

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC169730 1 of 93 Page:

FCC Radio Test Report FCC ID: 2AS2T-XG-23

Original Grant

TB-FCC169730 Report No.

Applicant Shenzhen Xintu Century Technology Co.,Ltd

Equipment Under Test (EUT)

EUT Name TWS wireless earphone

XG-23 Model No.

XG-21 Series Model No.

XTC Brand Name

Receipt Date 2019-10-23

Test Date 2019-10-23 to 2019-12-04

Issue Date 2019-12-04

Standards FCC Part 15: 2018, Subpart C(15.247)

Test Method ANSI C63.10: 2013

Conclusions PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

INAN SU fogli. **Test/Witness Engineer**

Approved& Authorized

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Tel: +86 75526509301 Fax: +86 75526509195

Contents

COR	NIENIS	
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	7
	1.5 Description of Test Mode	8
	1.6 Description of Test Software Setting	
	1.7 Measurement Uncertainty	
	1.8 Test Facility	
2.	TEST SUMMARY	
3.	TEST EQUIPMENT	12
4.	CONDUCTED EMISSION TEST	13
	4.1 Test Standard and Limit	13
	4.2 Test Setup	
	4.3 Test Procedure	14
	4.4 EUT Operating Mode	14
	4.5 Test Data	14
5.	RADIATED EMISSION TEST	17
	5.1 Test Standard and Limit	17
	5.2 Test Setup	18
	5.3 Test Procedure	19
	5.4 EUT Operating Condition	20
	5.5 Test Data	20
6.	RESTRICTED BANDS AND BAND-EDGE TEST	42
	6.1 Test Standard and Limit	42
	6.2 Test Setup	42
	6.3 Test Procedure	43
	6.4 EUT Operating Condition	
	6.5 Test Data	43
7.	CONDUCTED BAND EDGE TEST	56
8.	NUMBER OF HOPPING CHANNEL	62
	7.1 Test Standard and Limit	62
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 EUT Operating Condition	
	7.5 Test Data	62
9.	AVERAGE TIME OF OCCUPANCY	66
	8.1 Test Standard and Limit	66

Report No.: TB-FCC169730 Page: 3 of 93

Page:

	8.2 Test Setup	66
	8.3 Test Procedure	66
	8.4 EUT Operating Condition	66
	8.5 Test Data	
10.	CHANNEL SEPARATION AND BANDWIDTH TEST	73
	9.1 Test Standard and Limit	
	9.2 Test Setup	73
	9.3 Test Procedure	73
	9.4 EUT Operating Condition	
	9.5 Bandwidth Test Data	
11.	PEAK OUTPUT POWER TEST	86
	10.1 Test Standard and Limit	86
	10.2 Test Setup	86
	10.3 Test Procedure	86
	10.4 EUT Operating Condition	86
	10.5 Test Data	87
12.	ANTENNA REQUIREMENT	93
	11.1 Standard Requirement	93
	11.2 Antenna Connected Construction	
	11.3 Result	93

Page: 4 of 93

Revision History

Report No.	Version	Description	Issued Date
TB-FCC169730	Rev.01	Initial issue of report	2019-12-04
THE PARTY OF THE P	Will Ellin		TO TO
6023		THE PARTY OF THE P	TO BE
De la Contraction de la Contra	mnB4		D TO
		Dill Miles	3
	WORLD .	a fine and	
0000	The state of		1000
Dr.	Will Samuel		The state of the s
		MORE MORE	
	(TOB)	TODAY W	
	D TO	DESCRIPTION OF THE PARTY OF THE	TO THE

Page: 5 of 93

1. General Information about EUT

1.1 Client Information

Applicant : Shenzhen Xintu Century Technology Co.,Ltd

Address : 5th Floor, Building A1, Anle Industrial Park, No. 172, Hangcheng

Avenue, Xixiang Street, Baoan District, Shenzhen, Guangdong,

China

Manufacturer : Shenzhen Xintu Century Technology Co.,Ltd

Address : 5th Floor, Building A1, Anle Industrial Park, No. 172, Hangcheng

Avenue, Xixiang Street, Baoan District, Shenzhen, Guangdong,

China

1.2 General Description of EUT (Equipment Under Test)

EUT Name		TWS wireless earphone			
Models No.	:	XG-23,XG-21			
Model Difference	ŀ	All these models are the same PCB, layout and electrical circuit, Only the outer color is different.			
		Operation Frequency:	Bluetooth V5.0 : 2402~2480 MHz		
		Number of Channel:	Bluetooth: 79 Channels see Note 2		
Product		Max Peak Output Power:	Bluetooth: 1.690dBm(8-DPSK)		
Description		Antenna Gain:	0.8dBi Chip Antenna		
		Modulation Type:	GFSK (1 Mbps)		
			Pi/4-DQPSK (2 Mbps)		
			8-DPSK (3 Mbps)		
Power Supply	:	DC Voltage Supply from AC/DC Adapter.			
MARIA	L	DC Voltage supplied by Li-ion battery.			
Power Rating		DC5V 0.5A by AC/DC Adapter.			
	e	DC 3.7V by 50mAh Li-ion battery of The headset.			
THOUSE	N	DC 3.7V by 400mAh Li-ion battery of Charging dock.			
Connecting I/O Port(S)	:	Please refer to the User's	Please refer to the User's Manual		

Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Page: 6 of 93

(2) Channel List:

Bluetooth Channel List						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
00	2402	27	2429	54	2456	
01	2403	28	2430	55	2457	
02	2404	29	2431	56	2458	
03	2405	30	2432	57	2459	
04	2406	31	2433	58	2460	
05	2407	32	2434	59	2461	
06	2408	33	2435	60	2462	
07	2409	34	2436	61	2463	
08	2410	35	2437	62	2464	
09	2411	36	2438	63	2465	
10	2412	37	2439	64	2466	
11	2413	38	2440	65	2467	
12	2414	39	2441	66	2468	
13	2415	40	2442	67	2469	
14	2416	41	2443	68	2470	
15	2417	42	2444	69	2471	
16	2418	43	2445	70	2472	
17	2419	44	2446	71	2473	
18	2420	45	2447	72	2474	
19	2421	46	2448	73	2475	
20	2422	47	2449	74	2476	
21	2423	48	2450	75	2477	
22	2424	49	2451	76	2478	
23	2425	50	2452	77	2479	
24	2426	51	2453	78	2480	
25	2427	52	2454		6	
26	2428	53	2455	CILID	1	

⁽³⁾ The Antenna information about the equipment is provided by the applicant.

1.3 Block Diagram Showing the Configuration of System Tested

TX Mode

EUT	

Page: 7 of 93

1.4 Description of Support Units

The EUT has been test as an independent unit.

	Equipment Information						
Name Model FCC ID/VOC Manufacturer Used "√"							
ADAPTER	1	100 (III	1	V			
	Cable Information						
Number	Shielded Type	Ferrite Core	Length	Note			
USB cable	A5	1302		√			

Page: 8 of 93

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test	
Final Test Mode	Description
Mode 1	Charging + TX Mode

For Radiated Test			
Final Test Mode	Description		
Mode 1	TX GFSK Mode		
Mode 2	TX Mode(GFSK) Channel 00/39/78		
Mode 3 TX Mode(Pi/4-DQPSK) Channel 00/39/78			
Mode 4 TX Mode(8-DPSK) Channel 00/39/78			
Mode 5	Hopping Mode(GFSK)		
Mode 6	Hopping Mode(Pi/4-DQPSK)		
Mode 7 Hopping Mode(8-DPSK)			

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate. We have pretested all the test modes above.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

TX Mode: GFSK (1 Mbps)
TX Mode:Pi/4-DQPSK (2 Mbps)
TX Mode:8-DPSK (3 Mbps)

(2) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on X-plane as the normal use. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 9 of 93

1.6 Description of Test Software Setting

During testing channel power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of Bluetooth mode.

Test Software Version			
Frequency	2402 MHz	2441MHz	2480 MHz
GFSK	DEF	DEF	DEF
Pi/4-DQPSK	DEF	DEF	DEF
8-DPSK	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.42 dB ±3.42 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.40 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 10 of 93

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

FCC List No.: (811562)

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 811562.

FCC Accredited Test Site Number: 854351.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 11 of 93

2. Test Summary

FCC Part 15 Subpart C(15.247)/ RSS 247 Issue 1					
Standard Section		Took How	1 1	_	
FCC	IC	Test Item	Judgment	Remark	
15.203		Antenna Requirement	PASS	N/A	
15.207	RSS-GEN 7.2.2	Conducted Emission	PASS	N/A	
15.205	RSS-Gen 7.2.3	Restricted Bands	PASS	N/A	
15.247(a)(1)	RSS 247 5.1 (2)	Hopping Channel Separation	PASS	N/A	
15.247(a)(1)	RSS 247 5.1 (4)	Dwell Time	PASS	N/A	
15.247(b)(1)	RSS 247 5.4 (2)	Peak Output Power	PASS	N/A	
15.247(b)(1)	RSS 247 5.1 (4)	Number of Hopping Frequency	PASS	N/A	
15.247(d)	RSS 247 5.5	Band Edge	PASS	N/A	
15.247(c)& 15.209	RSS 247 5.5	Radiated Spurious Emission	PASS	N/A	
15.247(a)	RSS 247 5.1 (1)	99% Occupied Bandwidth & 20dB Bandwidth	PASS	N/A	

Page: 12 of 93

3. Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 13, 2019	Jul. 12, 2020
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 13, 2019	Jul. 12, 2020
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 13, 2019	Jul. 12, 2020
LISN	Rohde & Schwarz	ENV216	101131	Jul. 13, 2019	Jul. 12, 2020
Radiation Emission	n Test			,	
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 13, 2019	Jul. 12, 2020
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 13, 2019	Jul. 12, 2020
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Jan. 27, 2019	Jan. 26, 2020
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Jan. 27, 2019	Jan. 26, 2020
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.03, 2019	Mar. 02, 2020
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.03, 2019	Mar. 02, 2020
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 13, 2019	Jul. 12, 2020
Pre-amplifier	Sonoma	310N	185903	Mar.04, 2019	Mar. 03, 2020
Pre-amplifier	HP	8449B	3008A00849	Mar.03, 2019	Mar. 02, 2020
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.03, 2019	Mar. 02, 2020
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducte	ed Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 13, 2019	Jul. 12, 2020
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 13, 2019	Jul. 12, 2020
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 16, 2019	Sep. 15, 2020
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 16, 2019	Sep. 15, 2020
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 16, 2019	Sep. 15, 2020
33	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 16, 2019	Sep. 15, 2020
DE Dower Conser	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 16, 2019	Sep. 15, 2020
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 16, 2019	Sep. 15, 2020
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 16, 2019	Sep. 15, 2020

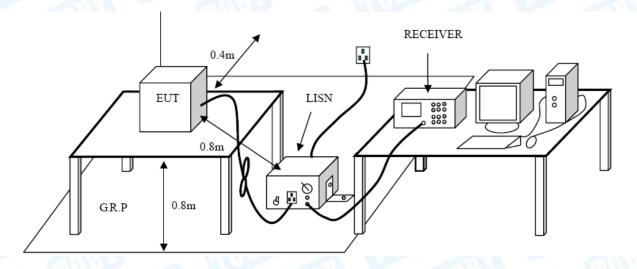
Page: 13 of 93

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit


Conducted Emission Test Limit

Eroguanav	Maximum RF Line Voltage (dBμV)			
Frequency	Quasi-peak Level	Average Level		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

Page: 14 of 93

4.3 Test Procedure

The EUT was placed 0.8m from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

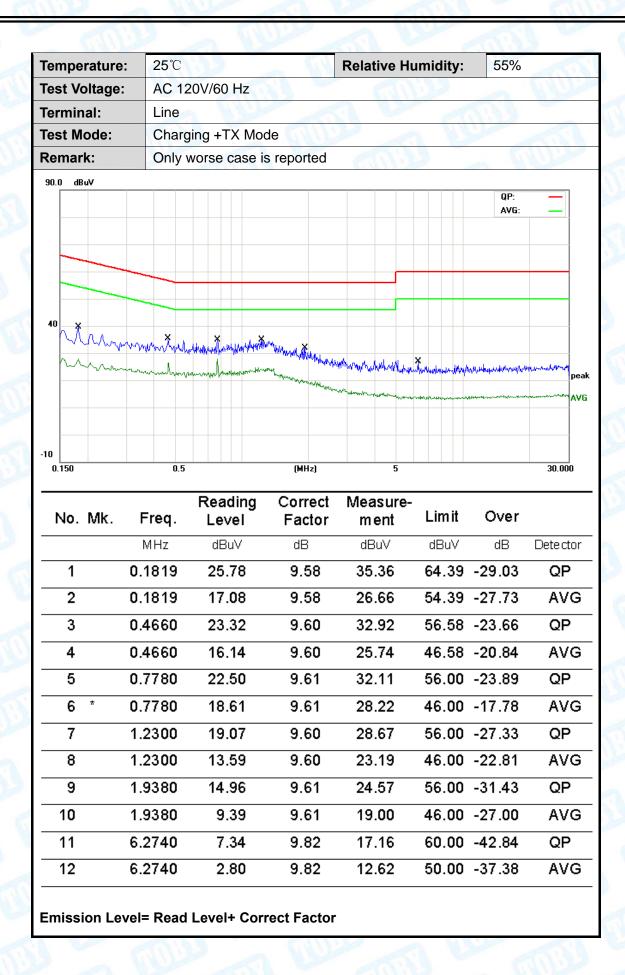
Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode


Please refer to the description of test mode.

