

TEST REPORT

Test report
On Behalf of
Volterman Inc.
For

Smart Terminal.

Model No.: Wallet 1, Wallet 2, Wallet 3, Luggage 1, Luggage 2, Luggage 3, Bag 1, Bag 2, Smart 1, Smart 2, Smart 3

FCC ID: 2AS23-WALLET

Prepared for: Volterman Inc.

2035 Sunset Lake Road, Suite B-2, Newark, Delaware, United States

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street,

Bao'an District, Shenzhen City, China

TEST REPORT

Applicant's name:	Volterman Inc.				
Address:	2035 Sunset Lake Road, Suite B-2, Newark, Delaware, United States*				
Manufacture's Name:	Shenzhen Smart NRE Technology Co., Ltd.				
Address:	4/F, D building, Xinda Technology Park, Baotian 2nd Road, Xixiang, Bao'an, Shenzhen, China				
Product description					
Trade Mark:	Volterman				
Product name:	Smart Terminal.				
Model and/or type reference :	Wallet 1, Wallet 2, Wallet 3, Luggage 1, Luggage 2, Luggage 3, Bag 1, Bag 2, Smart 1, Smart 2, Smart 3				
Standards:	FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013				
the Shenzhen HUAK Testing Tec of the material. Shenzhen HUA					
Date (s) of performance of tests.	Feb.07, 2019 ~.Mar.28, 2019				
Date of Issue	: Mar.28, 2019				
Test Result	: Pass				
Testing Engi					
(Gary Qian) Technical Manager : Edan Hu					

Authorized Signatory: Jason

(Eden Hu)

(Jason Zhou)

	Table of Contents	Page
1. SU	UMMARY	4
1.1.	TEST STANDARDS	Δ
1.2.		
1.3.		
1.4.		
2. GI	ENERAL INFORMATION	6
2.1.	ENVIRONMENTAL CONDITIONS	6
2.2.		
2.3.	DESCRIPTION OF TEST MODES AND TEST FREQUENCY	
2.4.	EQUIPMENTS USED DURING THE TEST	
2.5.	RELATED SUBMITTAL(S) / GRANT (S)	
2.6.	MODIFICATIONS	7
3. TE	EST CONDITIONS AND RESULTS	8
3.1.	CONDUCTED EMISSIONS TEST	8
3.2.	RADIATED EMISSIONS AND BAND EDGE	11
3.3.	MAXIMUM CONDUCTED OUTPUT POWER	
3.4.	Power Spectral Density	19
3.5.	6dB Bandwidth and Occupied Bandwidth	
3.6.	Out-of-band Emissions	23
3.7.	Antenna Requirement	27
4 TF	FST SETUP PHOTOS OF THE FUT	29

1. SUMMARY

1.1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

Report No.: HK1904050724-3E

ANSI C63.10: 2013: American National Standard for Testing Unlicensed Wireless Devices

ANSI C63.4: 2014: –American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz Range of 9 kHz to 40GHz

KDB558074 D01 V05r02: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

1.2. Test Description

FCC PART 15.247		
FCC Part 15.207	AC Power Conducted Emission	PASS
FCC Part 15.247(a)(2)	6dB Bandwidth	PASS
FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS
FCC Part 15.247(b)	Maximum Conducted Output Power	PASS
FCC Part 15.247(e)	Power Spectral Density	PASS
FCC Part 15.109/ 15.205/ 15.209	Radiated Emissions	PASS
FCC Part 15.247(d)	Band Edge	PASS
FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS

1.3. Test Facility

1.3.1 Address of the test laboratory

Shenzhen HUAK Testing Technology Co., Ltd.

