KSIGN (Guangdong) Testing Co., Ltd.

West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park. Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, People's Republic of China Tel.: + (86)755-29852678 Fax: + (86)755-29852397 E-mail: info@gdksign.cn Website: www.gdksign.com

# TEST REPORT

Report No....: KS2104S1120E

FCC ID------2AS2T-XT16

Applicant..... Shenzhen Xintu Century Technology Co., Ltd

Address....: 5th Floor, Building A1, Anle Industrial Park, No. 172, Hangcheng

Avenue, Xixiang Street, Baoan District, Shenzhen City, China

Manufacturer....: Shenzhen Xintu Century Technology Co., Ltd

Address....: 5th Floor, Building A1, Anle Industrial Park, No. 172, Hangcheng

Avenue, Xixiang Street, Baoan District, Shenzhen City, China

Product Name....: Bluetooth headset

Trade Mark....: N/A

Model/Type reference....: XT16.ANC

Listed Model(s)..... N/A

Standard....:: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of Receipt..... Apr. 29, 2021

Date of Test Date....: Apr. 29, 2021~ May. 12, 2021

Date of issue.... May. 12, 2021

Test result....: **Pass** 

Compiled by:

(Printed name+signature)

Rory Huang

Supervised by:

( Printed name+signature)

Eder Zhan

Approved by:

( Printed name+signature)

Cary Luo

Testing Laboratory Name....: KSIGN(Guangdong) Testing Co., Ltd.

Address..... West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu

Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, People's Republic of China

ngdong)

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by KSIGN. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to KSIGN within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.



|                               | TABLE OF CONTENTS                       | Page |
|-------------------------------|-----------------------------------------|------|
| 1. TEST SUMMARY               | J. 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3    |
| 1.1. Test Standards           |                                         | 3    |
| 1.2. REPORT VERSION           | 240                                     | 3    |
| 1.3. TEST DESCRIPTION         |                                         | 4    |
| 1.4. TEST FACILITY            | <u> </u>                                | 5    |
| 1.5. MEASUREMENT UNCERTAIN    | ry                                      | 6    |
| 1.6. Environmental condition  | IS                                      | 6    |
| 2. GENERAL INFORMATION        | 6222                                    | 7    |
| 2.1. CLIENT INFORMATION       | 278877                                  | 7    |
|                               | UT                                      |      |
| 2.3. OPERATION STATE          |                                         | 8    |
|                               | TS LIST                                 |      |
| 2.5. TEST SOFTWARE            | XX                                      | 10   |
| 3. TEST ITEM AND RESULTS      | - North                                 | 11   |
| 3.1. ANTENNA REQUIREMENT      | New York                                | 11   |
|                               | 100 No.                                 |      |
| 3.3. PEAK OUTPUT POWER        |                                         | 15   |
| 3.4. 99% OCCUPIED BANDA       | VIDTH & 20DB BANDWIDTH                  | 22   |
| 3.5. CARRIER FREQUENCIES SEPA | RATION                                  | 35   |
|                               | INEL                                    |      |
|                               | M(Z) (Z)                                |      |
|                               | EMISSION (CONDUCTED)                    |      |
|                               | DIATED)                                 |      |
|                               | SIONS.                                  |      |
| 3.11. PSEUDORANDOM FRE        | QUENCY HOPPING SEQUENCE                 | 69   |
| 4. EUT TEST PHOTOS            |                                         | 70   |
| 5. PHOTOGRAPHS OF FUT CON     | ISTRUCTIONAL                            | 73   |



### 1. TEST SUMMARY

### 1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.

KDB 558074 D01: The measurement guidance provided herein is applicable only to Digital Transmission System (DTS) devices operating in the 902-928 MHz. 2400-2483.5 MHz and/or 5725-5850 MHz bands under § 15.247 of the FCC rules (Title 47 of the Code of Federal Regulations)

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

## 1.2. Report version

| Revised No.     | Date of issue | Description |  |
|-----------------|---------------|-------------|--|
| 01              | May. 12, 2021 | Original    |  |
| ALUF CONTRACTOR | 8/9           | - 288Y      |  |
|                 |               | X 2         |  |
|                 |               |             |  |



1.3. Test Description

| FCC Part 15 Subpart C(15.247)              |                  |        |               |  |  |
|--------------------------------------------|------------------|--------|---------------|--|--|
|                                            | Standard Section |        |               |  |  |
| Test Item                                  | FCC              | Result | Test Engineer |  |  |
| Antenna Requirement                        | 15.203           | Pass   | Rory Huang    |  |  |
| Conducted Emission                         | 15.207           | Pass   | Rory Huang    |  |  |
| Restricted Bands                           | 15.205           | Pass   | Rory Huang    |  |  |
| Hopping Channel Separation                 | 15.247(a)(1)     | Pass   | Rory Huang    |  |  |
| Dwell Time                                 | 15.247(a)(1)     | Pass   | Rory Huang    |  |  |
| Peak Output Power                          | 15.247(b)(1)     | Pass   | Rory Huang    |  |  |
| Number of Hopping  Frequency               | 15.247 (a)(1)    | Pass   | Rory Huang    |  |  |
| Band Edge Emissions                        | 15.247(d)        | Pass   | Rory Huang    |  |  |
| Radiated Spurious Emission                 | 15.247(c)&15.209 | Pass   | Rory Huang    |  |  |
| 99% Occupied Bandwidth & 20dB<br>Bandwidth | 15.247(a)(1)     | Pass   | Rory Huang    |  |  |
| Pseudorandom Frequency Hopping Sequence    | 15.247 (a)(1)    | Pass   | Rory Huang    |  |  |

### Note:

- 1.The measurement uncertainty is not included in the test result.
- 2. Only the worst test data for the Left ear was recorded in the report.



### 1.4. Test Facility

### Address of the report laboratory

### KSIGN(Guangdong) Testing Co., Ltd.

West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, People's Republic of China

### Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

### CNAS-Lab Code: L13261

KSIGN(Guangdong) Testing Co., Ltd. has been assessed and proved to be in Compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

#### A2LA-Lab Cert. No.: 5457.01

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

### IC Registration No.: CN0096

The 3m alternate test site of KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: CN0096

### FCC-Registration No.: CN1272

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.