4.5 Test Data

Test data please refer the following pages.

15 of 93 Page:

Page: 16 of 93

emperature	e: 25°C			Relative Hu	midity:	55%	
est Voltage	: AC 1	20V/60 Hz		2 100		500	
erminal:	Neut	ral	CARL!		11/1	1	10
est Mode:	Char	ging +TX Mo	ode	1000) Y	1	Mars
emark:	Only	worse case	is reported	A STATE OF		THE PERSON	
0.0 dBuV							
						QP: AVG:	
10 *		., .					
~ UWW	www.m.	Mary Mary Mary	Maryland Maryland	Museumani	v		
	mullim	marian baseman	April Marie	of the market of the property of	toldplace to the control of	eregyppywoderschelicherte	handan Allanda pe
			a salaharah	سطارا الباشع حدر مسواد و ورد معامل معامل مورد معامل ما	balan-basidaya, manan-	globania sa	~~~~~A\
)							
0.150	0.5		(MHz)	5			30.000
		Reading	Correct	Measure-			
No. Mk.	Freq.	Level	Factor	ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detecto
1	0.1819	26.36	9.65	36.01	64.39	-28.38	QP
2	0.1819	17.12	9.65	26.77	54.39	-27.62	AVC
3	0.4660	21.87	9.58	31.45	56.58	-25.13	QP
			9.58	26.95		-19.63	AVC
	ม.4คคม	17.37	3).:10	20.3.1		. 5.55	/ 1 4 4
4	0.4660	17.37				-23.84	ΛP
4 5	0.7780	22.57	9.59	32.16	56.00	-23.84	QP
4 5 6 *	0.7780 0.7780	22.57 18.64	9.59 9.59	32.16 28.23	56.00 46.00	-17.77	AVC
4 5	0.7780 0.7780 1.2460	22.57 18.64 19.09	9.59 9.59 9.59	32.16 28.23 28.68	56.00 46.00 56.00	-17.77 -27.32	AV 0
4 5 6 *	0.7780 0.7780	22.57 18.64	9.59 9.59	32.16 28.23	56.00 46.00 56.00	-17.77	AVG
4 5 6 * 7	0.7780 0.7780 1.2460	22.57 18.64 19.09	9.59 9.59 9.59	32.16 28.23 28.68	56.00 46.00 56.00 46.00	-17.77 -27.32	AV 0
4 5 6 * 7 8	0.7780 0.7780 1.2460 1.2460	22.57 18.64 19.09 13.72	9.59 9.59 9.59 9.59	32.16 28.23 28.68 23.31	56.00 46.00 56.00 46.00 56.00	-17.77 -27.32 -22.69	QP AV0
4 5 6 * 7 8 9	0.7780 0.7780 1.2460 1.2460 2.9020	22.57 18.64 19.09 13.72 12.85	9.59 9.59 9.59 9.59 9.66	32.16 28.23 28.68 23.31 22.51	56.00 46.00 56.00 46.00 56.00 46.00	-17.77 -27.32 -22.69 -33.49	QP AVG

Page: 17 of 93

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209

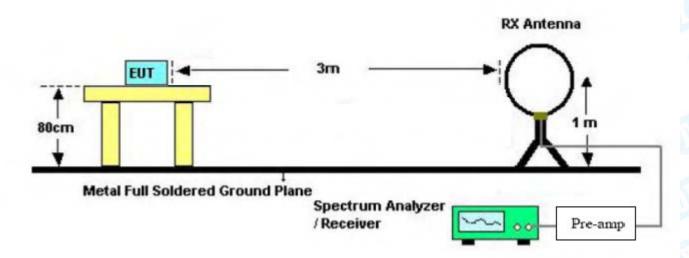
5.1.2 Test Limit

Radiated Emission Limit (9 kHz~1000MHz)

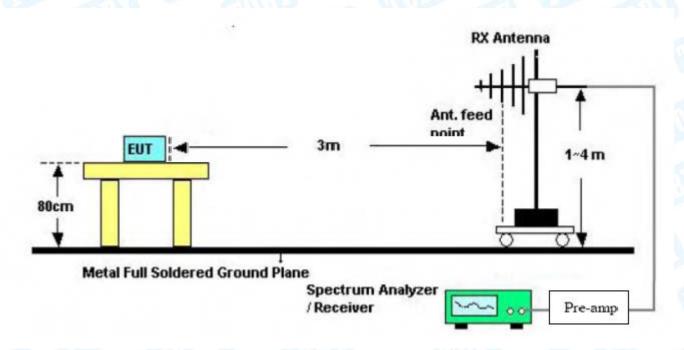
Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Class B (dBuV/m)(at 3m)			
(MHz)	Peak	Average		
Above 1000	74	54		

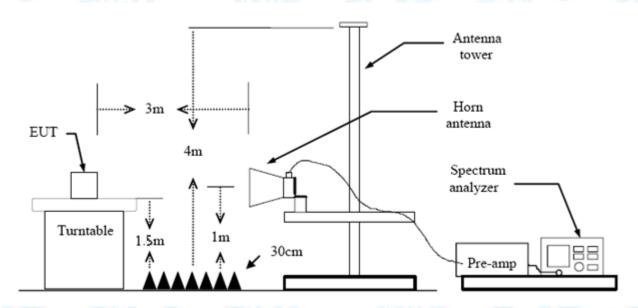

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)



Page: 18 of 93

5.2 Test Setup


Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 19 of 93

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 0.8cm shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

Page: 20 of 93

5.4 EUT Operating Condition

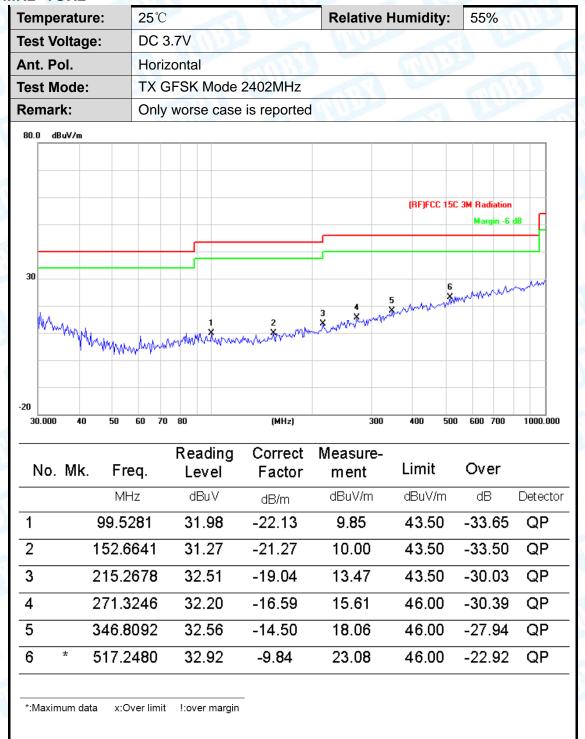
The Equipment Under Test was set to Continual Transmitting in maximum power in TX mode.

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Test data please refer the following pages.

Page: 21 of 93


9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

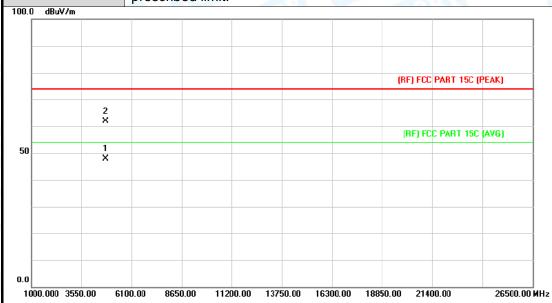
Note: The amplitude of spurious emissions which are attenuated by more than 20dB

below the permissible value has no need to be reported.

30MHz~1GHz

Report No.: TB-FCC169730
Page: 22 of 93

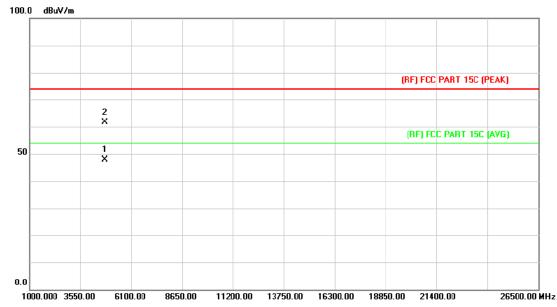
Page:


Temperature	e: 25	, C				Relativ	ve H	umidit	.y:	55%	6		1
Test Voltage	Itage: DC 3.7V				NB -	6	111	17.3			1	11/1	j
Ant. Pol.	Ve	ertical	A	1377		A V				N.B			
Test Mode:	T	TX GFSK Mode 2402MHz								and the	()		
Remark:	Oı	nly wo	orse	case i	s reported	TITE	100	3		. 1		الزارا	
80.0 dBuV/m													,
													ĺ
								(RF)FC	C 15C	3M Rad	fiation		
										Marg	gin -6 d	iB	
												4	
30												مهميلاس	
									m	more	policipal property		ł
1 .													
1 2 W X X 3	1 K		5	6		. AMWA	MM	MANY					
1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	i k	MANNAM	5 /////^^	6 * *	MMANIMAN	mmm	NAM	What					
W 3 3	Maryanya	mmm	5 ///////	6 * *	Myhahahah	www	www.	MANA					
1 2 3 W X 3 3	morphy	undu	5 M/w^	¢ ** •	AMMAMMAM.	man	~~~	MM					
20				6 /**/\/\-\		mumm							
	50 60		5 /////// 80	6 VWW-W/M	(MHz)	www	300	400	500	600	700	1000.	00
30.000 40	50 60	0 70	80 Rea	ading	(MHz)	Measu	300	400	500			1000.	.00
20		0 70	80 Rea		(MHz)		300 re-		500	600 Ove		1000.	.00
30.000 40	50 60	0 70	Rea	ading	(MHz)	Measu	300 re-	400	500		er	1000.	
30.000 40 No. Mk.	50 60	70	Rea Le	ading evel	(MHz) Correct Factor	Measu ment	300 re-	400	500	Ove	er		cto
20 30.000 40 No. Mk.	Freq) 70 s	Rea Le	ading evel	Correct Factor	Measur ment	300 re-	Limit	500 /m	Ove	er 3	Dete	cto
No. Mk.	Freq MHz 32.863) 70 H	80 Rea Le dE 32	ading evel BuV	Correct Factor dB/m -15.17	Measur ment dBuV/r 17.20	300 re-	400 Limit	500 /m	Ov 6	er .80	Det e	cto
No. Mk. 1 * 2 3	Freq MHz 32.863 36.000 40.559) 70 i	Reacted 322 322 31	ading evel BuV	(MHz) Correct Factor dB/m -15.17 -17.26 -19.45	Measurement dBuV/r 17.20 15.17 12.30	300 re-	400 Limit dBuV 40.0 40.0	500 /m 0	Ove dB -22. -24.	er .80 .83	Detection QF	cto
No. Mk. 1 * 2 3 4	Freq MHz 32.863 36.000 40.559	1. 37 97	Rea Le dE 32 32 31	ading evel 8.37 8.43 .75	Correct Factor dB/m -15.17 -17.26 -19.45 -21.68	Measur ment dBuV/r 17.20 15.17 12.30	300 re- m)	400 Limit 40.0 40.0 40.0 40.0	500 //m 0 0 0 0	Ove dB -22. -24. -27.	.80 .83 .70	Detection QF	cto
No. Mk. 1 * 2 3 4 5	Freq MHz 32.863 36.000 40.559	37 37 33 52	Reac Le dE 322 311 344 31	ading evel 3uV 2.37 2.43	(MHz) Correct Factor dB/m -15.17 -17.26 -19.45	Measurement dBuV/r 17.20 15.17 12.30	300 re- m)	400 Limit 40.0 40.0 40.0	500 (m) 0 0 0 0 0	Ove dB -22. -24.	.80 .83 .70 .23	Detection QF	cto

Page: 23 of 93

Above 1GHz

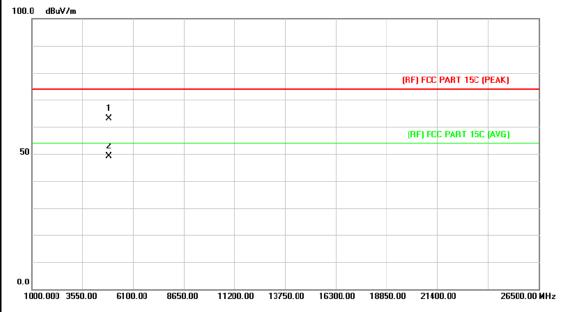
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V	WILL TO SERVICE STREET	A PHULL
Ant. Pol.	Horizontal		33
Test Mode:	TX GFSK Mode 2402MHz		Till I
Remark:	No report for the emission wh	ich more than 10 dB be	elow the
100 0 dP.4(/m	prescribed limit.		



