

FCC TEST REPORT

Test report

On Behalf of

Volterman Inc.

For

Smart Terminal. Model No.: Wallet 1, Wallet 2, Wallet 3, Luggage 1, Luggage 2, Luggage 3, Bag 1, Bag 2, Smart 1, Smart 2, Smart 3

FCC ID: 2AS23-WALLET

Prepared for : Volterman Inc. 2035 Sunset Lake Road, Suite B-2, Newark, Delaware, United States*

Prepared By : Shenzhen HUAK Testing Technology Co., Ltd. 1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an District, Shenzhen City, China

TEST RESULT CERTIFICATION

Applicant's name:	Volterman Inc.
Address	2035 Sunset Lake Road, Suite B-2, Newark, Delaware, United States*
Manufacture's Name:	Shenzhen Smart NRE Technology Co., Ltd.
Address	4/F, D building, Xinda Technology Park, Baotian 2nd Road, Xixiang, Bao'an, Shenzhen,China
Product description	
Trade Mark:	Volterman
Product name:	Smart Terminal.
Model and/or type reference:	Wallet 1, Wallet 2, Wallet 3, Luggage 1, Luggage 2, Luggage 3, Bag 1, Bag 2, Smart 1, Smart 2, Smart 3
Standards	FCC Rules and Regulations Part 15 Subpart C (Section 15.209),
Stallualus	ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test	
Date (s) of performance of tests::	Feb. 07, 2019 ~. Mar. 28, 2019
Date of Issue:	Mar. 28, 2019
Test Result	Pass

÷

Testing Engineer

Gorge Bian (Gary Qian) Edan Mu

Technical Manager

(Eden Hu)

Authorized Signatory:

Jason Zhou

(Jason Zhou)

Contents

<u>1.</u>	<u>S U M M</u>	ARY	4
1.1. 1.2. 1.3.		Description ent Under Test ations	4 4 4
<u>2.</u>	TEST	ENVIRONMENT	5
2.1.	Address	of the test laboratory	5
2.2.	Test Des	scription	5 5 5
2.3.	Stateme	nt of the measurement uncertainty	5
2.4.	Equipme	ents Used during the Test	5
<u>3.</u>	TEST	CONDITIONS AND RESULTS	<u>7</u>
	3.1.	AC Power Conducted Emission	7
	3.2.	Radiated Emission	10
	3.3.	Occupied Bandwidth	
	3.4.	Antenna Requirement	15
4.	TEST	SETUP PHOTOS OF THE EUT	16

1. <u>SUMMARY</u>

1.1. Product Description

Product Name:	Smart Terminal.
Model/Type reference:	Wallet 1, Wallet 2, Wallet 3, Luggage 1, Luggage 2, Luggage 3, Bag 1, Bag 2, Smart 1, Smart 2, Smart 3
Power supply:	DC 3.8V from battery charged by DC 5V
Adapter(Auxiliary test Provided by the laborator)	Mode:EP-TA20CBC Input:AC100-240V-50/60Hz, 0.5A Output:DC 5V,2A
Wireless Charger	
Antenna Type	Coil Antenna
Antenna Gain	1.0dBi
Operation frequency	110-205KHz
Modulation Type	ASK

1.2. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
			Other (specified in blank bel	ow)	

DC 5.0V From adapter

Description of the test mode

Operation Fr	equency each of channel
Channel	Frequency
1	125KHz

Operating Mode

The mode is used: Transmitting mode

1.3. Modifications

No modifications were implemented to meet testing criteria.

2. TEST ENVIRONMENT

2.1. Address of the test laboratory

Shenzhen HUAK Testing Technology Co., Ltd.

