm Att 35 dB	Offset 2.38	er NVNT 2-D			nt1		
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100	Offset 2.38	dB 👄 RBW 2 MHz			nt1		
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100	Offset 2.38	dB 👄 RBW 2 MHz	Mode Auto		nt1	2,402	-4.78 dBm
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max	Offset 2.38	dB 👄 RBW 2 MHz	Mode Auto	o Sweep	ht1	2.402	
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm	Offset 2.38	dB 👄 RBW 2 MHz	Mode Auto	o Sweep	nt1	2.402	-4.78 dBm
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 0 dBm 0 dBm	Offset 2.38	dB 👄 RBW 2 MHz	Mode Auto	o Sweep	nt1	2.402	-4.78 dBm
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 10 dBm	Offset 2.38	dB 👄 RBW 2 MHz	Mode Auto	o Sweep	ht1	2.402	-4.78 dBm
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 10 dBm	Offset 2.38	dB 👄 RBW 2 MHz	Mode Auto	o Sweep	nt1	2.402	-4.78 dBm
Att 35 dB	Offset 2.38	dB 👄 RBW 2 MHz	Mode Auto	o Sweep	nt1	2.402	-4.78 dBm
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 10 dBm 0 dBm -10 dBm	Offset 2.38	dB 👄 RBW 2 MHz	Mode Auto	o Sweep	nt1	2.402	-4.78 dBm
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 10 dBm	Offset 2.38	dB 👄 RBW 2 MHz	Mode Auto	o Sweep	ht1	2.402	-4.78 dBm
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 10 dBm 0 -10 dBm	Offset 2.38	dB 👄 RBW 2 MHz	Mode Auto	o Sweep	nt1	2.402	-4.78 dBm
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 10 dBm 0 -10 dBm	Offset 2.38	dB 👄 RBW 2 MHz	Mode Auto	o Sweep	ht1	2.402	-4.78 dBm
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 10 dBm 0 -10 dBm	Offset 2.38	dB 👄 RBW 2 MHz	Mode Auto	o Sweep	nt1	2.402	-4.78 dBm
Ref Level 20.00 dBm Att 35 dB SGL Court 100/100 1Pk Max 10 10 dBm 10 -10 dBm 10 -20 dBm 10 -30 dBm 10 -30 dBm 10 -20 dBm	Offset 2.38	dB • RBW 2 MHz ms • VBW 2 MHz	Mode Auto	o Sweep	nt1		-4.78 dBm 224030 GHz
Ref Level 20.00 dBm Att 35 dB SGL Count 100/100 1Pk Max 10 dBm 10 dBm	Offset 2.38	dB • RBW 2 MHz ms • VBW 2 MHz	Mode Auto	o Sweep	nt1		-4.78 dBm 224030 GHz



Report No.: S24013103501001

Spectrum						
Ref Level 20.00 d Att 35 SGL Count 100/100	dB SWT	2.42 dB 👄 RBW 2 M 1 ms 👄 VBW 2 M				
1Pk Max						
			M1[1]		2.479	-4.07 dBm 98050 GHz
10 dBm						
) dBm			ML			
10 dBm		and water and the second secon	and the second	man		
10 ubin	and the state of t			and the second	and and a second and a second and a second and a second a	
20 dBm					- www.	William Roghrand
30 dBm						wan entowed the grad
40 dBm						
50 dBm						
60 dBm						
70 dBm						
CF 2.48 GHz	I		1001 pts	I	Sna	n 6.5 MHz