N	o. Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4804.192	33.32	14.56	47.88	54.00	-6.12	AVG
2		4804.328	47.38	14.56	61.94	74.00	-12.06	peak

Page: 24 of 93

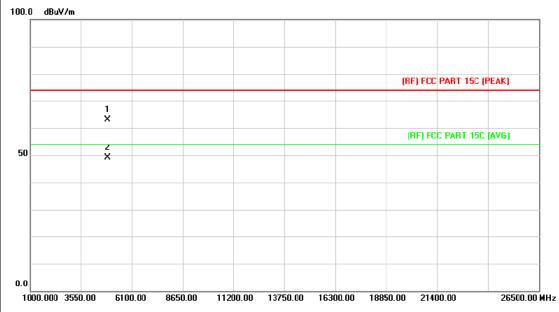
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical		133
Test Mode:	TX GFSK Mode 2402MHz		
Remark:	No report for the emission prescribed limit.	which more than 10 dE	below the



N	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4804.152	33.38	14.56	47.94	54.00	-6.06	AVG
2		4804.366	47.02	14.56	61.58	74.00	-12.42	peak

Page: 25 of 93

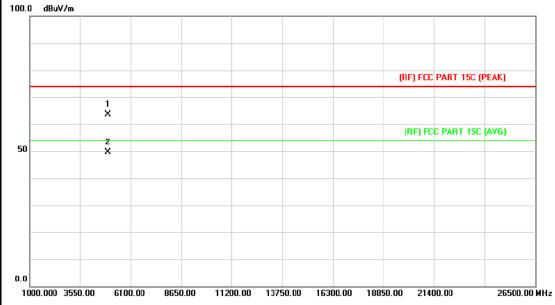
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V	COUNTY OF	
Ant. Pol.	Horizontal		
Test Mode:	TX GFSK Mode 2441MH	Z	
Remark:	No report for the emission prescribed limit.	n which more than 10 dE	3 below the



No.	Mk.	Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4881.056	48.08	15.16	63.24	74.00	-10.76	peak
2	*	4881.344	33.85	15.16	49.01	54.00	-4.99	AVG

Page: 26 of 93

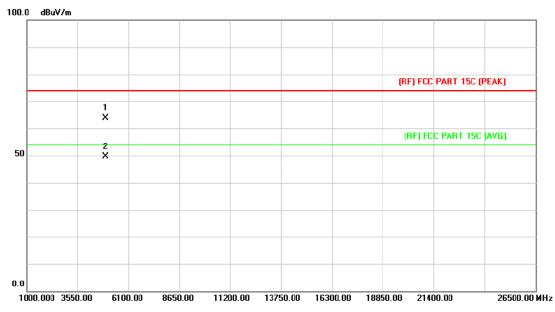
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V	WW P	THU.
Ant. Pol.	Vertical		33
Test Mode:	TX GFSK Mode 2441MHz		100
Remark:	No report for the emission wh prescribed limit.	ich more than 10 dB bo	elow the



No.	Mk.	Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4882.036	47.99	15.16	63.15	74.00	-10.85	peak
2	*	4882.596	33.86	15.16	49.02	54.00	-4.98	AVG

Page: 27 of 93

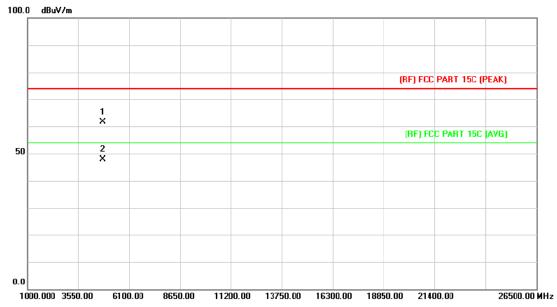
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		THU:
Ant. Pol.	Horizontal		3.9
Test Mode:	TX GFSK Mode 2480MHz		1111
Remark:	No report for the emission who prescribed limit.	ich more than 10 dB bo	elow the



No.	Mk.	Freq.	_		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4960.660	47.93	15.76	63.69	74.00	-10.31	peak
2	*	4961.000	33.94	15.76	49.70	54.00	-4.30	AVG

Page: 28 of 93

Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical		1339			
Test Mode:	TX GFSK Mode 2480MHz	TX GFSK Mode 2480MHz				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					



No.	Mk.	Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4959.550	48.12	15.76	63.88	74.00	-10.12	peak
2	*	4960.252	33.92	15.76	49.68	54.00	-4.32	AVG

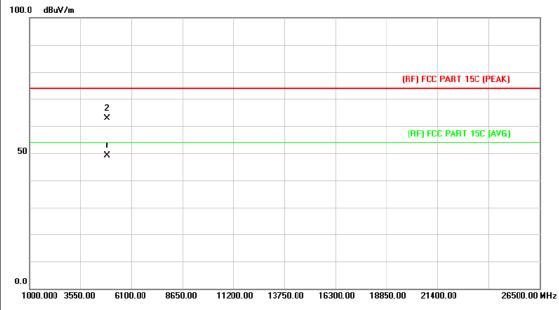
Page: 29 of 93

Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V		THU.			
Ant. Pol.	Horizontal					
Test Mode:	TXPi/4-DQPSK Mode 2402	MHz	TITLE OF			
Remark: No report for the emission which more than 10 dB below the prescribed limit.						

No.	Mk.	Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.440	47.17	14.56	61.73	74.00	-12.27	peak
2	*	4804.170	33.34	14.56	47.90	54.00	-6.10	AVG

Page: 30 of 93

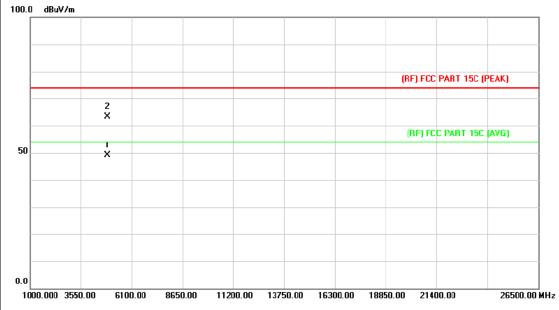
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Vertical	Vertical					
Test Mode:	TXPi/4-DQPSK Mode 2	2402MHz	Nill Wall				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						
1							



No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.076	47.06	14.55	61.61	74.00	-12.39	peak
2	*	4804.192	33.37	14.56	47.93	54.00	-6.07	AVG

Page: 31 of 93

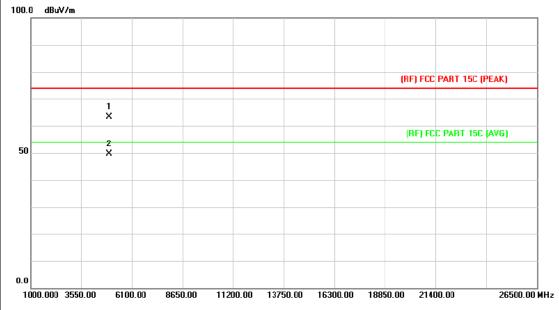
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V		O. A.				
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TXPi/4-DQPSK Mode 2441	MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						



No	. Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4882.736	33.86	15.16	49.02	54.00	-4.98	AVG
2		4882.884	47.61	15.16	62.77	74.00	-11.23	peak

Page: 32 of 93

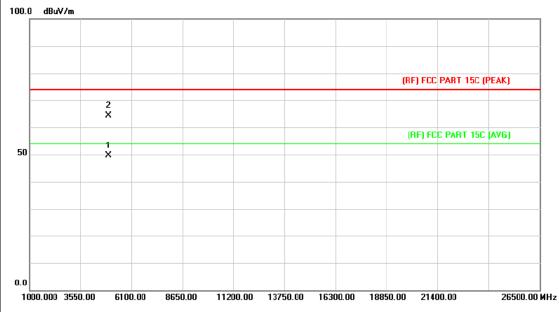
Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical					
Test Mode:	TXPi/4-DQPSK Mode 2441MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					



No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4882.454	33.88	15.16	49.04	54.00	-4.96	AVG
2		4882.510	48.28	15.16	63.44	74.00	-10.56	peak

Page: 33 of 93

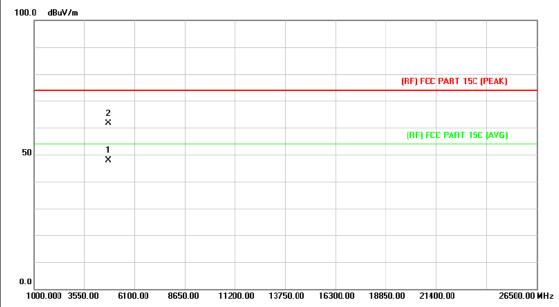
Tomporeture	25℃	Polotivo Humiditu	55%				
Temperature:	25 C	Relative Humidity:	55%				
Test Voltage:	DC 3.7V		OHIT SE				
Ant. Pol.	Horizontal						
Test Mode:	TXPi/4-DQPSK Mode 2480MHz						
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						



No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4960.392	47.63	15.76	63.39	74.00	-10.61	peak
2	*	4960.798	33.93	15.76	49.69	54.00	-4.31	AVG

Page: 34 of 93

Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V		THU.			
Ant. Pol.	Vertical					
Test Mode:	TXPi/4-DQPSK Mode 2480MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					



No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4959.202	33.91	15.76	49.67	54.00	-4.33	AVG
2		4959.704	48.51	15.76	64.27	74.00	-9.73	peak

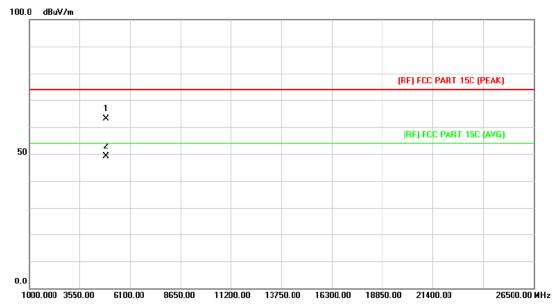
Page: 35 of 93

Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V		A VIVE			
Ant. Pol.	Horizontal					
Test Mode:	TX 8-DPSK Mode 2402MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					
	•					

No.	Mk.	Freq.	_		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4804.414	33.33	14.56	47.89	54.00	-6.11	AVG
2		4804.714	47.02	14.56	61.58	74.00	-12.42	peak

Page: 36 of 93

tive Humidity: 55%					
DC 3.7V					
Vertical					
TX 8-DPSK Mode 2402MHz					
No report for the emission which more than 10 dB below the prescribed limit.					
	more than 10 dB below the				



No.	Mk.	Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4804.418	47.75	14.56	62.31	74.00	-11.69	peak
2	*	4804.616	33.32	14.56	47.88	54.00	-6.12	AVG

Page: 37 of 93

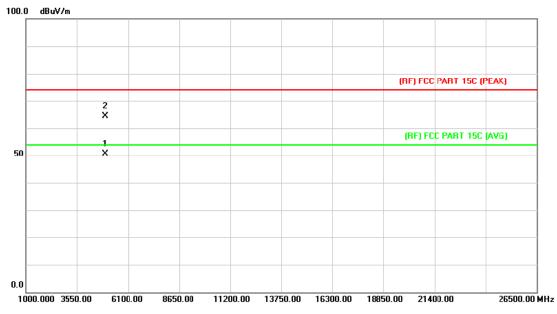
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V		A DIVIS				
Ant. Pol.	Horizontal						
Test Mode:	TX 8-DPSK Mode 2441MHz	TX 8-DPSK Mode 2441MHz					
Remark:	No report for the emission w	No report for the emission which more than 10 dB below the					
	prescribed limit.	The same of the sa					



No.	Mk.	Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4882.560	47.93	15.16	63.09	74.00	-10.91	peak
2	*	4882.658	33.85	15.16	49.01	54.00	-4.99	AVG

Page: 38 of 93

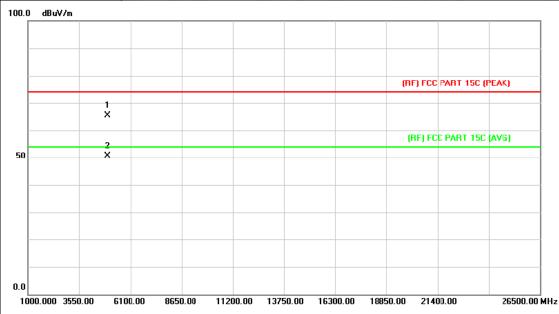
Temperature:	25°C Relative Humidity: 55%					
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical					
Test Mode:	TX 8-DPSK Mode 2441MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					
	prescribed innit.					