1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an District, Shenzhen City, China

2.2. Test Description

DESCRIPTION OF TEST	RESULT
CONDUCTED EMISSIONS TEST	COMPLIANT
RADIATED EMISSION TEST	COMPLIANT
OCCUPIED BANDWIDTH MEASUREMENT	COMPLIANT
ANTENNA REQUIREMENT	COMPLIANT

2.3. Statement of the measurement uncertainty

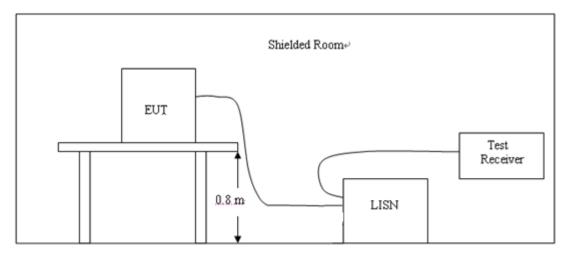
Measurement Uncertainty

Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty(9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty(30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty(Above 1GHz)	=	4.06dB, k=2

2.4. Equipments Used during the Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N. Artificial Mains Network	R&S	ENV216	HKE-002	Dec. 28, 2018	1 Year
2.	Receiver	R&S	ESCI 7	HKE-010	Dec. 28, 2018	1 Year
3.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 28, 2018	1 Year
4.	Spectrum analyzer	R&S	FSP40	HKE-025	Dec. 28, 2018	1 Year
5.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 28, 2018	1 Year
6.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 28, 2018	1 Year
7.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Dec. 28, 2018	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Dec. 28, 2018	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 28, 2018	1 Year
10.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Dec. 28, 2018	1 Year
11.	Pre-amplifier	EMCI	EMC051845 SE	HKE-015	Dec. 28, 2018	1 Year
12.	Pre-amplifier	Agilent	83051A	HKE-016	Dec. 28, 2018	1 Year
13.	EMI Test Software	Tonscend	JS1120-B	HKE-083	Dec. 28, 2018	N/A

	EZ-EMC		Version			
14.	Power Sensor	Agilent	E9300A	HKE-086	Dec. 28, 2018	1 Year
15.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 28, 2018	1 Year
16.	Signal generator	Agilent	N5182A	HKE-029	Dec. 28, 2018	1 Year
17.	Signal Generator	Agilent	83630A	HKE-028	Dec. 28, 2018	1 Year
18.	Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 28, 2018	3 Year


The calibration interval is 1 year.

3. TEST CONDITIONS AND RESULTS

3.1. AC Power Conducted Emission

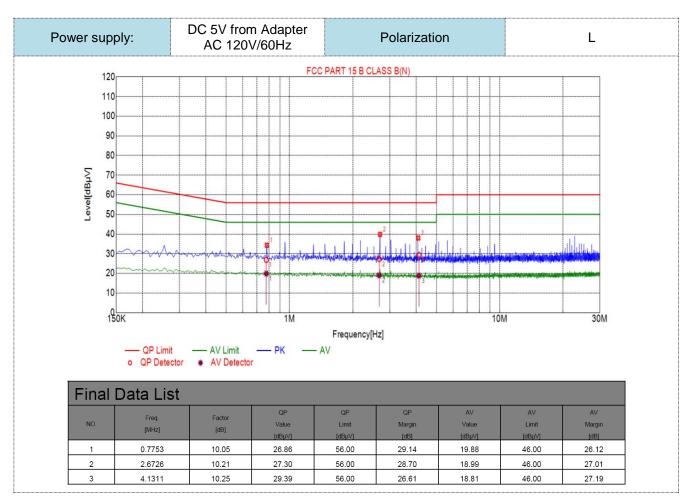
TEST CONFIGURATION

TEST PROCEDURE

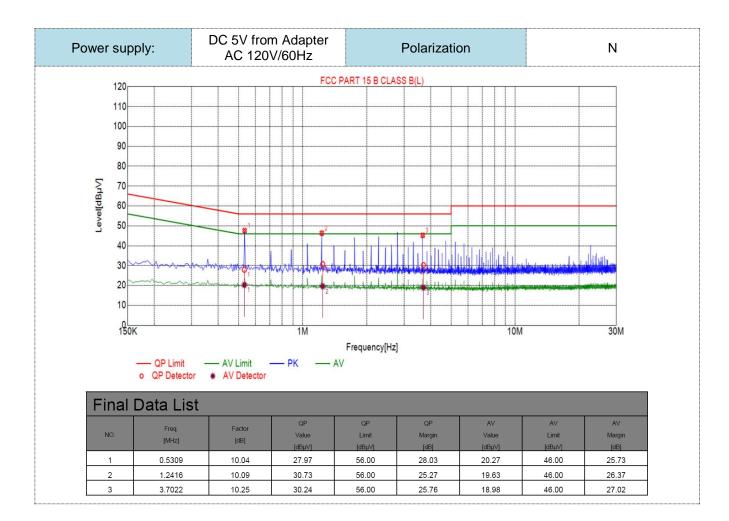
- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