1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an District, Shenzhen City, China

Report No.: HK1904050724-3E

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen HUAK Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2 Radiated emission expanded uncertainty(9kHz-30MHz) = 3.08dB, k=2 Radiated emission expanded uncertainty(30MHz-1000MHz) = 4.42dB, k=2 Radiated emission expanded uncertainty(Above 1GHz) = 4.06dB, k=2

2. GENERAL INFORMATION

2.1. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C		
Relative Humidity:	55 %		
Air Pressure:	101 kPa		

2.2. General Description of EUT

Product Name:	Smart Terminal.		
Model/Type reference:	Wallet 1, Wallet 2, Wallet 3, Luggage 1, Luggage 2, Luggage 3, Bag 1, Bag 2, Smart 1, Smart 2, Smart 3		
Power supply:	DC 3.8V from battery charged by DC 5V		
Adapter(Auxiliary test Provided by the laborator)	Mode:EP-TA20CBC Input:AC100-240V-50/60Hz, 0.5A Output:DC 5V,2A		
Bluetooth LE			
Supported type:	Bluetooth low Energy		
Modulation:	GFSK		
Operation frequency:	2402MHz to 2480MHz		
Channel separation:	2 MHz		
Channel Number	40		
Antenna type:	Integral antenna		
Antenna gain:	0 dBi		

Note: For more details, please refer to the user's manual of the EUT.

2.3. Description of Test Modes and Test Frequency

The Applicant provides script commands to control the EUT staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing.

There are 40 channels provided to the EUT. Channel 00/19/39 was selected to test.

Operation Frequency List:

Channel	Frequency (MHz)
00	2402
02	2404
03	2406
:	i
19	2440
:	i
37	2476
38	2478
39	2480

Note: The line display in grey were the channel selected for testing

2.4. Equipments Used during the Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N. Artificial Mains Network	R&S	ENV216	HKE-002	Dec. 28, 2017	1 Year
2.	Receiver	R&S	ESCI 7	HKE-010	Dec. 28, 2017	1 Year
3.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 28, 2017	1 Year
4.	Spectrum analyzer	R&S	FSP40	HKE-025	Dec. 28, 2017	1 Year
5.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 28, 2017	1 Year
6.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 28, 2017	1 Year
7.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Dec. 28, 2017	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Dec. 28, 2017	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 28, 2017	1 Year
10.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Dec. 28, 2017	1 Year
11.	Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	HKE-017	Dec. 28, 2017	1 Year
12.	Pre-amplifier	EMCI	EMC051845SE	HKE-015	Dec. 28, 2017	1 Year
13.	Pre-amplifier	Agilent	83051A	HKE-016	Dec. 28, 2017	1 Year
14.	EMI Test Software EZ-EMC	Tonscend	JS1120-B Version	HKE-083	Dec. 28, 2017	N/A
15.	Power Sensor	Agilent	E9300A	HKE-086	Dec. 28, 2017	1 Year
16.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 28, 2017	1 Year
17.	Signal generator	Agilent	N5182A	HKE-029	Dec. 28, 2017	1 Year
18.	Signal Generator	Agilent	83630A	HKE-028	Dec. 28, 2017	1 Year
19.	Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 28, 2017	3 Year
20.	RF Cable(below 1GHz)	HUBER+SUHNER	RG214	HKE-055	Dec. 28, 2017	1 Year
21.	RF Cable(above 1GHz)	HUBER+SUHNER	RG214	HKE-056	Dec. 28, 2017	1 Year

The calibration interval was one year

2.5. Related Submittal(s) / Grant (s)

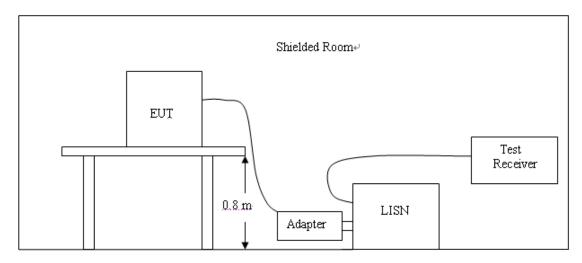
This submittal(s) (test report) is intended to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.6. Modifications

No modifications were implemented to meet testing criteria.