No.	Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4881.970	47.58	15.16	62.74	74.00	-11.26	peak
2	*	4882.616	33.87	15.16	49.03	54.00	-4.97	AVG

Page: 39 of 93

Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V		A LINE			
Ant. Pol.	Horizontal		33			
Test Mode:	TX 8-DPSK Mode 2480MHz		Till I			
Remark:	No report for the emission which more than 10 dB below the prescribed limit.					



No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4959.930	34.82	15.76	50.58	54.00	-3.42	AVG
2		4959.966	48.53	15.76	64.29	74.00	-9.71	peak

Page: 40 of 93

Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	WW TO	A PHULL				
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX 8-DPSK Mode 2480MHz		1				
Remark:	No report for the emission wh prescribed limit.	ich more than 10 dB be	elow the				

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4959.784	49.61	15.76	65.37	74.00	-8.63	peak
2	*	4960.050	34.83	15.76	50.59	54.00	-3.41	AVG

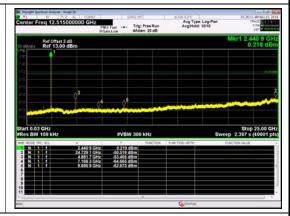
Page: 41 of 93

Conducted Emission Test Data

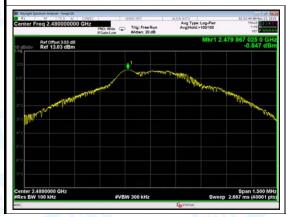
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120/60Hz						
Test Mode:	GFSK TX Mode		(63)				
Remark:	This report only shall the wo	This report only shall the worst case mode for TX GFSK.					

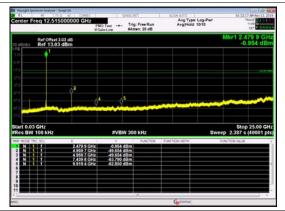
2402 MHz

0.03GHz-26.5GHz



2441 MHz


0.03GHz-26.5GHz



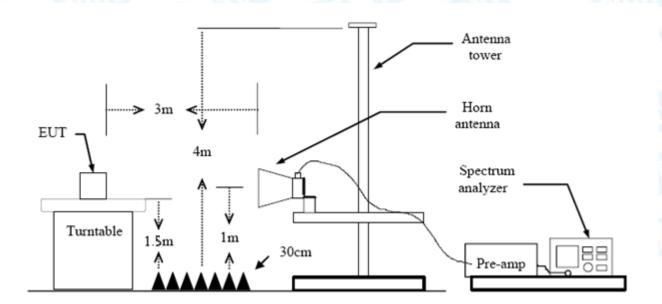
2480 MHz

0.03GHz-26.5GHz

Page: 42 of 93

6. Restricted Bands and Band-edge test

6.1 Test Standard and Limit


6.1.1 Test Standard FCC Part 15.209 FCC Part 15.205

6.1.2 Test Limit

Restricted Frequency	Class B (dE	BuV/m)(at 3m)	
Band (MHz)	Peak	Average	
2310 ~2390	74	54	
2483.5 ~2500	74	54	

Note: All restriction bands have been tested, only the worst case is reported.

6.2 Test Setup

Page: 43 of 93

6.3 Test Procedure

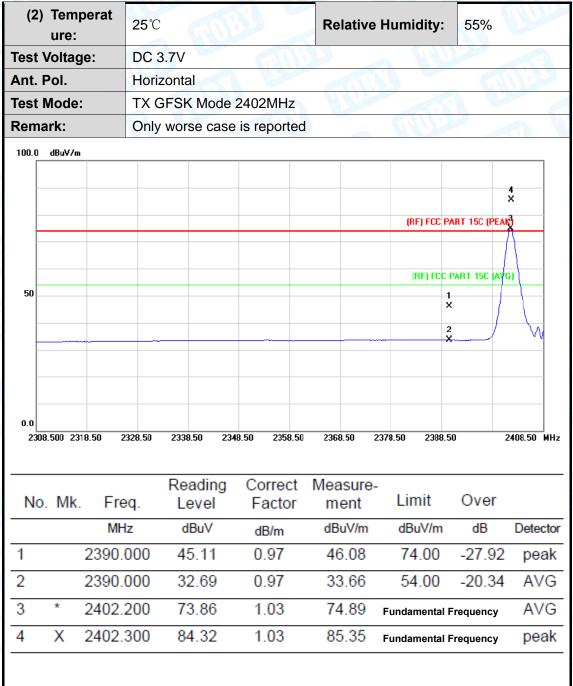
(1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 1.5m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.

- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with AVG Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

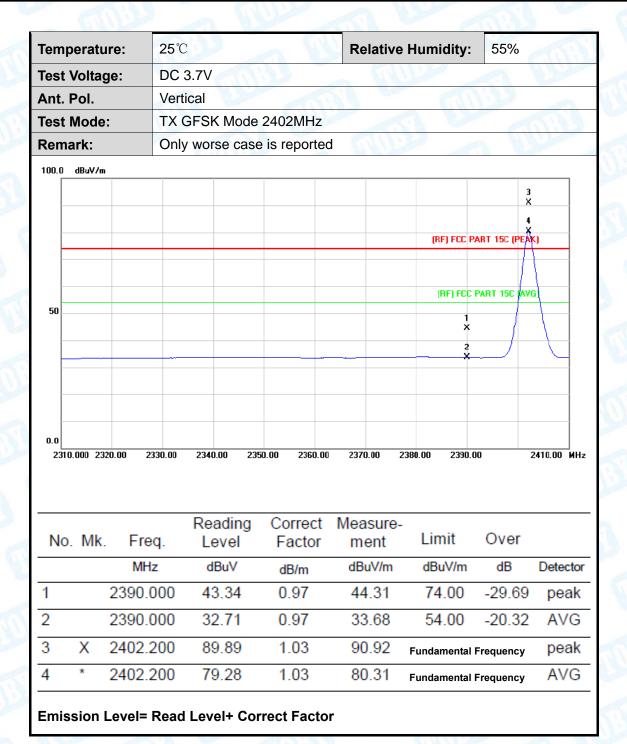
6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

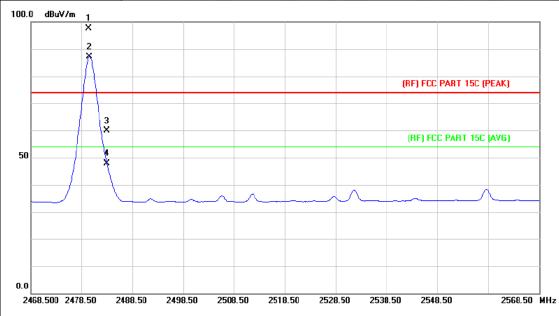
6.5 Test Data


Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

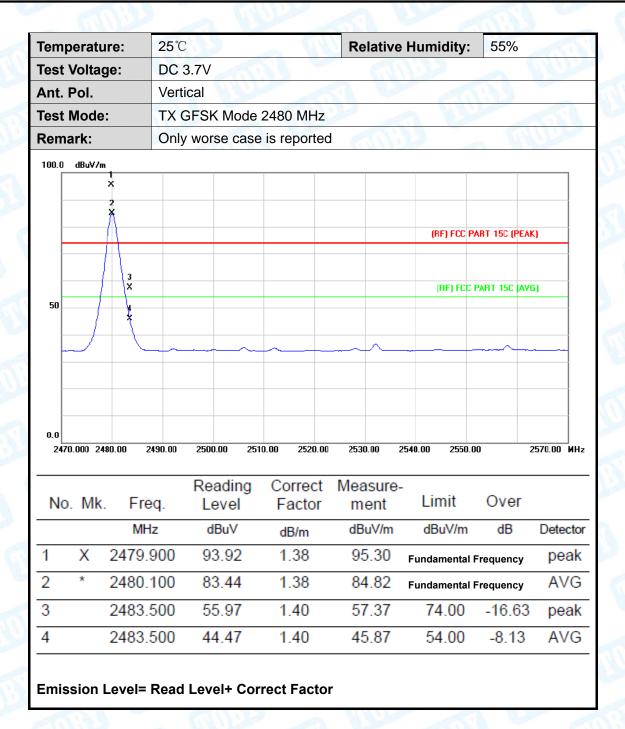
All restriction bands have been tested, only the worst case is reported.


Page: 44 of 93

(1) Radiation Test


Page: 45 of 93

Page: 46 of 93


Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V	THE PARTY OF THE P	(1) (D)
Ant. Pol.	Horizontal		
Test Mode:	TX GFSK Mode 2480 MHz		
Remark:	Only worse case is reported	CALL TO SERVICE OF THE PARTY OF	A ARTON

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2479.900	96.30	1.38	97.68	Fundamental	Frequency	peak
2	*	2480.100	85.84	1.38	87.22	Fundamental	Frequency	AVG
3		2483.500	58.51	1.40	59.91	74.00	-14.09	peak
4		2483.500	46.51	1.40	47.91	54.00	-6.09	AVG

Page: 47 of 93

2402.000

69.23

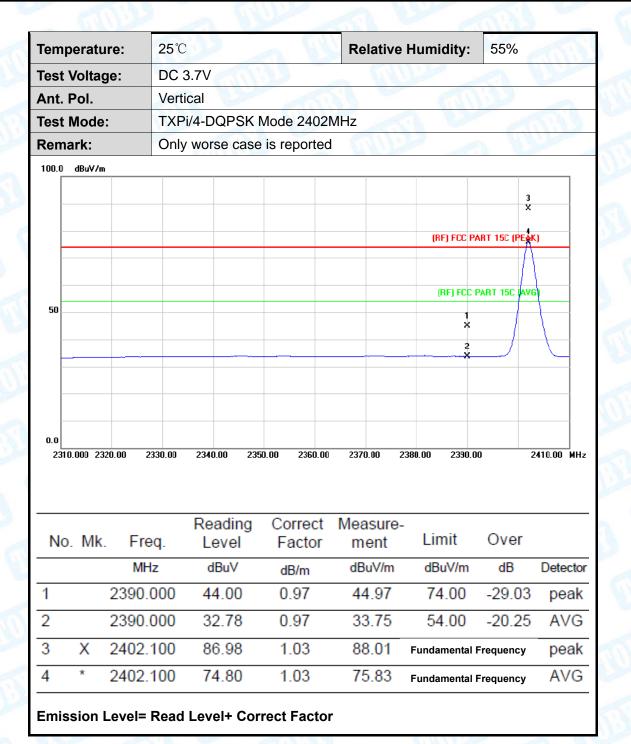
Emission Level= Read Level+ Correct Factor

1.03

70.26

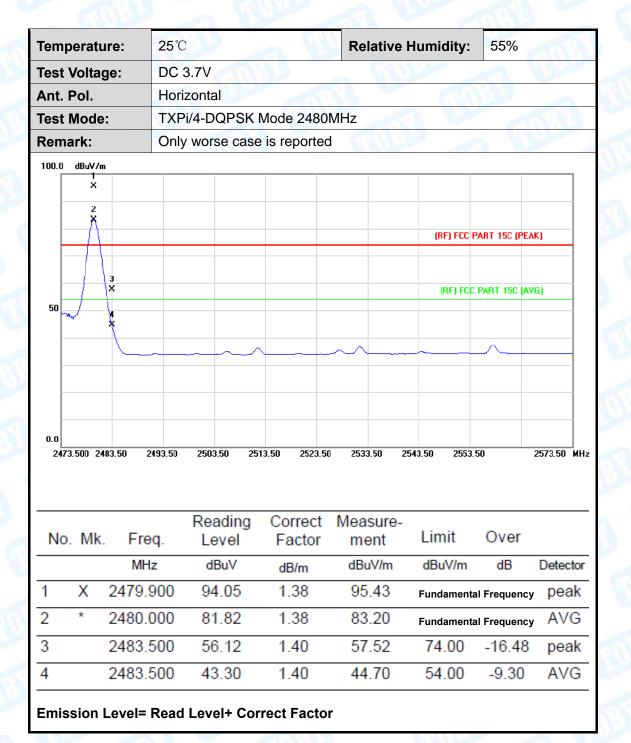
Report No.: TB-FCC169730

Page: 48 of 93

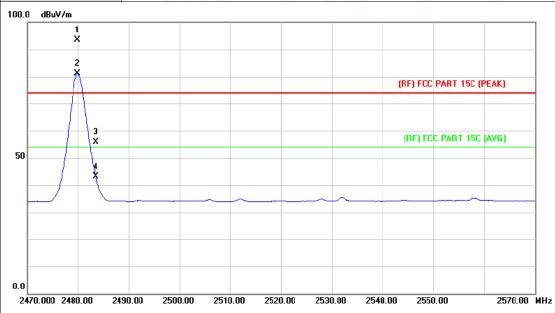

Tem	nperatu	re:	25℃					Rela	tive H	Humidity:	55%			
Tes	t Voltag	je:	DC 3	3.7V		10		20		1100		Ī		
Ant	. Pol.		Horiz	zontal						TI	W.D.			<u> </u>
Test	t Mode:		TXP	TXPi/4-DQPSK Mode 2402MHz										
Ren	nark:		Only	worse	case	is repor	ted	6	11/1/2			W.		
100.0	O dBuV/m													1
												3 X		
										(RF) FO	C PART 150	(PEAK)	
												Ň		
										(RF) F	CC PART 15	C AVG)	
50										1 X		\dashv		
										2		\perp		ļ
							-			×				
0.0														
	13.500 232	3.50 23	33.50	2343.50	235	3.50 236	3.50	2373	3.50 2	2383.50 239	33.50	2	413.50	MH
				Readi	ng	Corre	ct	Mea	sure-					
No	o. Mk.	Fre	q.	Leve	el	Facto	r	m	ent	Limit	Ov	er		
		MH	Z	dBu∖	/	dB/m		dB	uV/m	dBuV/r	n di	В	Dete	cto
1		2390.0	000	43.9	8	0.97		44	.95	74.00	-29	.05	pea	ak
2		2390.0	000	32.6	9	0.97		33	3.66	54.00	-20	.34	ΑV	'G
3	Х	2402.0	חחח	81.4	6	1.03		87	2.49	F	ntal Frequ		pea	ak