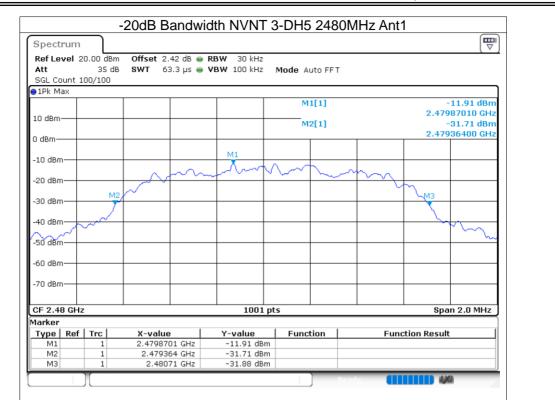


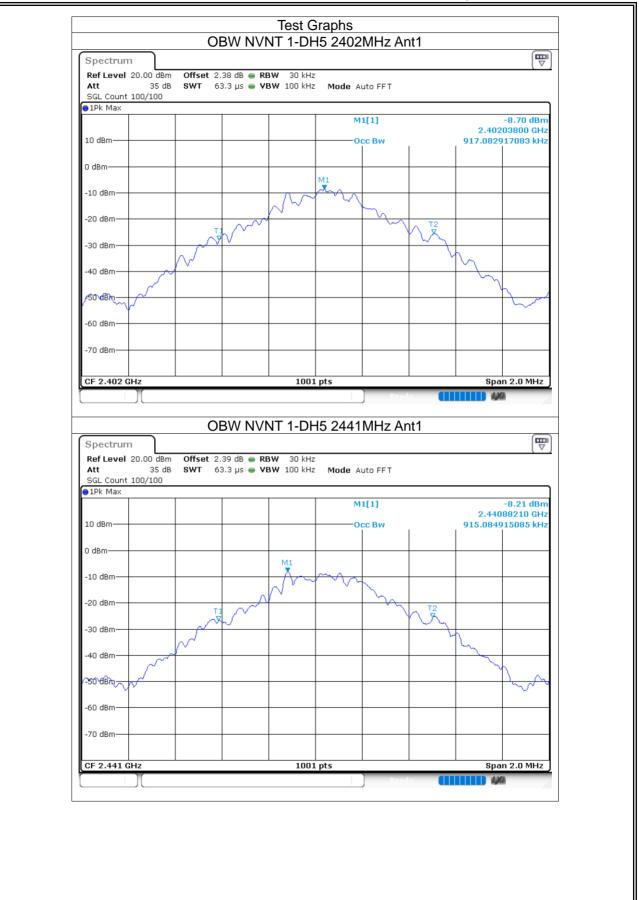
8.3 -20dB Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH5	2402	Ant1	1.008	Pass
NVNT	1-DH5	2441	Ant1	1.012	Pass
NVNT	1-DH5	2480	Ant1	1.018	Pass
NVNT	2-DH5	2402	Ant1	1.326	Pass
NVNT	2-DH5	2441	Ant1	1.338	Pass
NVNT	2-DH5	2480	Ant1	1.382	Pass
NVNT	3-DH5	2402	Ant1	1.294	Pass
NVNT	3-DH5	2441	Ant1	1.298	Pass
NVNT	3-DH5	2480	Ant1	1.346	Pass