3. TEST CONDITIONS AND RESULTS

3.1. Conducted Emissions Test

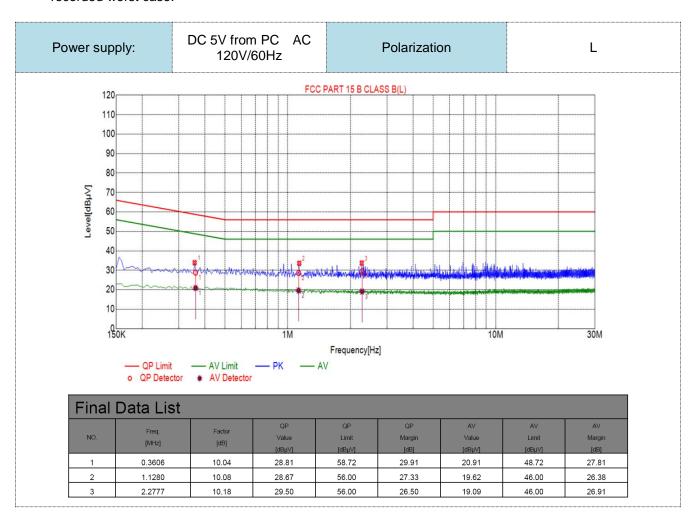

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207:

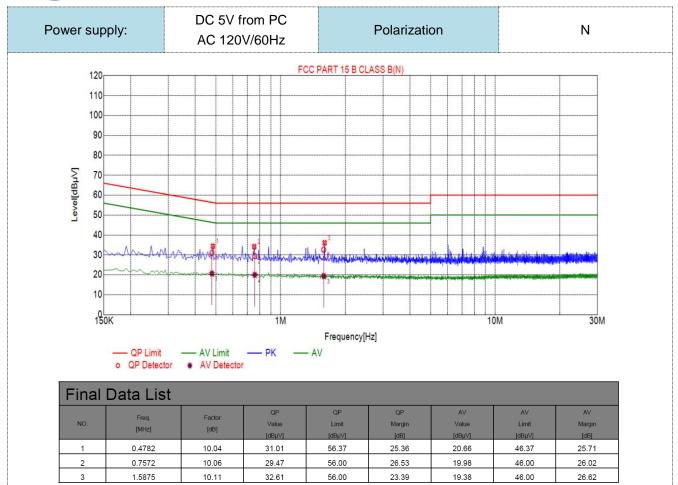
Fraguency range (MHz)	Limit (dBuV)			
Frequency range (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION


TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- 4. The adapter received AC power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.



Remark:

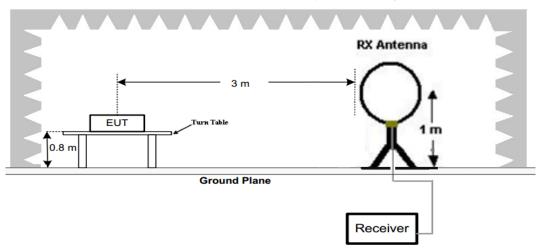
- 1. All Low, Middle, and High channel were tested; only the worst result of BLE middle was reported as below:
- Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:
- 3. Pre-test AC conducted emission at adapter power from AC mains mode and at charge from PC mode, recorded worst case.

Page 10 of 28 Report No.: HK1904050724-3E

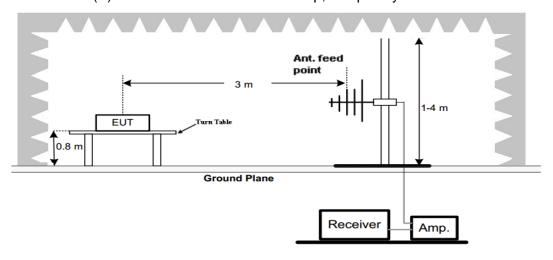
3.2. Radiated Emissions and Band Edge

Limit

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.