### 1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the KSIGN(Guangdong) Testing Co., Ltd. system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Below is the best measurement capability for KSIGN(Guangdong) Testing Co., Ltd.

| Test Items                              | Measurement Uncertainty | Notes |
|-----------------------------------------|-------------------------|-------|
| Transmitter power conducted             | 0.42 dB                 | (1)   |
| Transmitter power Radiated              | 2.14 dB                 | (1)   |
| Conducted spurious emissions 9kHz~40GHz | 1.60 dB                 | (1)   |
| Radiated spurious emissions 9kHz~40GHz  | 2.20 dB                 | (1)   |
| Conducted Emissions 9kHz~30MHz          | 3.20 dB                 | (1)   |
| Radiated Emissions 30~1000MHz           | 4.70 dB                 | (1)   |
| Radiated Emissions 1~18GHz              | 5.00 dB                 | (1)   |
| Radiated Emissions 18~40GHz             | 5.54 dB                 | (1)   |
| Occupied Bandwidth                      | 2.80 dB                 | (1)   |

**Note (1):** This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

### 1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

| Temperature:       | 15~35°C     |
|--------------------|-------------|
| Relative Humidity: | 30~60 %     |
| Air Pressure:      | 950~1050mba |



## 2. GENERAL INFORMATION

## 2.1. Client Information

| Applicant:    | Shenzhen Xintu Century Technology Co.,Ltd                                                                                |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------|--|
| Address:      | 5th Floor,Building A1,Anle Industrial Park,No.172,Hangcheng Avenue, Xixiang Street, Baoan District,ShenzhenCity,China    |  |
| Manufacturer: | Shenzhen Xintu Century Technology Co.,Ltd                                                                                |  |
| Address:      | 5th Floor,Building A1,Anle Industrial Park,No.172,Hangcheng Avenue,<br>Xixiang Street, Baoan District,ShenzhenCity,China |  |

## 2.2. General Description of EUT

| Test Sample Number 1:  | 1-1-1(Normal Sample),1-1-2(Engineering Sample)       |
|------------------------|------------------------------------------------------|
| Product Name:          | Bluetooth headset                                    |
| Marketing Name:        | N/A                                                  |
| Model/Type reference:  | XT16.ANC                                             |
| Listed Model(s):       | N/A                                                  |
| Model Difference:      | N/A                                                  |
| Power supply:          | DC 5V                                                |
| Power supply(Battery): | DC 3.7V 300mAh 1.11Wh for Box<br>DC 3.7V for Headset |
| Hardware version:      | V1.0                                                 |
| Software version:      | V003                                                 |
| Bluetooth 5.0          |                                                      |
| Modulation:            | GFSK(DH5),                                           |
| Operation frequency:   | 2402MHz~2480MHz                                      |
| Max Peak Output Power: | DH5: 1.38 dBm<br>2DH5: 0.61 dBm<br>3DH5: 0.56 dBm    |
| Channel number:        | 79                                                   |
| Channel separation:    | 1MHz                                                 |
| Antenna type:          | Ceramic Antenna                                      |
| Antenna gain:          | 2.73 dBi                                             |



### 2.3. Operation state

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. BT EDR, 79 channels are provided to the EUT. Channels 00/39/78 were selected for testing. Operation Frequency List:

| Channel | Francisco est (AALLE) |
|---------|-----------------------|
| Channel | Frequency (MHz)       |
| 00      | 2402                  |
| 01      | 2403                  |
|         |                       |
| 38      | 2440                  |
| 39      | 2441                  |
| 40      | 2442                  |
|         |                       |
| 77      | 2479                  |
| 78      | 2480                  |

Note: The display in grey were the channel selected for testing.

### Test mode

| NO. | TEST MODE DESCRIPTION    |
|-----|--------------------------|
| 1   | Low channel GFSK         |
| 2   | Middle channel GFSK      |
| 3   | High channel GFSK        |
| 4   | Low channel π/4-DQPSK    |
| 5   | Middle channel π/4-DQPSK |
| 6   | High channel π/4-DQPSK   |
| 7   | Low channel 8DPSK        |
| 8   | Middle channel 8DPSK     |
| 9   | High channel 8DPSK       |
| 10  | Hopping mode GFSK        |
| 11  | Hopping mode π/4-DQPSK   |
| 12  | Hopping mode 8DPSK       |

### Note:

- 1. Only the result of the worst case was recorded in the report, if no other cases.
- 2.The test software is the Blue Test3 which can set the EUT into the individual test modes.



2.4. Measurement Instruments List

| Tonscend JS0806-2 Test system |                                           |           |            |            |            |  |  |
|-------------------------------|-------------------------------------------|-----------|------------|------------|------------|--|--|
| Item                          | Test Equipment                            | Model No. | Serial No. | Cal. Until |            |  |  |
| 1                             | Spectrum Analyzer                         | R&S       | FSV40-N    | 101798     | 03/22/2022 |  |  |
| 2                             | Vector Signal<br>Generator                | Agilent   | N5182A     | MY50142520 | 03/18/2022 |  |  |
| 3                             | Analog Signal<br>Generator                | HP        | 83752A     | 3344A00337 | 03/18/2022 |  |  |
| 4                             | Power Sensor                              | Agilent   | E9304A     | MY50390009 | 03/18/2022 |  |  |
| 5                             | Power Sensor                              | Agilent   | E9300A     | MY41498315 | 03/18/2022 |  |  |
| 6                             | Wideband Radio<br>Communication<br>Tester | R&S       | CMW500     | 157282     | 03/18/2022 |  |  |
| 7                             | Climate Chamber                           | Angul     | AGNH80L    | 1903042120 | 03/18/2022 |  |  |
| 8                             | Dual Output DC<br>Power Supply            | Agilent   | E3646A     | MY40009992 | 03/18/2022 |  |  |
| 9                             | RF Control Unit                           | Tonscend  | JS0806-2   | 1          | 03/18/2022 |  |  |

|      | Transmitt                                        | er spurious emissic    | ons & Receiver spuriou | ıs emissions |            |
|------|--------------------------------------------------|------------------------|------------------------|--------------|------------|
| Item | Test Equipment                                   | Manufacturer           | Model No.              | Serial No.   | Cal. Until |
| 1    | EMI Test Receiver                                | R&S                    | ESR                    | 102525       | 03/18/2022 |
| 2    | High Pass Filter                                 | Chengdu<br>E-Microwave | OHF-3-18-S             | 0E01901038   | 03/22/2022 |
| 3    | High Pass Filter                                 | Chengdu<br>E-Microwave | OHF-6.5-18-S           | 0E01901039   | 03/22/2022 |
| 4    | Spectrum Analyzer                                | HP                     | 8593E                  | 3831U02087   | 03/22/2022 |
| 5    | Ultra-Broadband<br>logarithmic period<br>Antenna | Schwarzbeck            | VULB 9163              | 01230        | 03/29/2023 |
| 6    | Loop Antenna                                     | Beijin ZHINAN          | ZN30900C               | 18050        | 03/27/2022 |
| 7    | Spectrum Analyzer                                | R&S                    | FSV40-N                | 101798       | 03/22/2022 |
| 8    | Horn Antenna                                     | Schwarzbeck            | BBHA 9120 D            | 2023         | 03/29/2023 |
| 9    | Pre-Amplifier                                    | Schwarzbeck            | BBV 9745               | 9745#129     | 03/22/2022 |
| 10   | Pre-Amplifier                                    | EMCI                   | EMC051835SE            | 980662       | 03/22/2022 |
| 11   | Pre-Amplifier                                    | Schwarzbeck            | BBV-9721               | 57           | 04/06/2022 |
| 12   | Horn Antenna                                     | Schwarzbeck            | BBHA 9170              | 00939        | 03/28/2022 |

| Item | Test Equipment    | Manufacturer | Model No. | Serial No.   | Calibrated until |
|------|-------------------|--------------|-----------|--------------|------------------|
| 1    | LISN              | R&S          | ENV432    | 1326.6105.02 | 03/18/2022       |
| 2    | EMI Test Receiver | R&S          | ESR       | 102524       | 03/18/2022       |
| 3    | Manual RF Switch  | JS TOYO      | 1         | MSW-01/002   | 03/18/2022       |

### Note:

<sup>1)</sup>The Cal. Interval was one year.
2)The cable loss has calculated in test result which connection between each test instruments.