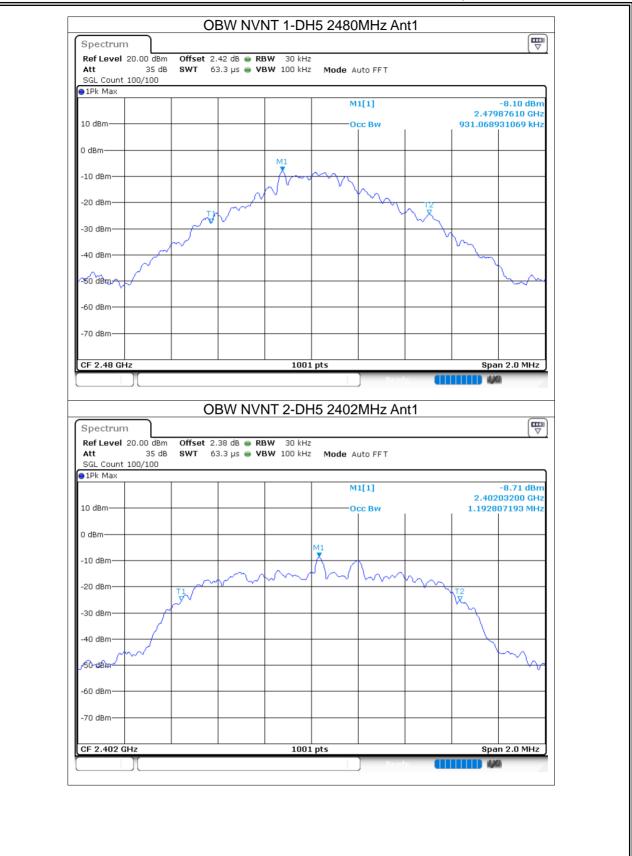


ACCREDITED Certificate #4298.01

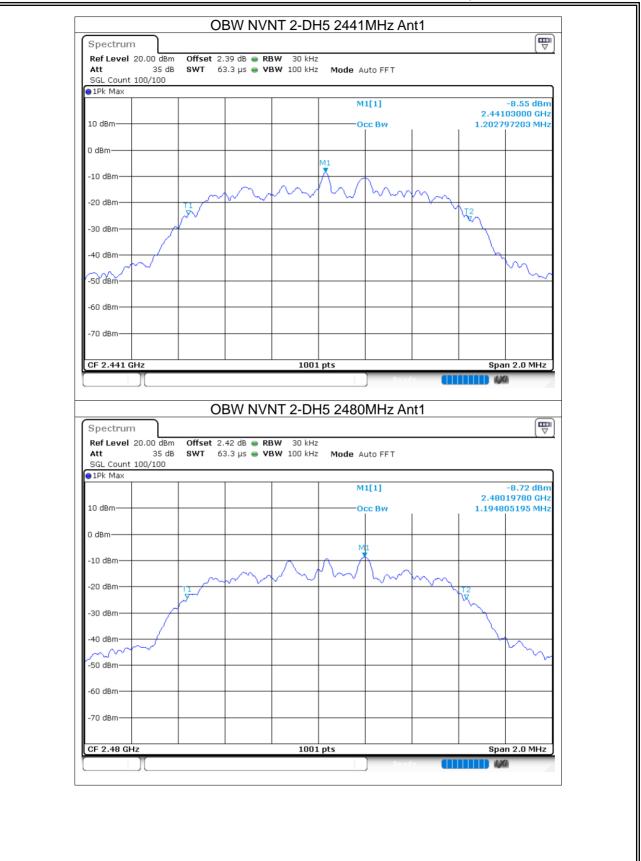


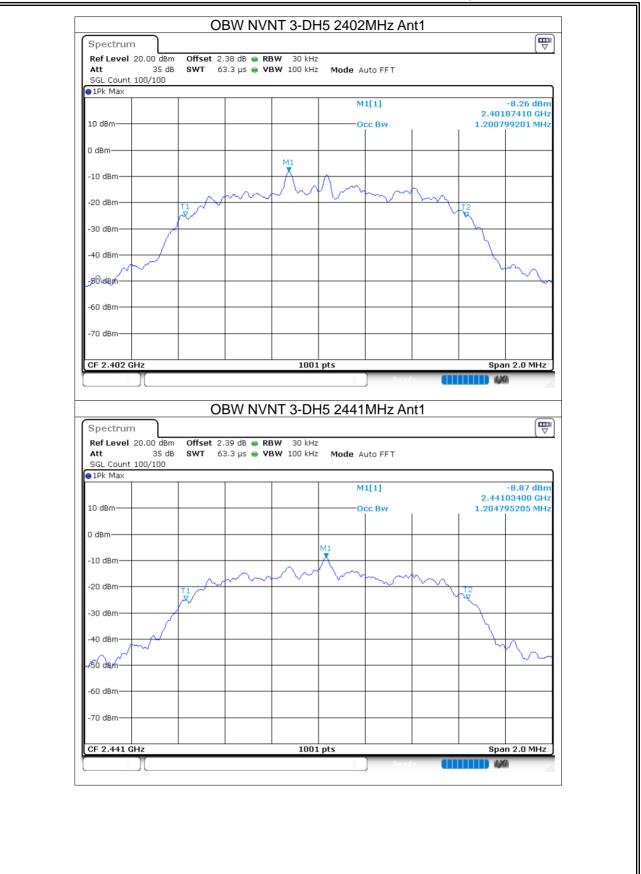

8.4 Occupied Channel Bandwidth

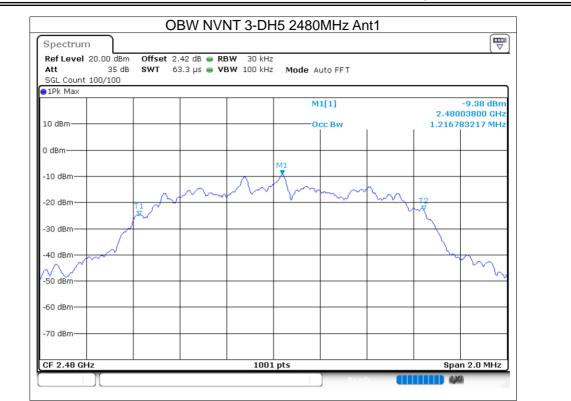
	0.1.0.1.0.1.0.0			
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	1-DH5	2402	Ant1	0.917
NVNT	1-DH5	2441	Ant1	0.915
NVNT	1-DH5	2480	Ant1	0.931
NVNT	2-DH5	2402	Ant1	1.193
NVNT	2-DH5	2441	Ant1	1.203
NVNT	2-DH5	2480	Ant1	1.195
NVNT	3-DH5	2402	Ant1	1.201
NVNT	3-DH5	2441	Ant1	1.205
NVNT	3-DH5	2480	Ant1	1.217