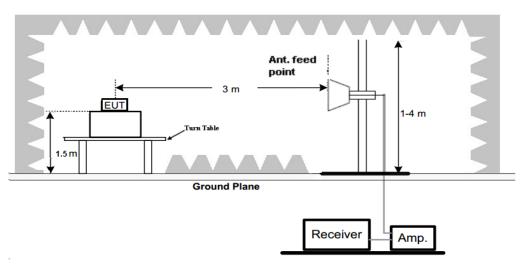

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

Radiated emission limits


Frequency (MHz) Distance (Meters)		Radiated (dBµV/m)	Radiated (µV/m)		
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)		
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)		
1.705-30	3	20log(30)+ 40log(30/3)	30		
30-88 3		40.0	100		
88-216	3	43.5	150		
216-960	3	46.0	200		
Above 960	3	54.0	500		

TEST CONFIGURATION

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz



(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

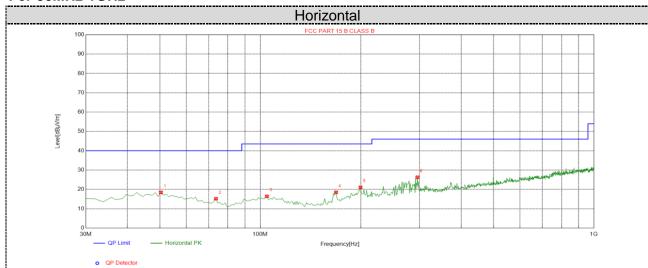
Test Procedure

- 1. Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

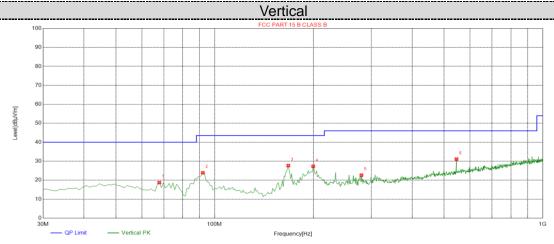
Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Bilog Antenna	3
1GHz-18GHz	Horn Antenna	3
18GHz-25GHz	Horn Antenna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency	Test Receiver/Spectrum Setting	Detector
range		
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep	QP
SUIVINZ-TGNZ	time=Auto	QF
	Peak Value: RBW=1MHz/VBW=3MHz,	
1GHz-40GHz	Sweep time=Auto	Peak
	Average Value: RBW=1MHz/VBW=10Hz,	Peak
	Sweep time=Auto	


TEST RESULTS

Remark:


- 1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. All three channels (lowest/middle/highest) of BLE were measured below 1GHz and recorded worst case at low channel.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz

Susp	Suspected List							
NO	Freq.	Level	Factor	Limit	Margin	Height	Angle	Dalanika
NO.	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	50.3700	18.39	-13.71	40.00	21.61	100	347	Horizontal
2	73.6500	15.15	-18.33	40.00	24.85	100	292	Horizontal
3	104.690	16.41	-15.41	43.50	27.09	100	65	Horizontal
4	168.710	18.50	-17.42	43.50	25.00	100	219	Horizontal
5	199.750	21.08	-15.08	43.50	22.42	100	180	Horizontal
6	295.780	26.29	-12.78	46.00	19.71	100	100	Horizontal

Suspe	ected List							
NO	Freq.	Level	Factor	Limit	Margin	Height	Angle	Delevite
NO.	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	67.8300	18.69	-17.13	40.00	21.31	100	278	Vertical
2	92.0800	23.88	-16.72	43.50	19.62	100	31	Vertical
3	167.740	27.66	-17.51	43.50	15.84	100	266	Vertical
4	199.750	27.33	-15.08	43.50	16.17	100	13	Vertical
5	280.260	22.66	-13.24	46.00	23.34	100	232	Vertical
6	546.040	31.10	-7.06	46.00	14.90	100	13	Vertical

For 1GHz to 25GHz

Horizontal: LOW CH00)/2402MHz

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	5
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804	59.25	-3.64	55.61	74	-18.39	peak
4804	46.62	-3.64	42.98	54	-11.02	AVG
7206	55.73	-0.95	54.78	74	-19.22	peak
7206	42.67	-0.95	41.72	54	-12.28	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical: LOW CH00)/2402MHz