# 2.5. Test Software

| Software name                           | Model    | Version       |
|-----------------------------------------|----------|---------------|
| Conducted emission Measurement Software | EZ-EMC   | EMC-Con 3A1.1 |
| Radiated emission Measurement Software  | EZ-EMC   | FA-03A.2.RE   |
| Bluetooth and WIFI Test System          | JS1120-3 | 2.5.77.0418   |



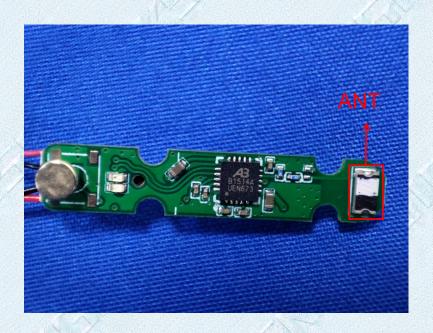


### 3. TEST ITEM AND RESULTS

### 3.1. Antenna requirement

### Requirement

### FCC CFR Title 47 Part 15 Subpart C Section 15.203:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

### FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

### **Test Result**

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.

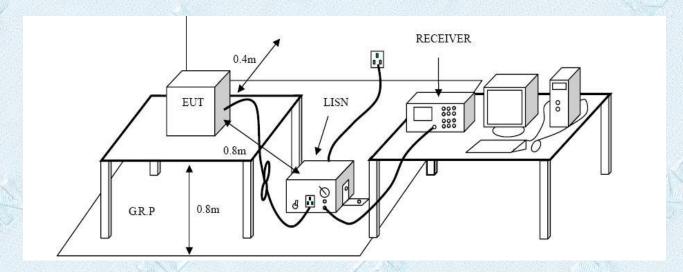




### 3.2. Conducted Emission

### Limit

#### **Conducted Emission Test Limit**


| Fallerraner   | Maximum RF Line Voltage (dBμV) |           |  |  |
|---------------|--------------------------------|-----------|--|--|
| Frequency     | Quasi-peak Level Average Level |           |  |  |
| 150kHz~500kHz | 66 ~ 56 *                      | 56 ~ 46 * |  |  |
| 500kHz~5MHz   | 56                             | 46        |  |  |
| 5MHz~30MHz    | 60                             | 50        |  |  |

Report No.: KS2104S1120E

#### Notes:

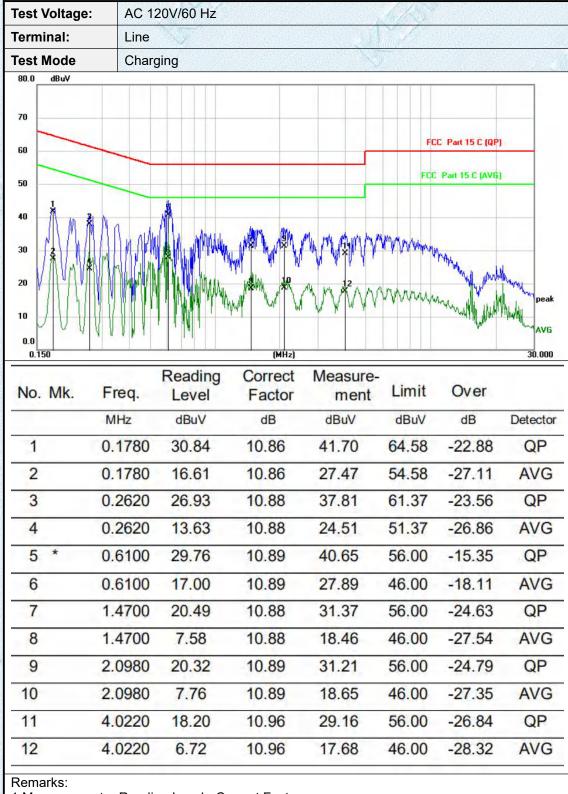
- (1) \*Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

### **Test Configuration**



### **Test Procedure**

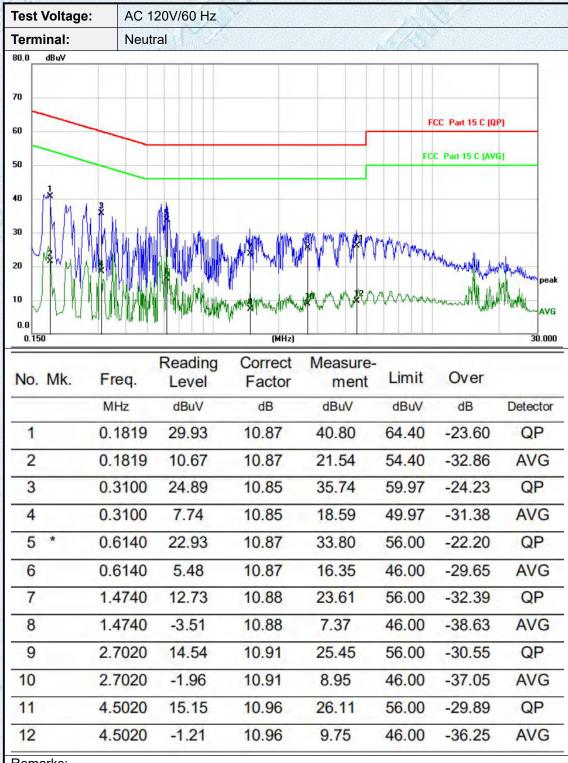
- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment.
  - The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.


#### **Test Mode:**

Note: Bluetooth will not work properly while charging.






### **Test Results**



<sup>1.</sup>Measurement = Reading Level+ Correct Factor

<sup>2.</sup>Over = Measurement -Limit



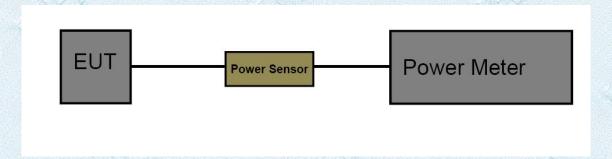


Remarks:

<sup>1.</sup>Measurement = Reading Level+ Correct Factor

<sup>2.</sup>Over = Measurement -Limit






## 3.3. Peak Output Power

### **Limit**

| Test Item         | Limit                                                         | Frequency Range(MHz) |  |
|-------------------|---------------------------------------------------------------|----------------------|--|
| Peak Output Power | Hopping Channels>75<br>Power<1W(30dBm)<br>Other <125mW(21dBm) | 2400~2483.5          |  |

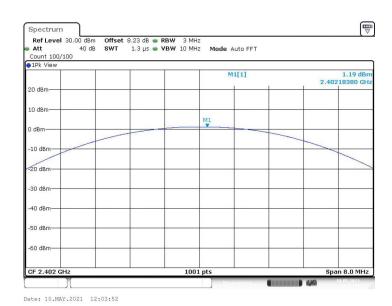
### **Test Configuration**



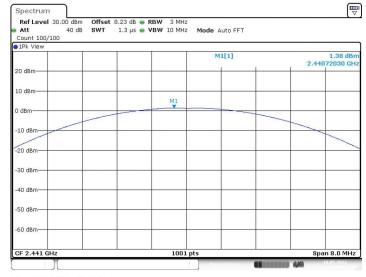
### **Test Procedure**

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator.
- 2. Spectrum Setting:

Peak Detector: RBW=1 MHz, VBW=3 MHz for bandwidth less than 1MHz. RBW=3 MHz, VBW=10 MHz for bandwidth more than 1MHz.