AVG

Fundamental Frequency

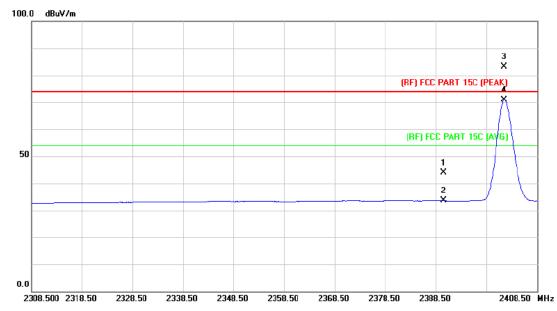


Page: 49 of 93


Page: 50 of 93

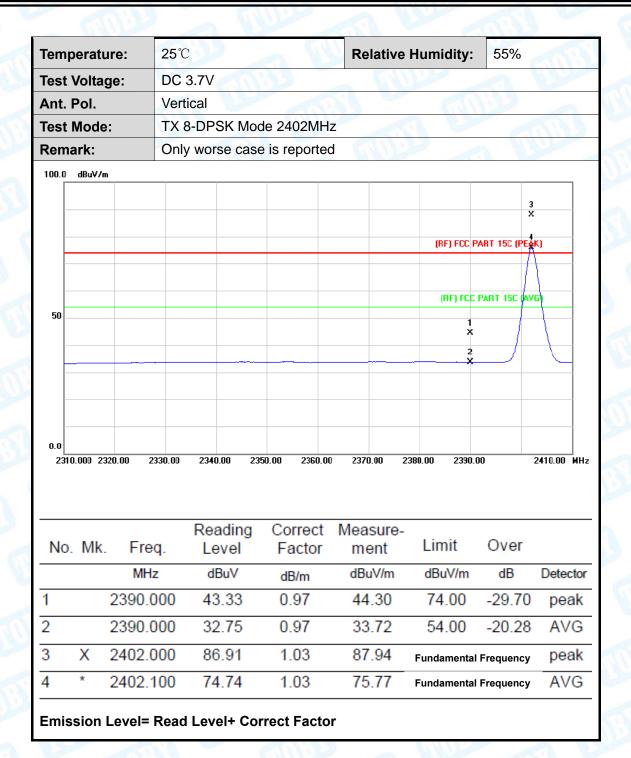
Page: 51 of 93

Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical					
Test Mode:	: TXPi/4-DQPSK Mode 2480MHz					
Remark: Only worse case is reported						

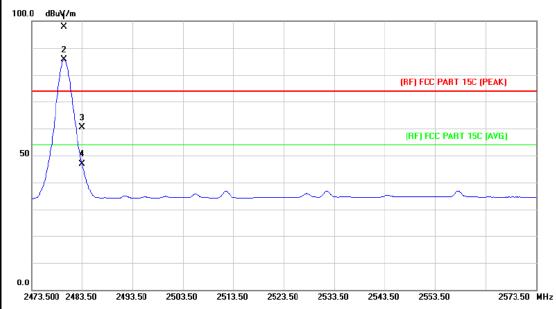


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	X	2479.900	91.97	1.38	93.35	Fundamenta	I Frequency	peak
2	*	2479.900	79.70	1.38	81.08	Fundamenta	l Frequency	AVG
3		2483.500	54.39	1.40	55.79	74.00	-18.21	peak
4		2483.500	41.65	1.40	43.05	54.00	-10.95	AVG

Page: 52 of 93


Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Horizontal					
Test Mode:	Mode: TX 8-DPSK Mode 2402MHz					
Remark:	Only worse case is reported	CLIPP -	J. Hilliam			

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	42.98	0.97	43.95	74.00	-30.05	peak
2		2390.000	32.59	0.97	33.56	54.00	-20.44	AVG
3	Х	2402.000	82.14	1.03	83.17	Fundamenta	I Frequency	peak
4	*	2402.100	69.89	1.03	70.92	Fundamenta	l Frequency	AVG


Page: 53 of 93

Page: 54 of 93

Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V	THURS	2 m
Ant. Pol. Horizontal			
Test Mode: TX 8-DPSK Mode 2480MHz			
Remark:	Only worse case is reported	WILL TO	A RIVE

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2479.900	96.48	1.38	97.86	Fundamental	Frequency	peak
2	*	2480.000	84.24	1.38	85.62	Fundamental	Frequency	AVG
3		2483.500	58.96	1.40	60.36	74.00	-13.64	peak
4		2483.500	45.57	1.40	46.97	54.00	-7.03	AVG

4

Report No.: TB-FCC169730

55 of 93 Page:

Tem	peratu	ıre:	25 ℃			93	Rela	tive F	lumidity:	55%	
Test	Volta	ge:	DC 3.	OC 3.7V							
Ant.	Pol.		Vertic	ertical							
Test	Mode	:	TX 8-	X 8-DPSK Mode 2480MHz							
Rem	nark:		Only	worse cas	se is repo	rted	6	11177			A Charles
100.0	dBuV/m										
		X X									
		2 X							(DE) FCC	PART 15C (PE	141
									(RF) FCC	PART TOU (PE	AKJ
-		3 X							(RF) FC	C PART 15C (A	.VG)
50											
		*									
-								~_			
0.0											
	70.000 24	80.00 24	90.00	2500.00 2	2510.00 25	520.00	2530).00 ;	2540.00 2550	0.00	2570.00 MHz
				Reading				sure-		Over	
No	o. Mk			Level	Fact	or		ent	Limit	Over	
		MHz	Z	dBuV	dB/n	1	dBı	uV/m	dBuV/m	dB	Detector
1	X	2480.0	000	91.78	1.38	3	93	3.16	Fundament	al Frequenc	y peak
2	*	2480.0	000	79.66	1.38	}	81	.04	Fundament	al Frequency	AVG
3		2483.5	00	54.29	1.40)	55	.69	74.00	-18.31	l peak

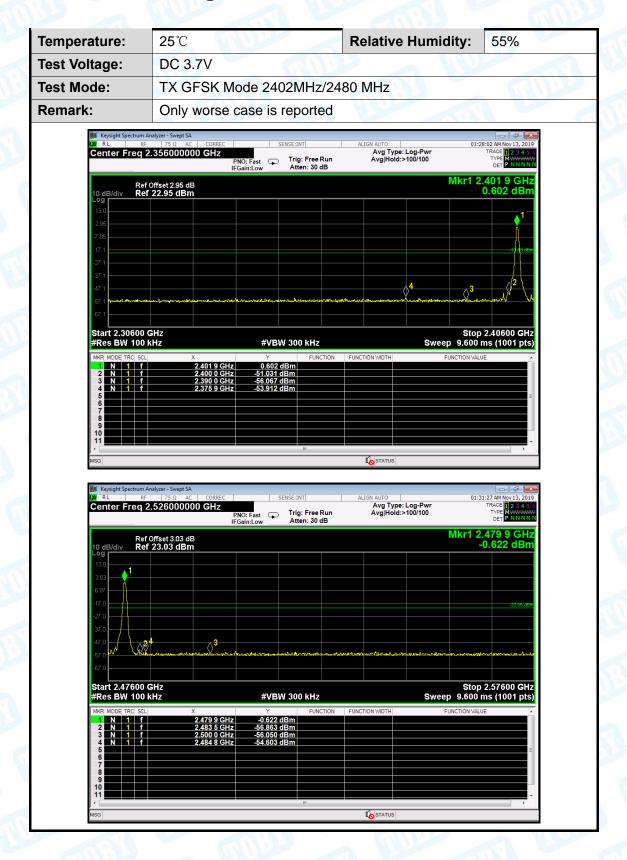
Emission I	Aval= Read	1 0001+	Carract	Factor