AC Power Conducted Emission Limit

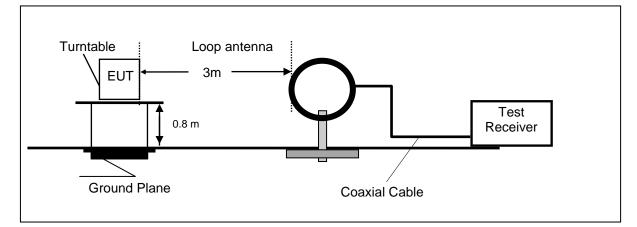
For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

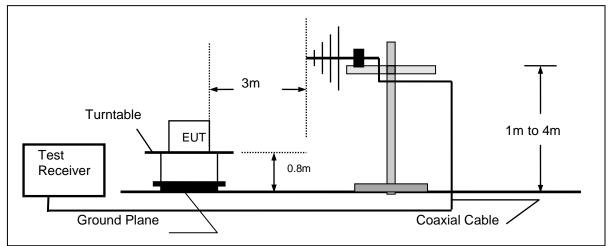

Eroquoney rango (MHz)	Limit (dBuV)		
Frequency range (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	
* Decreases with the logarithm of the frequer	ncv.		

Decreases with the logarithm of the heqt

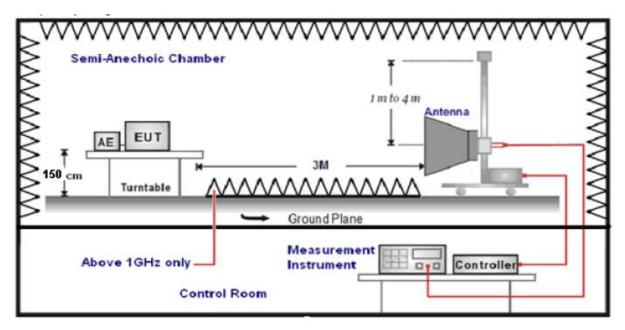

TEST RESULTS

1. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:.




3.2. Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 12mm above ground plane when testing frequency range 9 KHz –25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Frequency range Test Receiver/Spectrum Setting	
9KHz-150KHz	9KHz-150KHz RBW=200Hz/VBW=3KHz,Sweep time=Auto	
150KHz-30MHz	150KHz-30MHz RBW=9KHz/VBW=100KHz,Sweep time=Auto	
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz,	
	Sweep time=Auto	Peak
	Average Value: RBW=1MHz/VBW=10Hz,	
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

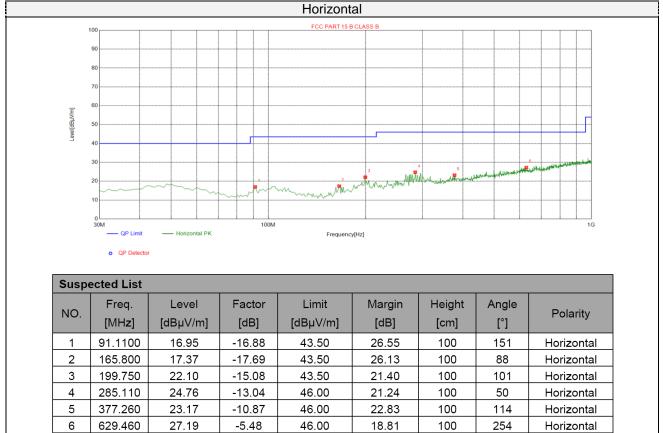
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)	
RA = Reading Amplitude	AG = Amplifier Gain	
AF = Antenna Factor		