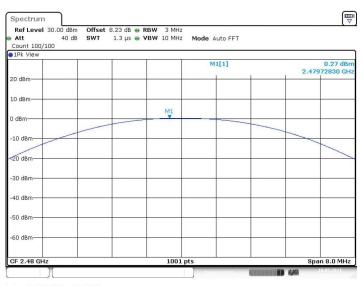

### **Test Mode**

Please refer to the clause 2.3


### **Test Result**



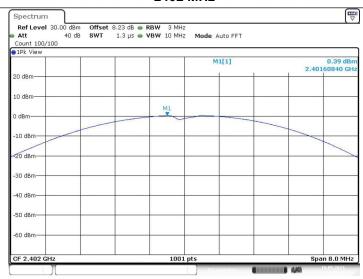
| Test Mode:      | DH5       | Karaman ka        |             |
|-----------------|-----------|-------------------|-------------|
| Channel frequer | ncy (MHz) | Test Result (dBm) | Limit (dBm) |
| 2402            |           | 1.19              |             |
| 2441            |           | 1.38              | 30          |
| 2480            |           | 0.27              |             |
|                 |           | 2402 MH-          |             |





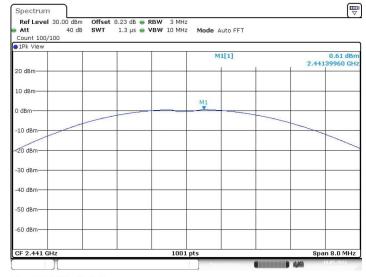



Date: 10.MAY.2021 12:04:42


### 2480 MHz



Date: 10.MAY.2021 12:05:17




| Test Mode: 2D       | H5                    | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|---------------------|-----------------------|----------------------------------------|
| Channel frequency ( | MHz) Test Result (dBm | ) Limit (dBm)                          |
| 2402                | 0.39                  |                                        |
| 2441                | 0.61                  | 30                                     |
| 2480                | -0.09                 |                                        |

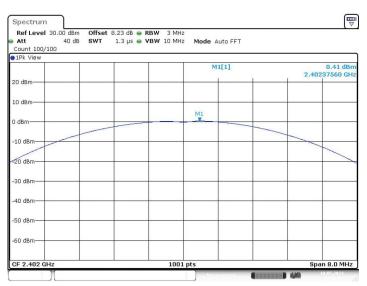



Date: 10.MAY.2021 12:06:35





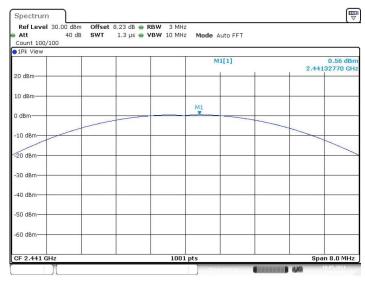
Date: 10.MAY.2021 12:07:02


### 2480 MHz



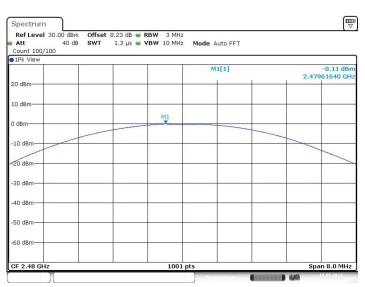
Date: 10.MAY.2021 12:07:23




| Test Mode:       | 3DH5     |                   | <b>&gt;</b> // |
|------------------|----------|-------------------|----------------|
| Channel frequenc | cy (MHz) | Test Result (dBm) | Limit (dBm)    |
| 2402             |          | 0.41              |                |
| 2441             |          | 0.56              | 30             |
| 2480             |          | -0.11             |                |
|                  | <u>'</u> | 2402 MHz          | •              |



Date: 10.MAY.2021 12:07:51







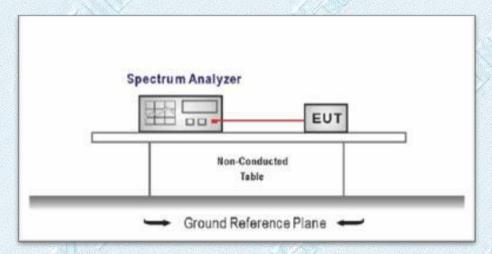

Date: 10.MAY.2021 12:08:07

### 2480 MHz



Date: 10.MAY.2021 12:08:21




Page 22 of 85 Report No.: KS2104S1120E

## 3.4. 99% Occupied Bandwidth & 20dB Bandwidth

### Limit

| Test Item | Limit | Frequency Range(MHz) |
|-----------|-------|----------------------|
| Bandwidth | N/A   | 2400~2483.5          |

### **Test Configuration**



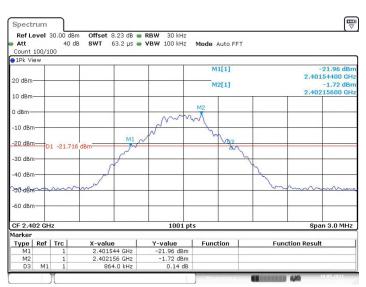
### **Test Procedure**

- Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator.
- Spectrum Setting:
  - (1) Set RBW = 30 kHz.
  - (2) Set the video bandwidth (VBW) ≥ 3\*RBW.
  - (3) Detector = Peak.
  - (4) Trace mode = Max hold.
  - (5) Sweep = Auto couple.

NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

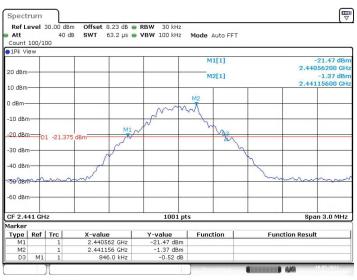
### **Test Mode**

Please refer to the clause 2.3.