41.95

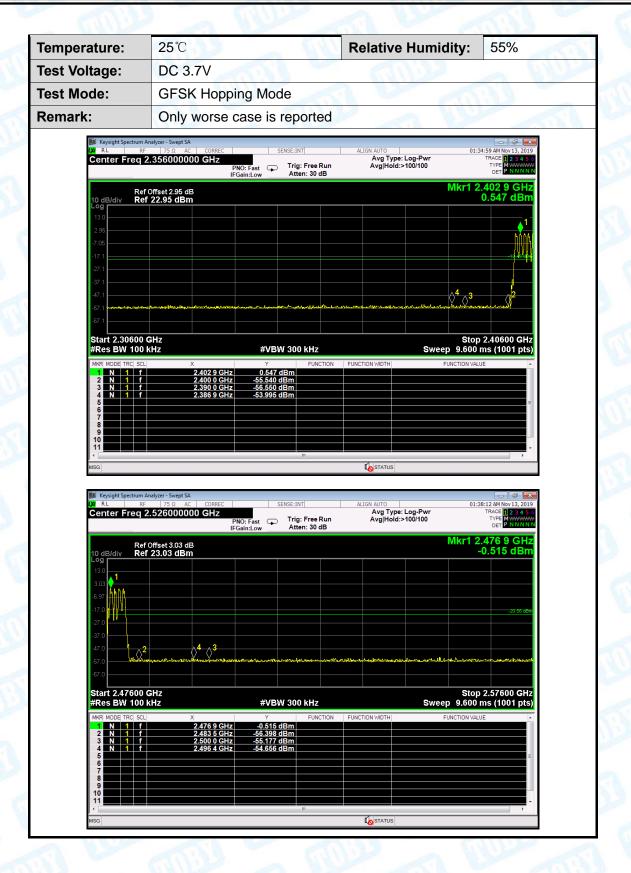
1.40

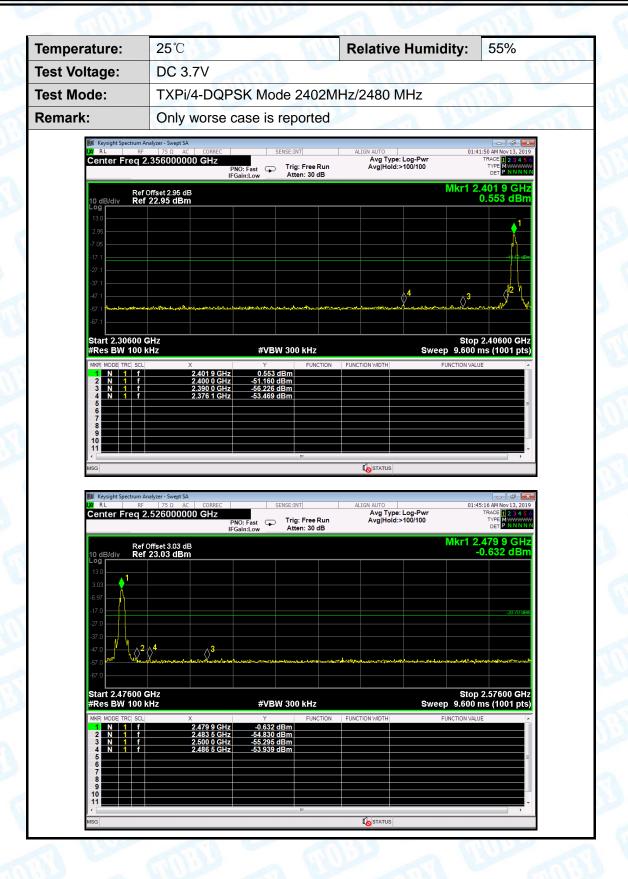
43.35

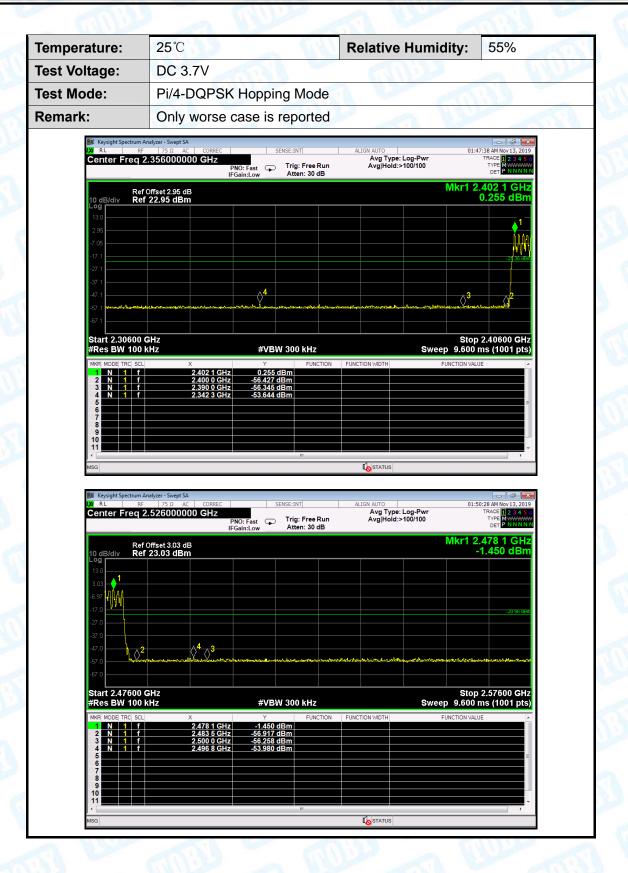
2483.500

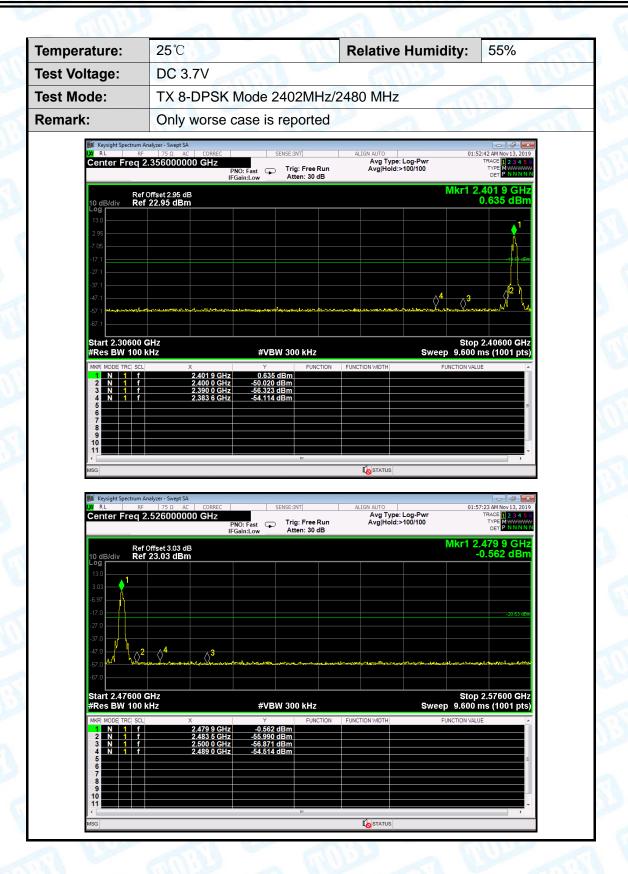

AVG

-10.65


54.00


Conducted Band Edge Test

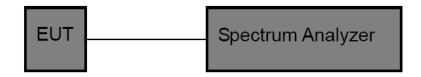




25℃ Temperature: **Relative Humidity:** 55% **Test Voltage:** DC 3.7V **Test Mode:** 8-DPSK Hopping Mode Remark: Only worse case is reported Avg Type: Log-Pwr Avg|Hold:>100/100 Center Freq 2.356000000 GHz PNO: Fast Trig: Free Run IFGain:Low Atten: 30 dB Ref Offset 2.95 dB Ref 22.95 dBm Stop 2.40600 GHz Sweep 9.600 ms (1001 pts) **#VBW** 300 kHz STATUS Center Freq 2.526000000 GHz Avg Type: Log-Pwr Avg|Hold:>100/100 PNO: Fast Trig: Free Run IFGain:Low Atten: 30 dB Ref Offset 3.03 dB Ref 23.03 dBm

Page: 62 of 93

7. Number of Hopping Channel


7.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.247 (a)(1)

6.1.2 Test Limit

Section	Test Item	Limit
15.247	Number of Hopping Channel	>15

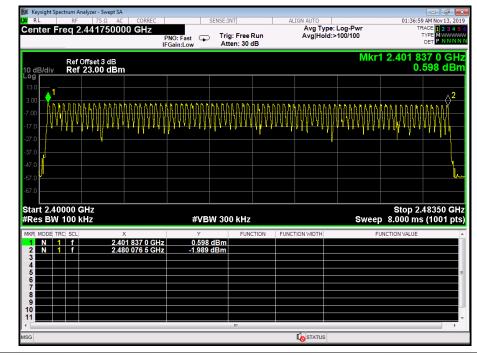
7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=100 KHz, VBW=300 KHz, Sweep time= Auto.

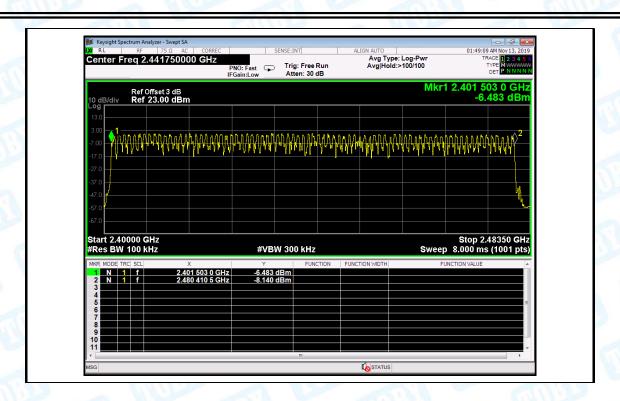
7.4 EUT Operating Condition

The EUT was set to the Hopping Mode by the Customer.

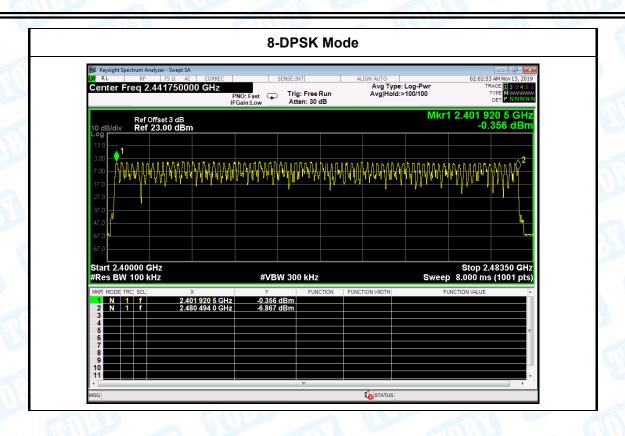

7.5 Test Data

Page: 63 of 93

Temperature:	25℃	Relative Humidity:	55%	
Test Voltage: DC 3.7V				
Test Mode: Hopping Mode				
Frequency Rang	ge Test Mode	Quantity of Hopping Channel	Limit	
	GFSK	79		
2402MHz~2480M	Hz Pi/4-DQPSK	79	>15	
	8-DPSK	79		


GFSK Mode

Pi/4-DQPSK Mode

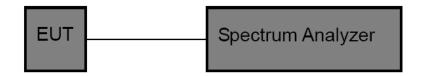


Page: 64 of 93

Page: 65 of 93

Page: 66 of 93

8. Average Time of Occupancy


8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (a)(1)

8.1.2 Test Limit

Section	Test Item	Limit
15.247(a)(1)/ RSS-210	Average Time of	0.4.000
Annex 8(A8.1d)	Occupancy	0.4 sec

8.2 Test Setup

8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=1MHz, VBW=3MHz.
- (3) Use video trigger with the trigger level set to enable triggering only on full pulses.
- (4) Sweep Time is more than once pulse time.
- (5) Set the center frequency on any frequency would be measure and set the frequency span to zero.
- (6) Measure the maximum time duration of one single pulse.
- (7) Set the EUT for packet transmitting.
- (8) Measure the maximum time duration of one single pulse.

8.4 EUT Operating Condition

The average time of occupancy on any channel within the Period can be calculated with formulas:

 ${Total of Dwell} = {Pulse Time} * (1600 / X) / {Number of Hopping Frequency} * {Period} = 0.4s * {Number of Hopping Frequency}$

Note: X=2 or 4 or 6 (1DH1=2, 1DH3=4, 1DH5=6. 2DH1=2, 2DH3=4, 2DH5=6. 3DH1=2,3DH3=4, 3DH5=6)

The lowest, middle and highest channels are selected to perform testing to record the dwell time of each occupation measured in this channel, which is called Pulse Time here.

The EUT was set to the Hopping Mode by the Customer.

1DH3

1DH5

Report No.: TB-FCC169730

Page: 67 of 93

400

400

PASS

PASS

8.5 Test Data

Temperature:		25°	C	Re	lative Humidity:	55%		
Test Voltage:		DC	3.7V			11:30		
Test Mode:		Hop	oping Mode (C	GFSK)			THE STATE OF	
Test	Chan	nel	Pulse	Total of Dwell	Period Time	Limit	Pocult	
Mode	(MH	z)	Time (ms)	(ms)	(s)	(ms)	Result	
1DH1	244	1	0.3715	118.88	31.60	400	PASS	

260.32

306.67

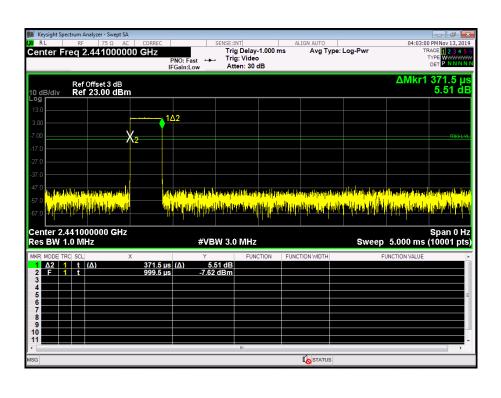
31.60

31.60

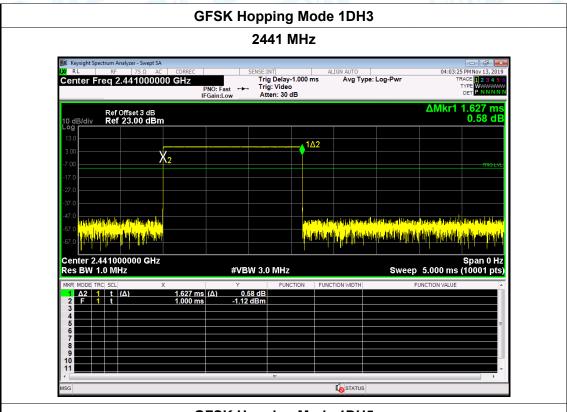
1DH1 Total of Dwell= Pulse Time*(1600/2)*31.6/79

1.627

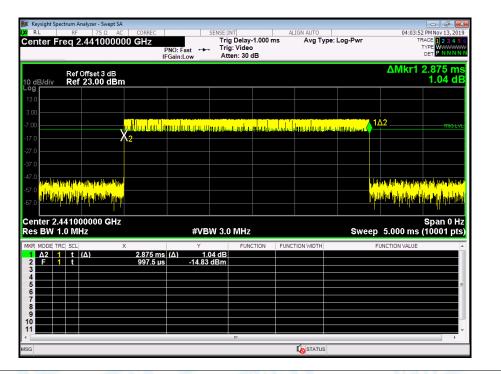
2.875


2441

2441


1DH3 Total of Dwell= Pulse Time*(1600/4)*31.6/79

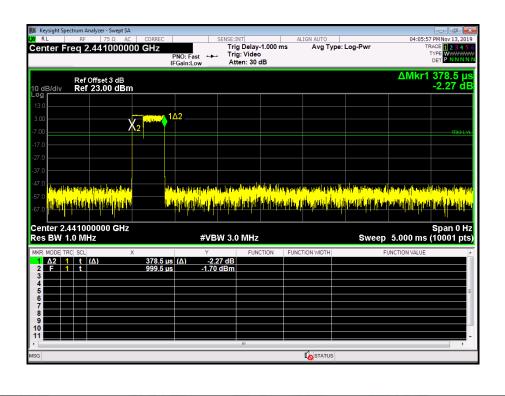
1DH5 Total of Dwell= Pulse Time*(1600/6)*31.6/79