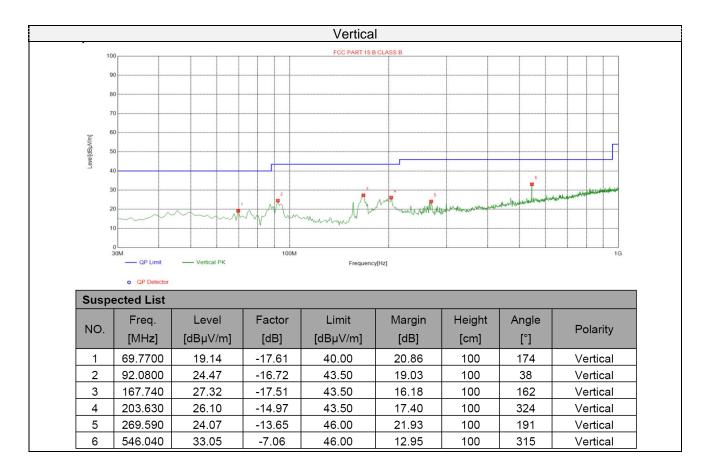
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.


Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)	
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)	
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)	
1.705-30	3	20log(30)+ 40log(30/3)	30	
30-88	3	40.0	100	
88-216	3	43.5	150	
216-960	3	46.0	200	
Above 960	3	54.0	500	
TEST RESULTS				


For 9 KHz-30MHz

Frequency (MHz)	Corrected Reading (dBuV/m)@3m	FCC Limit (dBuV/m) @3m	Margin (dB)	Detector	Result
0.110	50.12	126.77	76.65	QP	PASS
1.125	71.34	125.67	54.33	QP	PASS
0.486	51.67	113.71	62.04	QP	PASS
0.500	51.76	113.62	61.86	QP	PASS

For 30MHz-1GHz

3.3. Occupied Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that 20dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equip compliance with the 20dB attenuation specification may base on measurement at the intentional radiator's antenna output terminal unless the intentional radiator uses a permanently attached antenna, in which case compliance shall be deomonstrated by measuring the radiated emissions.

<u>LIMIT</u>

/.

TEST RESULTS

Mode	Freq (KHz)	eq (KHz) 20dB Bandwidth (KHz) (KHz)		Conclusion
Tx Mode	125	2.910	/	PASS

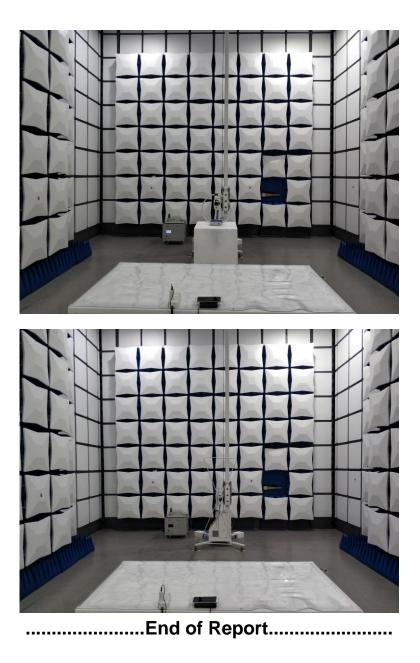
Agilent Spectrum Analyzer - Occupied A RL RF 50 Q AC Center Freq 125.000 kH	Z Cente	SENSE:INT I'r Freq: 125.000 kHz Free Run Avg Holo n: 30 dB	ALIGNAUTO Radio Std: None I:>10/10 Radio Device: BT	Frequency S
10 dB/div Ref 20.00 dE	sm			
0.00				Center Freq 125.000 kHz
-20.0				
-30.0				
-60.0				
Center 125 kHz #Res BW 1 kHz		VBW 3 kHz	Span 10 Sweep 9.6	me Cr Step
Occupied Bandwic		Total Power	1.41 dBm	1.000 kHz Auto Man
	2.515 kHz			Freq Offset
Transmit Freq Error x dB Bandwidth	0 Hz 2.910 kHz	OBW Power x dB	99.00 % -20.00 dB	0 Hz
MSG			STATUS 1 AC coupled: A	covunspecid < 10MHz

3.4. Antenna Requirement

Standard Applicable

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.


And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Antenna Information

The antenna used in this product is a Coil Antenna, The directional gains of antenna used for transmitting is 1dBi.

4. Test Setup Photos of the EUT