### **Test Results**

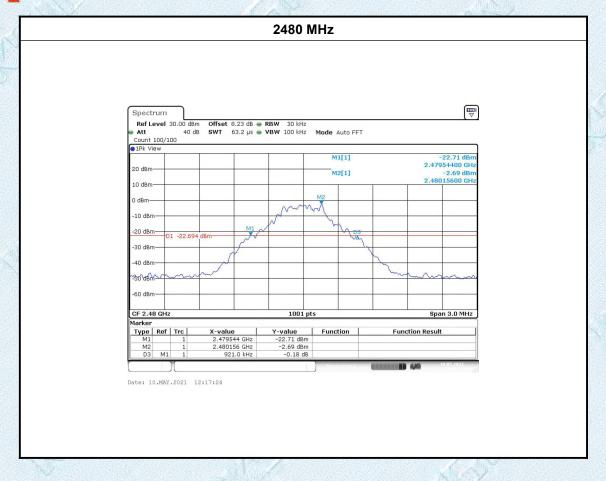


| Test Mode:                 | DH5                     |          |          |         |
|----------------------------|-------------------------|----------|----------|---------|
| Channel frequency<br>(MHz) | 20dB Bandwidth<br>[MHz] | FL[MHz]  | FH[MHz]  | Verdict |
| 2402                       | 0.864                   | 2401.544 | 2402.408 | PASS    |
| 2441                       | 0.846                   | 2440.562 | 2441.408 | PASS    |
| 2480                       | 0.921                   | 2479.544 | 2480.465 | PASS    |


Page 23 of 85

### 2402 MHz

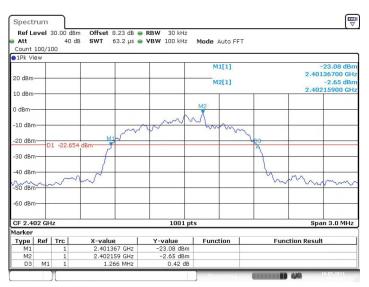



Date: 10.MAY.2021 12:11:37

### 2441 MHz

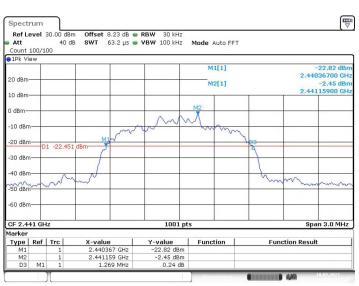


Date: 10.MAY.2021 12:14:40



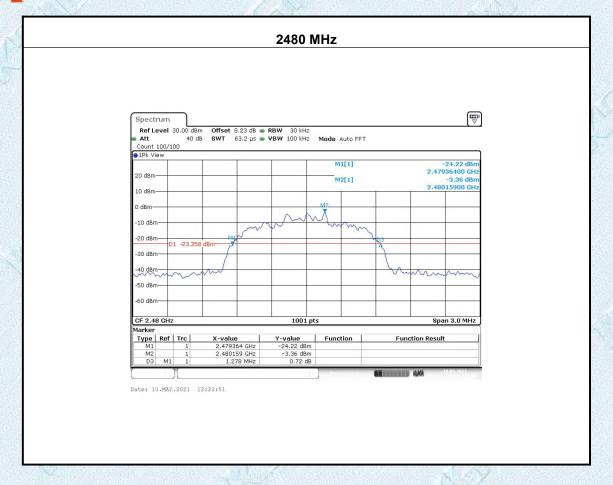






| Test Mode:              | 2DH5                    |          |          |         |
|-------------------------|-------------------------|----------|----------|---------|
| Channel frequency (MHz) | 20dB Bandwidth<br>[MHz] | FL[MHz]  | FH[MHz]  | Verdict |
| 2402                    | 1.266                   | 2401.367 | 2402.633 | PASS    |
| 2441                    | 1.269                   | 2440.367 | 2441.636 | PASS    |
| 2480                    | 1.278                   | 2479.364 | 2480.642 | PASS    |

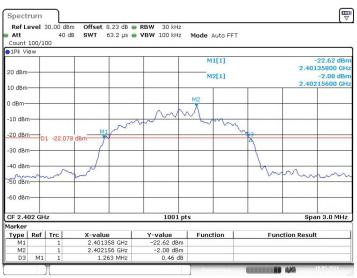
2402 MHz




### Date: 10.MAY.2021 12:19:48

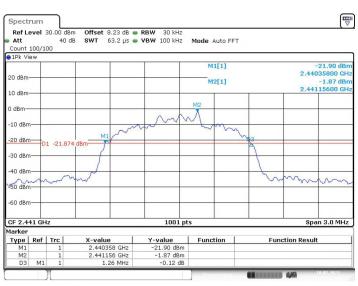
### 2441 MHz




Date: 10.MAY.2021 12:22:20

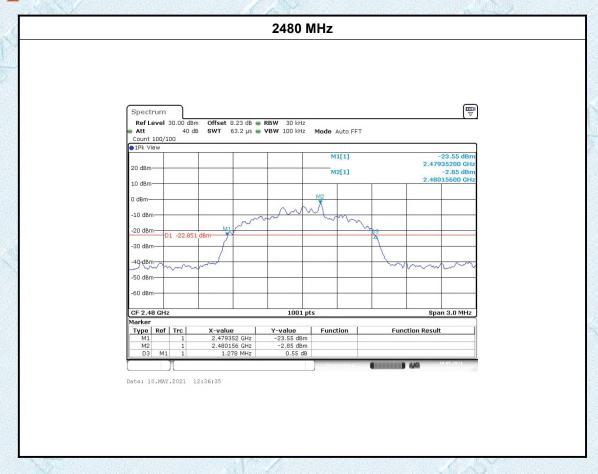






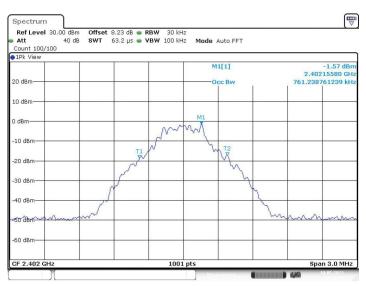

|                         |                                           | A STATE OF THE PROPERTY OF THE |                                                                                                                                                          |
|-------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3DH5                    |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                          |
| 20dB Bandwidth<br>[MHz] | FL[MHz]                                   | FH[MHz]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Verdict                                                                                                                                                  |
| 1.263                   | 2401.358                                  | 2402.621                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PASS                                                                                                                                                     |
| 1.260                   | 2440.358                                  | 2441.618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PASS                                                                                                                                                     |
| 1.278                   | 2479.352                                  | 2480.630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PASS                                                                                                                                                     |
|                         | 20dB Bandwidth<br>[MHz]<br>1.263<br>1.260 | 20dB Bandwidth [MHz] FL[MHz] 1.263 2401.358 1.260 2440.358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20dB Bandwidth [MHz]         FL[MHz]         FH[MHz]           1.263         2401.358         2402.621           1.260         2440.358         2441.618 |