GFSK Hopping Mode 1DH1

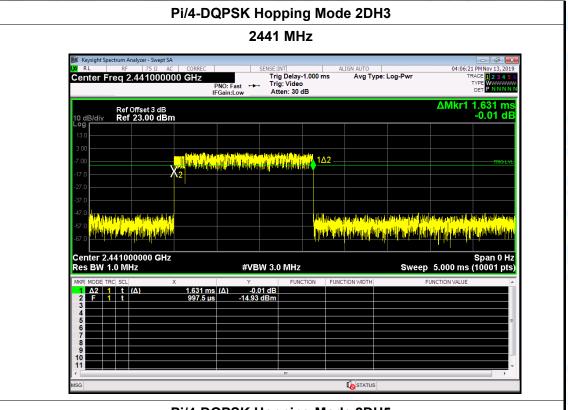
GFSK Hopping Mode 1DH5

Page: 69 of 93

Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Test Mode:	Hopping Mode (Pi/4-DQPSK)					

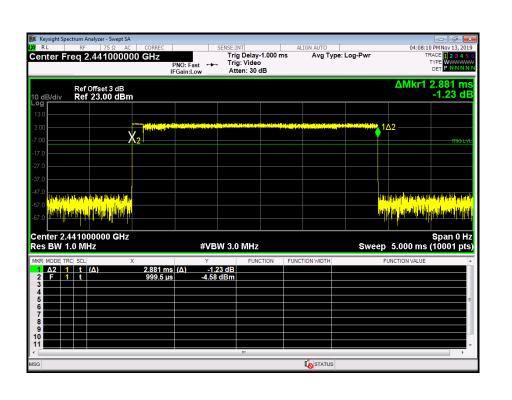

Test	Channel	Pulse	Total of Dwell	Period Time	Limit	Result
Mode	(MHz)	Time (ms)	(ms)	(s)	(ms)	Result
2DH1	2441	0.3785	121.12	31.60	400	PASS
2DH3	2441	1.631	260.96	31.60	400	PASS
2DH5	2441	2.881	307.31	31.60	400	PASS

2DH1 Total of Dwell= Pulse Time*(1600/2)*31.6/79


2DH3 Total of Dwell= Pulse Time*(1600/4)*31.6/79

2DH5 Total of Dwell= Pulse Time*(1600/6)*31.6/79

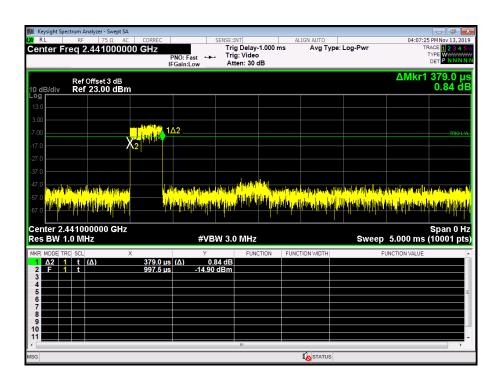
Pi/4-DQPSK Hopping Mode 2DH1



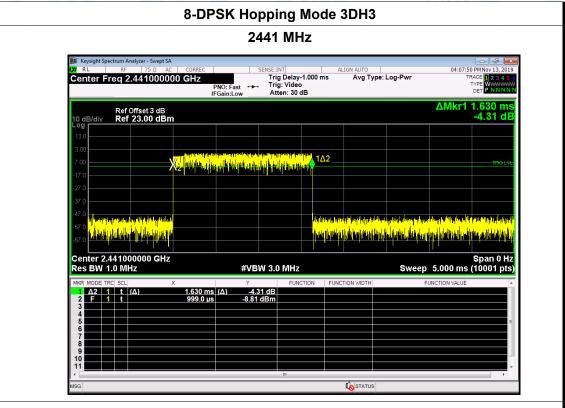
Page: 71 of 93

Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		A VIVE
Total Manda			

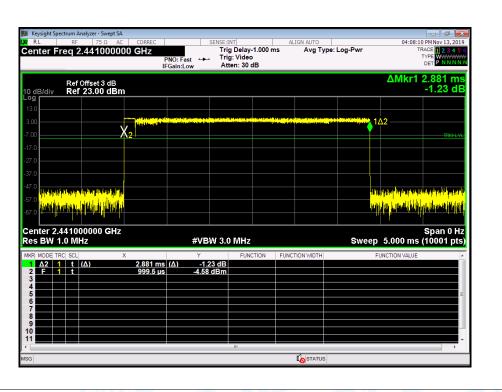
Test Mode: Hopping Mode (8-DPSK)


Test	Channel	Pulse	Total of Dwell	Period Time	Limit	Result
Mode	(MHz)	Time (ms)	(ms)	(s)	(ms)	Result
3DH1	2441	0.379	121.28	31.60	400	PASS
3DH3	2441	1.630	260.80	31.60	400	PASS
3DH5	2441	2.881	307.31	31.60	400	PASS

2DH1 Total of Dwell= Pulse Time*(1600/2)*31.6/79


2DH3 Total of Dwell= Pulse Time*(1600/4)*31.6/79

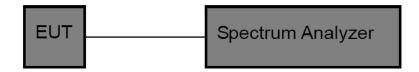
2DH5 Total of Dwell= Pulse Time*(1600/6)*31.6/79


8-DPSK Hopping Mode 3DH1

8-DPSK Hopping Mode 3DH5

Page: 73 of 93

9. Channel Separation and Bandwidth Test


9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247

9.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Bandwidth	<=1 MHz (20dB bandwidth)	2400~2483.5
Channel Separation	>25KHz or >two-thirds of the 20 dB bandwidth Which is greater	2400~2483.5

9.2 Test Setup

9.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

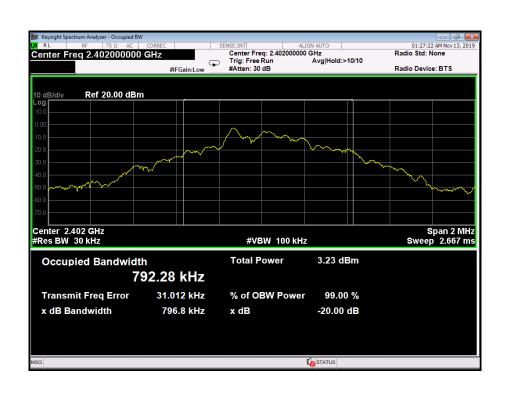
Channel Separation: RBW=30 kHz, VBW=100 kHz.

Bandwidth: RBW=30 kHz, VBW=100 kHz.

- (3) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
 - (4) Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:30 kHz, and Video Bandwidth:100 kHz. Sweep Time set auto.

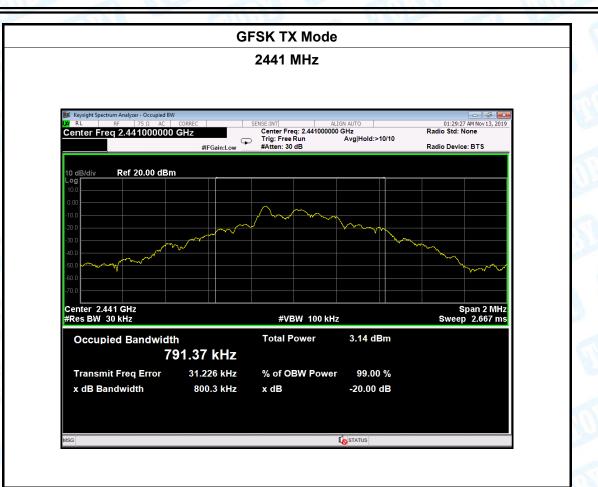
9.4 EUT Operating Condition

The EUT was set to the Hopping Mode for Channel Separation Test and continuously transmitting for the Bandwidth Test.

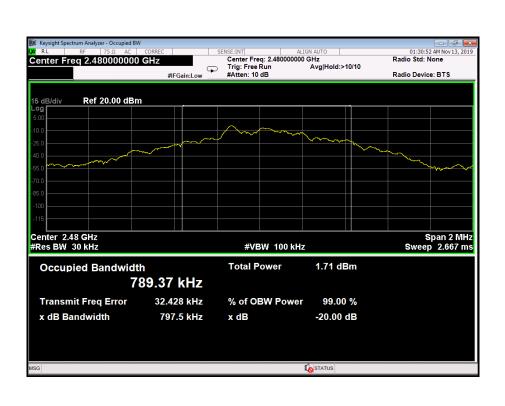


Page: 74 of 93

9.5 Bandwidth Test Data

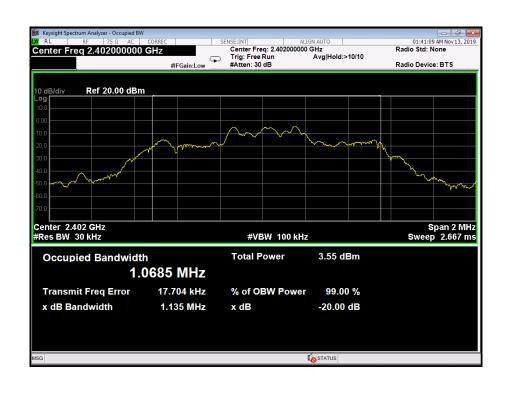

Temperature: Test Voltage: Test Mode:	3.7V Mode (GFSK)	Relative Humidity:	55%
Channel freque	99% OBW (kHz)	20dB Bandwidth (kHz)	20dB Bandwidth *2/3 (kHz)
2402	792.28	796.8	
2441	791.37	800.3	
2480	789.37	797.5	

GFSK TX Mode

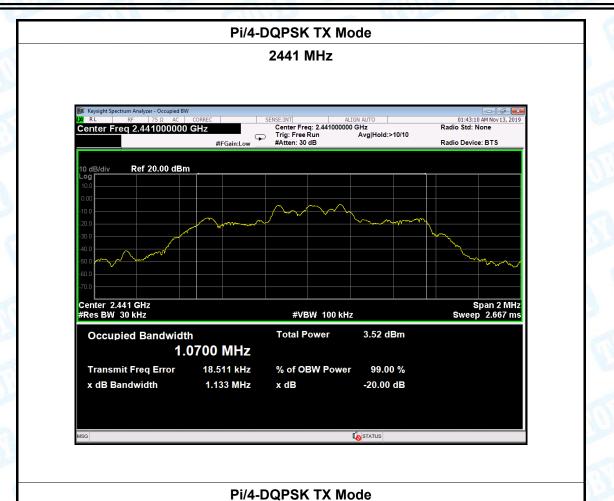


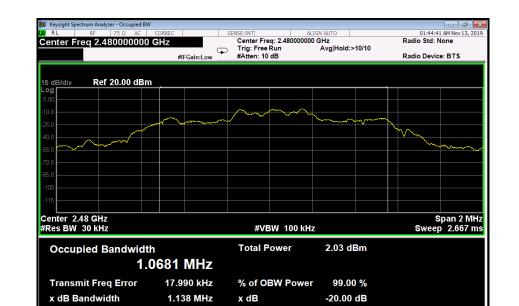
Report No.: TB-FCC169730 Page: 75 of 93

GFSK TX Mode

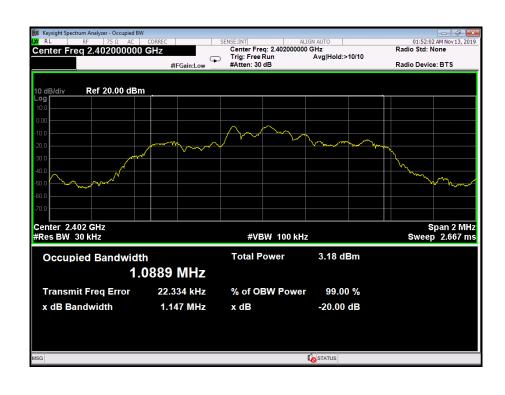


Page: 76 of 93

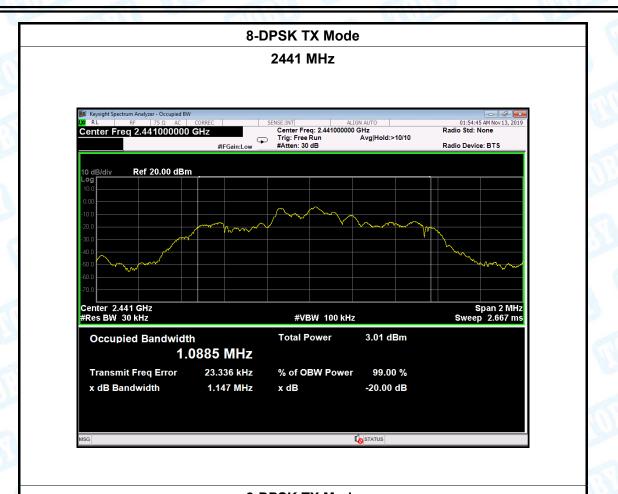

Temperature:	25°	C	Relative Humidity:	55%
Test Voltage:	DC	3.7V		(3.3
Test Mode:	TX	Mode (Pi/4-DQPSK)		
Channel frequer	ncy 99% OBW (kHz)		20dB Bandwidth (kHz)	20dB Bandwidth *2/3 (kHz)
2402		1068.5	1135	756.67
2441		1070.0	1133	755.33
2480		1068.1	1138	758.67