Report No.: S24013103501001





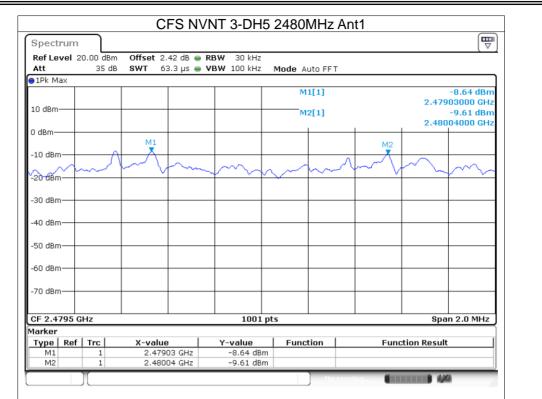


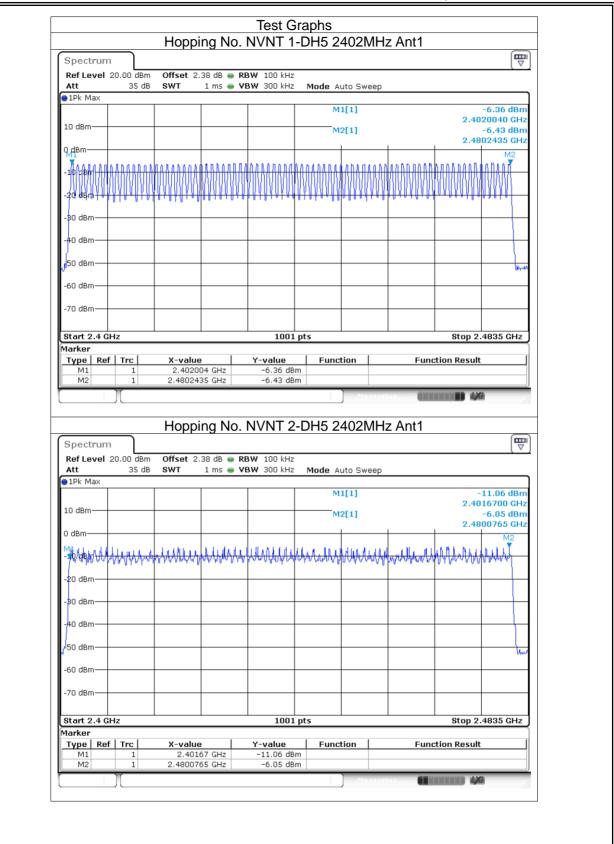
8.5 Carrier Frequencies Separation								
Condition	Mode	Antenna	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict	
NVNT	1-DH5	Ant1	2402.016	2403.016	1	0.672	Pass	
NVNT	1-DH5	Ant1	2441.096	2441.876	0.78	0.675	Pass	
NVNT	1-DH5	Ant1	2479.098	2479.876	0.778	0.679	Pass	
NVNT	2-DH5	Ant1	2402.196	2403.196	1	0.884	Pass	
NVNT	2-DH5	Ant1	2441.122	2442.117	0.995	0.892	Pass	
NVNT	2-DH5	Ant1	2479.03	2480.048	1.018	0.921	Pass	
NVNT	3-DH5	Ant1	2401.874	2403.032	1.158	0.863	Pass	
NVNT	3-DH5	Ant1	2440.941	2442.022	1.081	0.865	Pass	
NVNT	3-DH5	Ant1	2479.03	2480.04	1.01	0.897	Pass	

ACCREDITED Certificate #4298.01









8.6 Number o	f Hopping C	hannel			
Condition	Mode	Antenna	Hopping Number	Limit	Verdict
NVNT	1-DH5	Ant1	79	15	Pass
NVNT	2-DH5	Ant1	79	15	Pass
NVNT	3-DH5	Ant1	79	15	Pass

Spectrum								
Ref Level 2 Att	0.00 dBm 35 dB		 RBW 100 kHz VBW 300 kHz 	Mode A	uto Sweep			
1Pk Max	33 45	3 W1 1113	• • • • • • • • • • • • • • • • • • •	MOUE AU	ito aweeb			
				M1[1] -9.99 (-9.99 dBm	
10 dBm								16700 GHz
10 ubiii				M2[1]		-10.89 dBm 2.4804940 GHz		
0 dBm						+	2.40	04940 0112
MI, IN I	Line in				Land		u	1 M2
- <u>7</u> 2%\$8/([/+p-4/4	ᠡ᠋ᡃᡘᠯᡗᠮᢂᡃᢦᡑᠰᢔ	houd hours have a second	┟┲┱╩┟╬╋┹╢╇┹┧╲╖┱╲╢╄	֍֎֎ՠ֎֎֎֎	մթերհիրվո	<mark>╆╋╋╋╝╔</mark>	ᡛᡟᡃᡳᢧ᠋ᢩᡰᢣᡀᡰᢦᡃ	ուղություն
-20 dBm					1			
-20 UBIII								
-80 dBm								
-40 dBm								
50 dBm								
JU UBIII								haw
-60 dBm								
-70 dBm								
Start 2.4 GH	z		1001	pts			Stop 2	.4835 GHz
Marker	l 1		1	1	· 1	-		
Type Ref M1	Trc 1	2.40167 GHz	<u>Y-value</u> -9.99 dBr	Funct		Fund	ction Result	
M2	1	2.480494 GHz						