Date: 10.MAY.2021 12:27:01

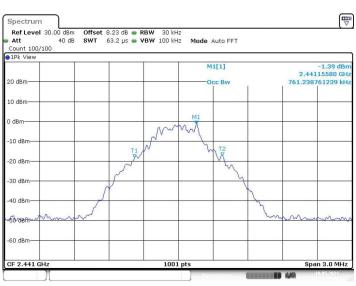
### 2441 MHz




Date: 10.MAY.2021 12:33:54

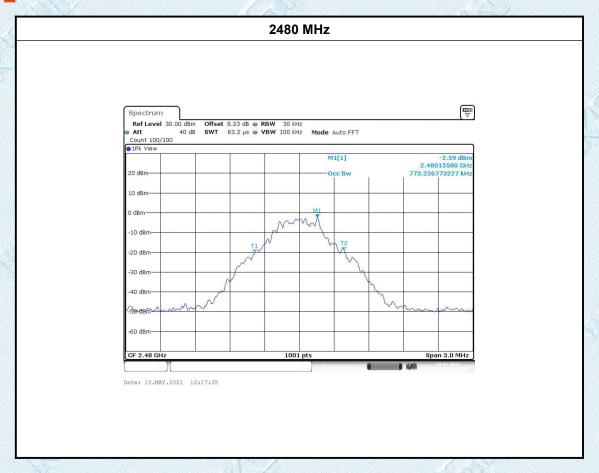






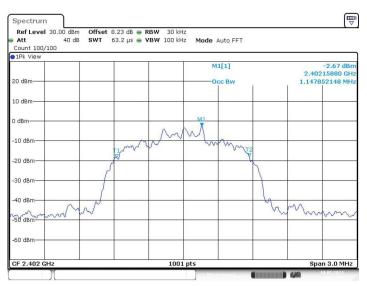

| Test Mode:              | DH5           |          |          |         |  |
|-------------------------|---------------|----------|----------|---------|--|
| Channel frequency (MHz) | 99% OCB [MHz] | FL[MHz]  | FH[MHz]  | Verdict |  |
| 2402                    | 0.761         | 2401.619 | 2402.381 | PASS    |  |
| 2441                    | 0.761         | 2440.619 | 2441.381 | PASS    |  |
| 2480                    | 0.773         | 2479.613 | 2480.387 | PASS    |  |




Date: 10.MAY.2021 12:11:48

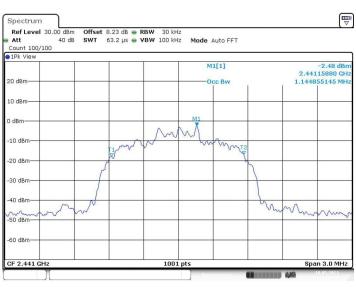
### 2441 MHz




Date: 10.MAY.2021 12:14:51

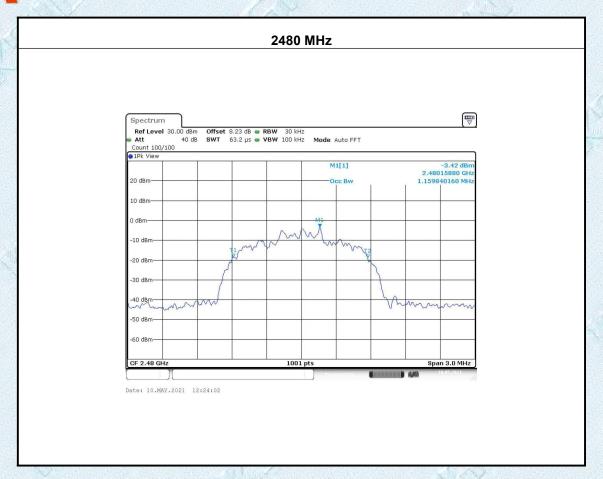






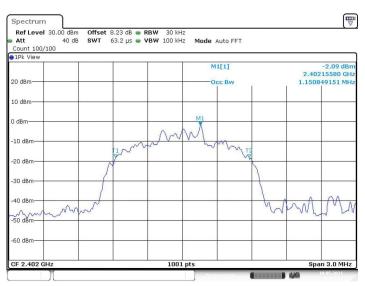

| Test Mode:              | 2DH5          |          |          |         |  |
|-------------------------|---------------|----------|----------|---------|--|
| Channel frequency (MHz) | 99% OCB [MHz] | FL[MHz]  | FH[MHz]  | Verdict |  |
| 2402                    | 1.148         | 2401.422 | 2402.569 | PASS    |  |
| 2441                    | 1.145         | 2440.422 | 2441.566 | PASS    |  |
| 2480                    | 1.16          | 2479.413 | 2480.572 | PASS    |  |




Date: 10.MAY.2021 12:19:59

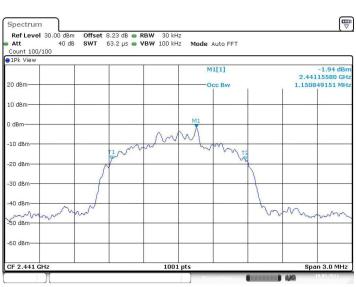
### 2441 MHz




Date: 10.MAY.2021 12:22:31

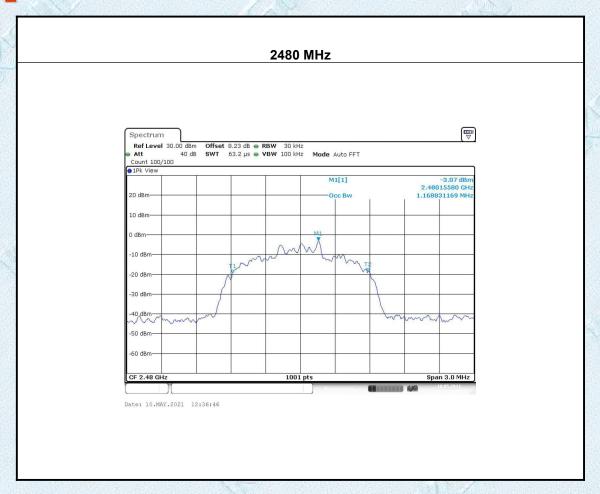







| Test Mode:              | 3DH5          |          | 7/NY     |         |
|-------------------------|---------------|----------|----------|---------|
| Channel frequency (MHz) | 99% OCB [MHz] | FL[MHz]  | FH[MHz]  | Verdict |
| 2402                    | 1.151         | 2401.425 | 2402.575 | PASS    |
| 2441                    | 1.151         | 2440.425 | 2441.575 | PASS    |
| 2480                    | 1.169         | 2479.416 | 2480.584 | PASS    |




Date: 10.MAY.2021 12:27:12

### 2441 MHz



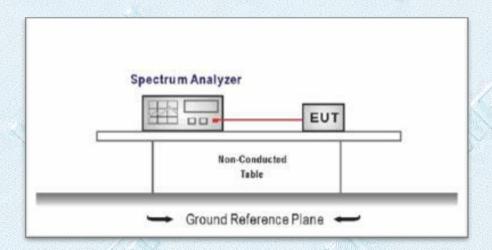
Date: 10.MAY.2021 12:34:05







# 3.5. Carrier Frequencies Separation


### LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):

frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25kHz or the 2/3\*20dB bandwidth of the hopping channel, whichever is greater.