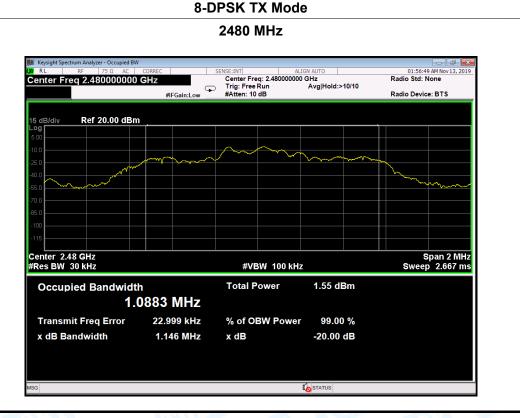

Pi/4-DQPSK TX Mode

Page: 77 of 93



Page: 78 of 93


Temperature:	25°	C	Relative Humidity:	55%
Test Voltage:	DC	3.7V		(33)
Test Mode:	TX	Mode (8-DPSK)		
Channel frequer	псу	99% OBW (kHz)	20dB Bandwidth (kHz)	20dB Bandwidth *2/3 (kHz)
2402		1088.9	1147	764.67
2441		1088.5	1147	764.67
2480		1088.3	1146	764.00


8-DPSK TX Mode

Page: 79 of 93

Page: 80 of 93

Channel Separation Test


Temperature:	25 ℃		Relative Humidity	7: 55%		
Test Voltage:	DC 3.7V	DC 3.7V				
Test Mode:	Hopping I	Hopping Mode (GFSK)				
Channel frequ	uency Separation Read Value Separation Limit					
(MHz)	(MHz) (kHz			(kHz)		
2402	2402			796.8		
2441		1000		800.3		
2480		990		797.5		
		0501/11				

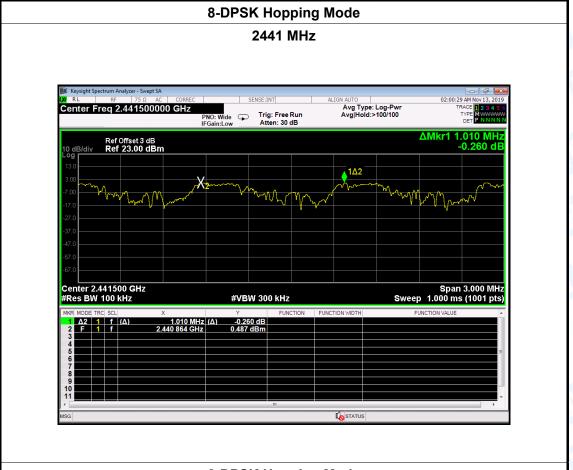
GFSK Hopping Mode

Page: 81 of 93

82 of 93 Page:

Temperature:	25℃ Relative H			lity:	55%	
Test Voltage:	DC 3.7V	DC 3.7V				
Test Mode:	Hopping N	Hopping Mode (Pi/4-DQPSK)				
Channel frequ	uency Separation Read Value Separation Limit				aration Limit	
(MHz)	(MHz) (kHz) (kHz)			(kHz)		
2402		1000 756.67			756.67	
2441	2441 1020				755.33	
2480	990 758.67				758.67	
		Pi/4-DQPSK Hop	ping Mode			

83 of 93 Page:


Page: 84 of 93

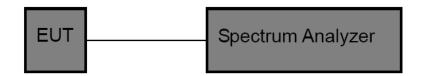
Temperature:	25℃		Relative Humi	dity:	55%	
Test Voltage:	DC 3.7V	DC 3.7V				
Test Mode:	Hopping I	Hopping Mode (8-DPSK)				
Channel frequ	uency Separation Read Value Separation Lin				aration Limit	
(MHz)				(kHz)		
2402		990	990 764		764.67	
2441	2441			764.67		
2480		970			764.00	
		8-DPSK Hoppi	ng Mode			

85 of 93 Page:

8-DPSK Hopping Mode

Page: 86 of 93

10. Peak Output Power Test


10.1 Test Standard and Limit

10.1.1 Test Standard FCC Part 15.247 (b) (1)

10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Peak Output Power	Hopping Channels>75 Power<1W(30dBm) Other <125 mW(21dBm)	2400~2483.5

10.2 Test Setup

10.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Peak Detector: RBW=1 MHz, VBW=3 MHz for bandwidth less than 1MHz. RBW=3 MHz, VBW=8 MHz for bandwidth more than 1MHz.

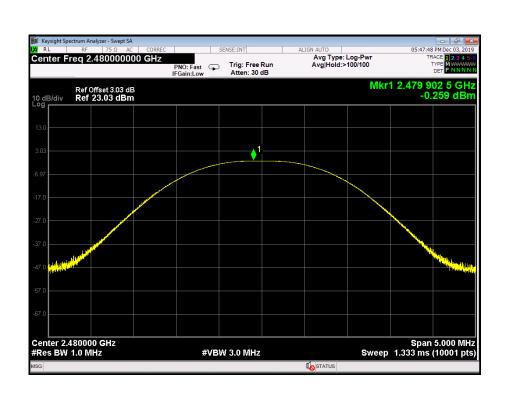
10.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

Page: 87 of 93

10.5 Test Data

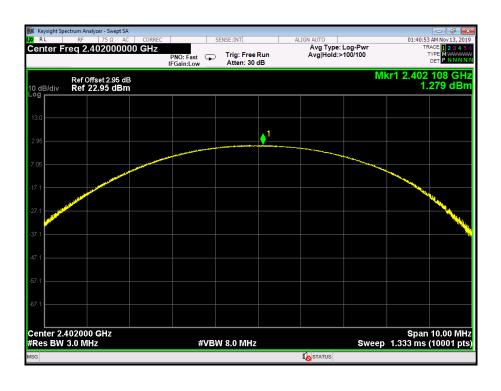

perature:	25 ℃	1	Relative Humidity:	: 55%
t Voltage:	DC 3.7V	P. P. P.		
t Mode:	TX Mode	(GFSK)		O WI
annel frequen	cy (MHz)	Test Result	(dBm)	Limit (dBm)
2402		0.797		
2441		0.591		30
2480		-0.259		
		GFSK TX I	Mode	
		2402 MI		
	alyzer - Swept SA 75 Ω AC CORRI 402000000 GHz Offset 2.95 dB 22.95 dBm			05:37:10 PM Dec 03, 2019 TRACE 23 4 3 6 TYPE PNINNIN 2.402 012 0 GHz 0.797 dBm
Center Freq 2.	75 Ω AC CORRI 402000000 GHz	PNO: Fast Trig: Free Run	Avg Type: Log-Pwr Avg Hold:>100/100	05:37:10 PM Dec 03, 2019 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P NNNNN
Center Freq 2. Ref C Ref 2. 10 dB/div Ref 2. 13.0 2.95	75 Ω AC CORRI 402000000 GHz	PNO: Fast Trig: Free Run	Avg Type: Log-Pwr Avg Hold:>100/100	05:37:10 PM Dec 03, 2019 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P NNNNN
Center Freq 2. Ref O 10 dB/div Ref 2 13.0 2.95 -7.05 -7.7.1 -77.1	75 Q AC	PNO: Fast Trig: Free Run	Avg Type: Log-Pwr Avg Hold:>100/100	05:37:10 PM Dec 03, 2019 TRACE [] 3 4 5 6 TYPE MANWAWN DET P NNNNN 2.402 012 0 GHz 0.797 dBm


Page: 88 of 93

GFSK TX Mode

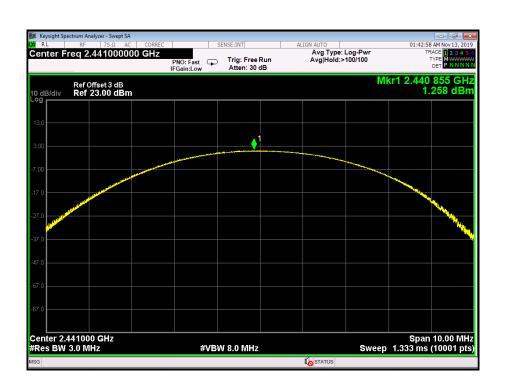
2441 MHz

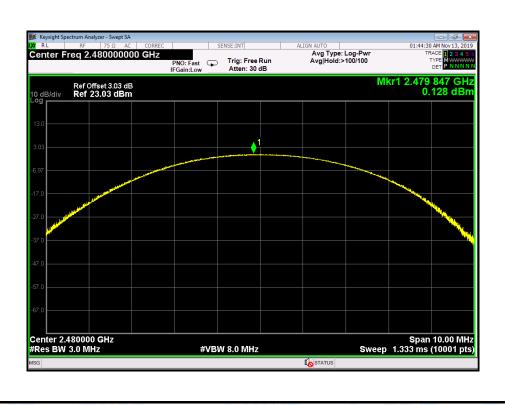
GFSK TX Mode



Page: 89 of 93

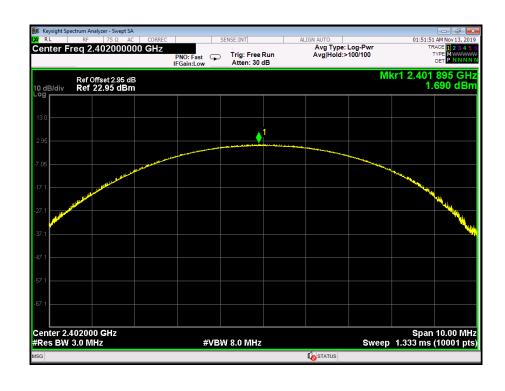
			Tel. 1 May 1984			
Temperature:	25 ℃	Relative Humidity:		55%		
Test Voltage:	DC 3.7V	3.7V				
Test Mode:	TX Mode (Pi/4-DQPSK)					
Channel frequen	cy (MHz)	Test Result (dBm) Limit (dBm)				
2402		1.279				
2441		1.258		21		
2480		0.128	0.128			


Pi/4-DQPSK TX Mode



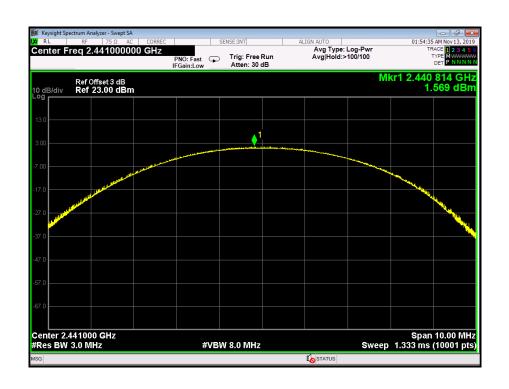
Page: 90 of 93

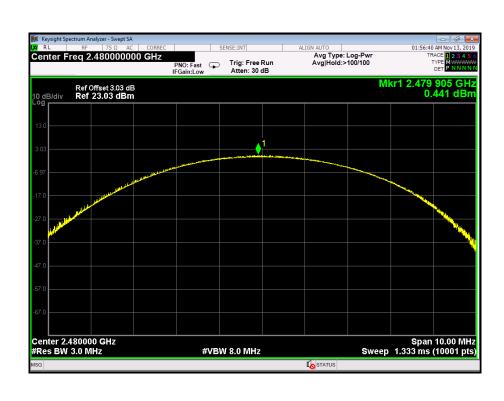
Pi/4-DQPSK TX Mode 2441 MHz


Pi/4-DQPSK TX Mode

Page: 91 of 93

Temperature:	25 ℃	7 61	Relative Humidity:	55%		
Test Voltage:	DC 3.7V	DC 3.7V				
Test Mode:	TX Mode	TX Mode (8-DPSK)				
Channel frequen	cy (MHz)	y (MHz) Test Result (dBm) Limit (dBm)				
2402		1.690				
2441	2441 1.569			21		
2480	0.441					
		8-DPSK TX	Mode			




Page: 92 of 93

8-DPSK TX Mode

2441 MHz

8-DPSK TX Mode

Page: 93 of 93

11. Antenna Requirement

11.1 Standard Requirement

11.1.1 Standard FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is 0.8dBi, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

11.3 Result

The EUT antenna is a Chip Antenna. It complies with the standard requirement.

Antenna Type			
100	⊠Permanent attached antenna	Cin.	
a Ginn	☐Unique connector antenna		
13	Professional installation antenna	Millos	

----END OF REPORT----