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	5
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4804	60.26	-3.64	56.62	74	-17.38	peak
4804	46.69	-3.64	43.05	54	-10.95	AVG
7206	56.47	-0.95	55.52	74	-18.48	peak
7206	42.32	-0.95	41.37	54	-12.63	AVG
	-		-		-	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Horizontal: MID CH19/2440MHz

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	,
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4880	57.36	-3.51	53.85	74	-20.15	peak
4880	45.49	-3.51	41.98	54	-12.02	AVG
7320	55.71	-0.82	54.89	74	-19.11	peak
7320	42.72	-0.82	41.9	54	-12.1	AVG
Remark: Facto	or = Antenna Fac	ctor + Cable Lo	ss – Pre-amplifier			

Vertical: MID CH19/2440MHz

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4880	56.98	-3.51	53.47	74	-20.53	peak
4880	45.42	-3.51	41.91	54	-12.09	AVG
7320	54.89	-0.82	54.07	74	-19.93	peak
7320	41.47	-0.82	40.65	54	-13.35	AVG
				_		

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Horizontal: HIGH CH39 2480MHz

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	_			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type			
4960	58.25	-3.43	54.82	74	-19.18	peak			
4960	45.63	-3.43	42.2	54	-11.8	AVG			
7440	52.59	-0.75	51.84	74	-22.16	peak			
7440	41.02	-0.75	40.27	54	-13.73	AVG			
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.								

Vertical: HIGH CH39 2480MHz

v <u>ertical. Hilori</u>	ertical. Frigit Criss 2400Wirz								
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin				
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type			
4960	57.25	-3.43	53.82	74	-20.18	peak			
4960	47.69	-3.43	44.26	54	-9.74	AVG			
7440	53.31	-0.75	52.56	74	-21.44	peak			
7440	39.37	-0.75	38.62	54	-15.38	AVG			
					-	•			

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

Results of Band Edges Test (Radiated)

Horizontal: GFSK TX CH Low (2402MHz)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	55.68	-5.81	49.87	74	-24.13	peak
2390	46.47	-5.81	40.66	54	-13.34	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical: GFSK TX CH Low (2402MHz)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	57.41	-5.81	51.6	74	-22.4	peak
2390	48.35	-5.81	42.54	54	-11.46	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Horizontal: GFSK TX CH High (2480MHz)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре			
2483.5	55.51	-5.65	49.86	74	-24.14	peak			
2483.5	45.32	-5.65	39.67	54	-14.33	AVG			
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.								

Vertical: GFSK TX CH High (2480MHz)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2483.5	57.68	-5.65	52.03	74	-21.97	peak
2483.5	47.79	-5.65	42.14	54	-11.86	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Page 18 of 28 Report No.: HK1904050724-3E

3.3. Maximum Conducted Output Power

<u>Limit</u>

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

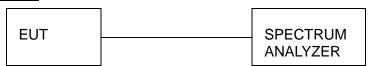
Test Results

BLE

Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	-5.391		
GFSK	19	-5.228	30.00	Pass
	39	-5.393		

Note: Test results including cable loss;

3.4. Power Spectral Density

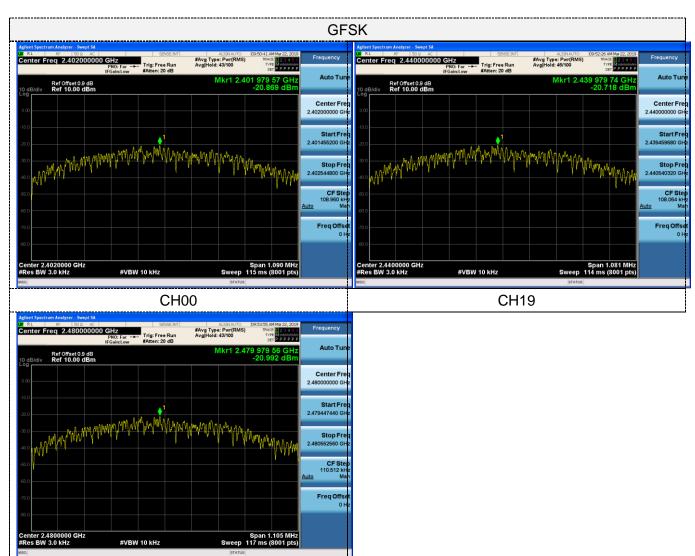

Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- 3. Set the VBW \geq 3× RBW.
- 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration