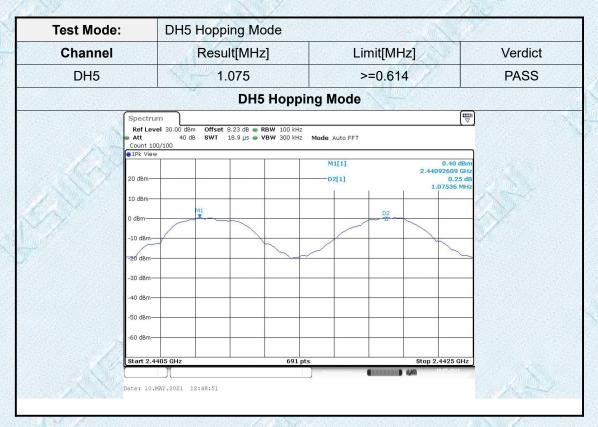
| Test Item          | Limit                                                                 | Frequency Range(MHz) |
|--------------------|-----------------------------------------------------------------------|----------------------|
| Channel Separation | >=25KHz or >=two-thirds of the 20<br>dB bandwidth<br>Which is greater | 2400~2483.5          |

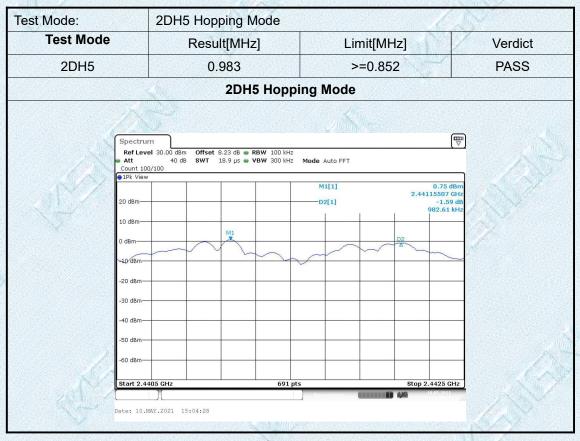
### **Test Configuration**



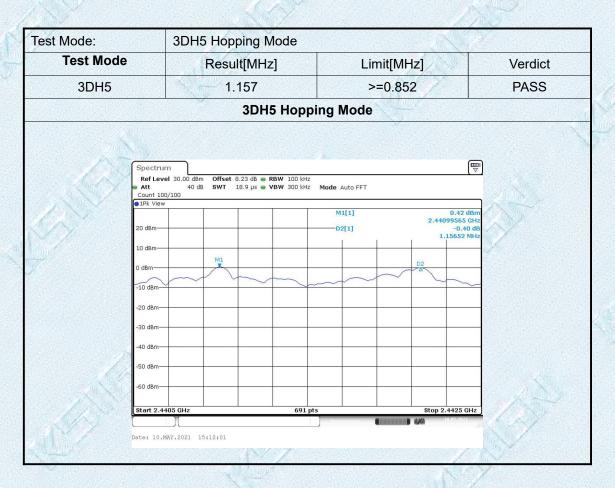
### **Test Procedure**

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator.
- 2.Spectrum Setting:
  - (1) Set RBW = 100 kHz.
  - (2) Set the video bandwidth (VBW) ≥ 3 RBW.
  - (3) Detector = Peak.
  - (4) Trace mode = Max hold.
  - (5) Sweep = Auto couple.


NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.


### **Test Mode**

Please refer to the clause 2.3.


#### **Test Results**

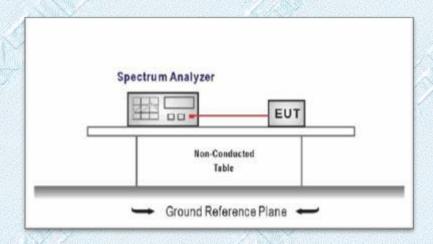













## 3.6. Number of Hopping Channel

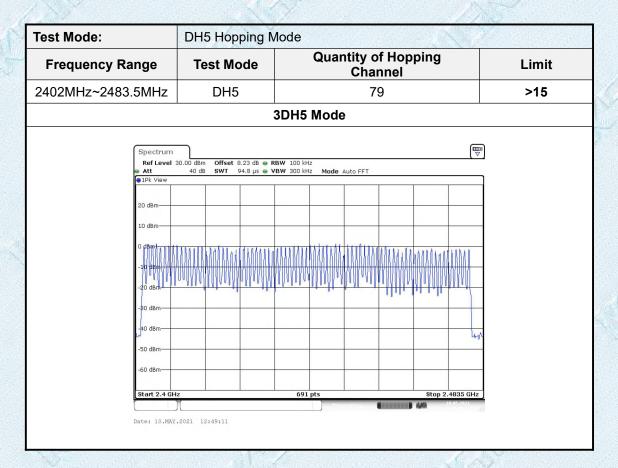
### **Limit**

| Section | Test Item                 | Limit |
|---------|---------------------------|-------|
| 15.247  | Number of Hopping Channel | >15   |

### **Test Configuration**



### **Test Procedure**


- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator.
- 2. Spectrum Setting:
  - (1) Peak Detector: RBW=100 kHz, VBW≥RBW, Sweep time= Auto.

### **Test Mode**

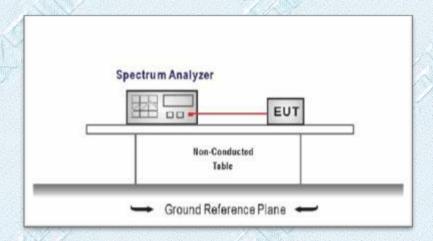
Please refer to the clause 2.3.

### **Test Result**





Note: The GFSK modulation is the worst case and recorded in the report.




### 3.7. Dwell Time

### Limit

| Section      | Test Item                 | Limit   |
|--------------|---------------------------|---------|
| 15.247(a)(1) | Average Time of Occupancy | 0.4 sec |

### **Test Configuration**



### **Test Procedure**

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator.
- 2. Spectrum Setting:
  - (1) Spectrum Setting: RBW=1MHz, VBW≥RBW.
  - (2) Use video trigger with the trigger level set to enable triggering only on full pulses.
  - (3) Sweep Time is more than once pulse time.
  - (4) Set the center frequency on any frequency would be measure and set the frequency span to zero.
  - (5) Measure the maximum time duration of one single pulse.
  - (6) Set the EUT for packet transmitting.

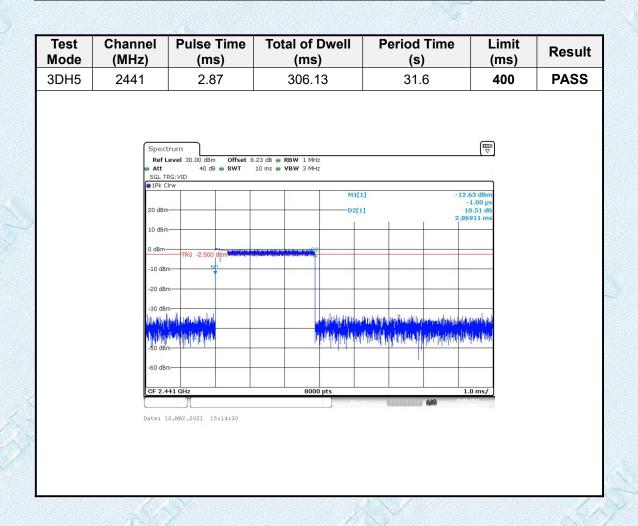
### **Test Mode**

Please refer to the clause 2.3

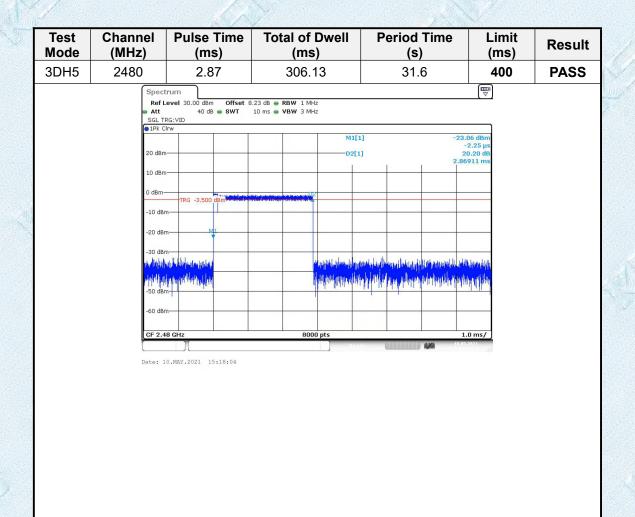
### **Test Result**

Note:

1.Dwell time=Pulse time (ms)  $\times$  (1600  $\div$  2  $\div$  79)  $\times$ 31.6 Second for DH1, 2DH1, 3DH1


Dwell time=Pulse time (ms) ×  $(1600 \div 4 \div 79) \times 31.6$  Second for DH3, 2DH3, 3DH3

Dwell time=Pulse time (ms) × (1600  $\div$  6  $\div$  79) ×31.6 Second for DH5, 2DH5, 3DH5


2. The 3DH5 modulation is the worst case and recorded in the report .



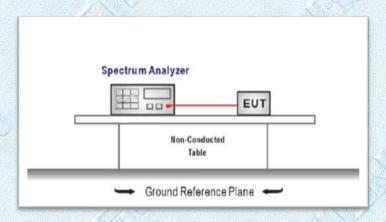
| Spectrum                                                                                                                                                                                                                                                | Test<br>Mode | Channel<br>(MHz)                                     | Pulse Time<br>(ms)                                             | Total of Dwell<br>(ms)   | Period Time<br>(s)                      | Limit<br>(ms)                    | Result |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------|----------------------------------------------------------------|--------------------------|-----------------------------------------|----------------------------------|--------|
| Ref Level 30.00 dbm Offset 8.23 db RBW 1 MHz Att 40 db SWT 10 ms VBW 3 MHz  SGL TRG: VID  1Pk Cirw  M1[1] -7.03 dbm -1.00 µs 4.94 db 2.86786 ms  10 dbm -10 dbm -20 dbm -30 dbm | 3DH5         | 2402                                                 | 2.87                                                           | 306.13                   | 31.6                                    | 400                              | PASS   |
| -60 dBm                                                                                                                                                                                                                                                 |              | Ref L  Att SGLT #1  □ 1Pk C  20 dBm  10 dBm  -10 dBr | evel 30.00 dBm Offset 8 40 dB SWT  RG:VID  Irw  TRG -2.508(BBm | 10 ms • VBW 3 MHz        | [1]                                     | -7.03 dBm<br>-1.00 µs<br>4.94 dB |        |
| -50 dBm                                                                                                                                                                                                                                                 |              | -30 dBr                                              | n-                                                             | J. last. (s.k.)) are:    | والمحاولات والمالية ووالمالية والمناورة | fact have a differ on            |        |
|                                                                                                                                                                                                                                                         |              | -50 dBr                                              | Maria India                                                    | N <sub>e</sub> rrundakt. | Alagrada barbarbarba di sarb            |                                  |        |
| CE 2 402 CHz 9000 ptc 1.0 ms /                                                                                                                                                                                                                          |              | -60 dBr                                              | n                                                              |                          |                                         |                                  |        |
| (c) 2.402 (d) 2                                                                                                                                                                                                                                         |              | CF 2.4                                               | 02 GHz                                                         | 8000 pts                 | 416                                     | 1.0 ms/                          |        |
| Date: 10.MAY.2021 15:12:33                                                                                                                                                                                                                              |              |                                                      |                                                                |                          | 194                                     |                                  |        |










## 3.8. Band Edge and Spurious Emission (Conducted)

### LIMIT

### FCC CFR Title 47 Part 15 Subpart C Section15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

### **TEST CONFIGURATION**



### **TEST PROCEDURE**

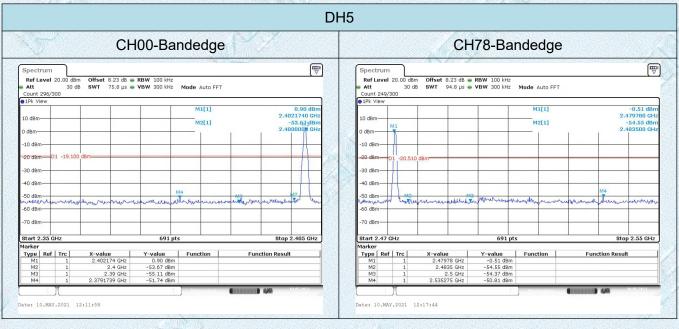
- 1. Connect EUT RF Output port to the Spectrum Analyzer through an RF attenuator.
- 2. Spectrum Setting:

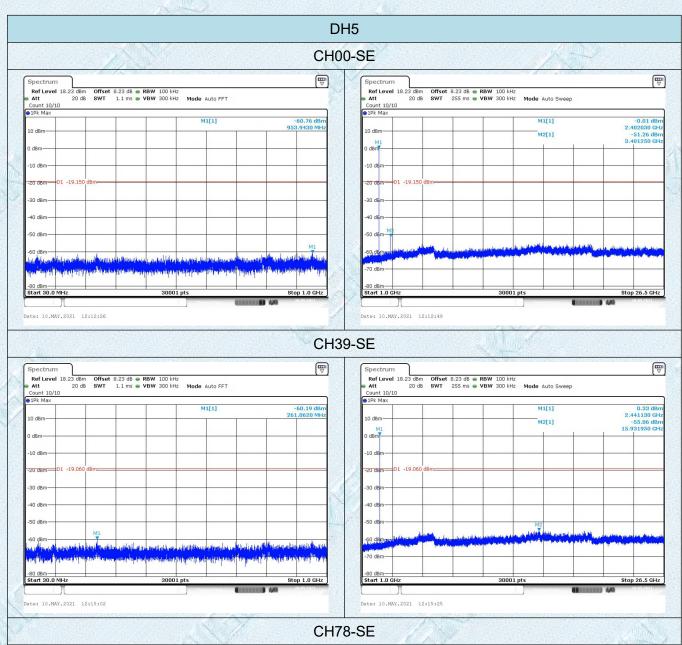
RBW=100KHz

VBW=3\*RBW.

Detector function: Peak.

Trace: Max hold. Sweep = Auto couple.


Allow the trace to stabilize.


### **TEST MODE:**

Please refer to the clause 2.3.

### **TEST RESULTS**