Test Results

BLE

Type	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
	00	-20.869		
GFSK	19	-20.718	8.00	Pass
	39	-20.992		

Test plot as follows:

CH39

3.5. 6dB Bandwidth and Occupied Bandwidth

Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz; Occupied Bandwidth: N/A

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

Test Configuration

Test Results

BLE

Туре	Channel	-6dB Bandwidth (MHz)	Limit (KHz)	Result
	00	0.6810		
GFSK	19	0.6754	≥500	Pass
	39	0.6907		

Test plot as follows:

Center 2.48 GHz #Res BW 100 kHz

Occupied Bandwidth

Transmit Freq Error

1.0298 MHz

5.638 kHz

690.7 kHz

Report No.: HK1904050724-3E

Span 3 MHz Sweep 1.067 ms

99.00 %

-6.00 dB

#VBW 300 kHz

x dB

CH39

3.6. Out-of-band Emissions

Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

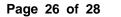
Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data. And record the worst data in the report.


Test plot as follows:



Test Mode: Test Mode: GFSK CH 00 GFSK CH 19 #Avg Type: Pwr(RMS) Avg|Hold: 100/100 #Avg Type: Pwr(RMS) Avg|Hold: 100/100 O GHZ
PNO: Far ---- Trig: Free Run Ref Offset 0.9 dB Ref 30.00 dBm Ref Offset 0.9 dB Ref 30.00 dBm Stop Fre 2.442000000 GH 2402 2440 RE RF S0 Q AC C Center Freq 1.515000000 GHz
PN0: Fast Center Freq 1.515000000 GHz #Avg Type: Pwr(R Avg|Hold: 13/100 #Avg Type: Pwr(F Avg|Hold: 13/100 Trig: Free Run Center Fre 1.515000000 GR Center Fre 1.515000000 GH Stop Fre 3.000000000 GH #VBW 300 kHz #VBW 300 kHz 30MHz~1GHz 30MHz~1GHz Trig: Free Run Ref Offset 0.9 dB Ref 20.00 dBm Ref Offset 0.9 dB Ref 20.00 dBm Center Fre Stop 25.00 GHz Sweep 2.10 s (8001 pts) Stop 25.00 GHz Sweep 2.10 s (8001 pts) Start 3.00 GHz #Res BW 100 kHz #VBW 300 kHz #VBW 300 kHz 1GHz~25GHz 1GHz~25GHz

Band-edge Measurements for RF Conducted Emissions:

GFSK							
Frequency (MHz)	Delta Peak to Band emission (dBc)	Limit (dBc)	Verdict				
2400.00	-55.068	-20	PASS				
2483.50	-54.470	-20	PASS				
Aglein Spectrum Analyzer , Swept SA	### Type: Pwr(RM) 0950-98 M Mg 22, 2019 Frequency Aug Type: Pwr(RM) Rwa 12, 33.9 Rwa 12, 33.9 Rwa 12, 33.9 Rwa Rwa	Ref 20.00 dBm 10 dBlata Ref 20.00 dBlata Re	### ### ##############################				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	STATUS	6 6 7 7 8 9 9 9 9 9 10 11 11 11 11 11 11 11 11 11 11 11 11	STATUS				

3.7. Antenna Requirement

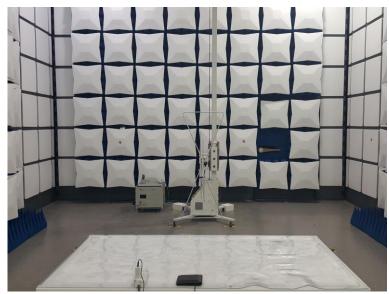
Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.


Test Result:

The antenna is integral antenna, the directional gains of antenna used for transmitting is 0.00 dBi.

4. Test Setup Photos of the EUT

