

FCC - TEST REPORT

Report Number	:	68.910.18.0074.01		Date of Issue	e: October 28, 2018
Model	: 	H200W, H200B, H300 H500B, H600W, H600 H900W, H900B			
Product Type	:	Electric Toothbrush			
Applicant	<u>:</u>	Shenzhen Proscenic	Гесh	nnology Co, Ltd	d
Address	<u>:</u>	Room 502, Building A	, Jin	shun Building,	, No. 287 Ruyi Road,
		Ailian Community, Sh	enzh	nen China	
Production Facility	<u>:</u>	Shenzhen Proscenic	Гесh	nnology Co, Ltd	d
Address	<u>:</u>	Room 502, Building A	, Jin	shun Building,	, No. 287 Ruyi Road,
		Ailian Community, Sh	enzh	nen China	
Test Result	:	■ Positive □ Ne	gati	ve	
Total pages including Appendices	:_	33			

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

1 Table of Contents

1	Ta	able of Contentsable of Contents	2
2	D	etails about the Test Laboratory	3
3		escription of the Equipment Under Test	
4		ummary of Test Standards	
5	S	ummary of Test Results	6
6		eneral Remarks	
7		est Setups	
8	S	ystems test configuration	9
9	Te	echnical Requirement	10
	9.1	Conducted peak output power	13
	9.2	Power spectral density	16
	9.3	6 dB Bandwidth and 99% Occupied Bandwidth	19
	9.4	Spurious RF conducted emissions	22
	9.5	Band edge	26
	9.6	Spurious radiated emissions for transmitter	28
10		Test Equipment List	32
11		System Measurement Uncertainty	33

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint

Road 2, Nanshan District

Shenzhen 518052

P.R. China

Telephone: 86 755 8828 6998 Fax: 86 755 828 5299

FCC Registration

No.:

IC Registration

10320A -1

514049

No.:

3 Description of the Equipment Under Test

Product: Electric Toothbrush

Model no.: H200W, H200B, H300W, H300B, H400W, H400B, H500W,

H500B, H600W, H600B, H700W, H700B, H800W, H800B,

H900W, H900B

FCC ID: 2ARZX-H600

Rated Input: DC 5V, 1A (powered via USB)

Rated Power: 5W

RF Transmission

2402MHz-2480MHz

Frequency:

No. of Operated Channel: 40

Modulation: GFSK

Antenna Type: Integrated Metal Antenna

Antenna Gain: 5dBi max for 2.4GHz

Description of the EUT: The Equipment Under Test (EUT) is Bluetooth toothbrush

operated at 2.4GHz

Auxiliary adapter: PS06C050K1000UU (Input: 100-240VAC, 50/60Hz, 0.25A,

Output: 5.0VDC, 1.0A) Designed by Fly Power

4 Summary of Test Standards

Test Standards			
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES		
10-1-2018 Edition	Subpart C - Intentional Radiators		

All the test methods were according to KDB 558074 D01 15.247 Meas Guidance V05 Measurement Guidance and ANSI C63.10 (2013).

5 Summary of Test Results

Technical Requirements						
FCC Part 15 Subp	part C					
Test Condition		Pages	Test	Test Result		
Test Condition		Pages	Site	Pass	Fail	N/A
§15.207	Conducted emission AC power port	9	Site 1	\boxtimes		\boxtimes
§15.247 (b) (1)	Conducted peak output power	10	Site 1	\boxtimes		
§15.247(a)(1)	20dB bandwidth					\boxtimes
§15.247(a)(1)	Carrier frequency separation					
§15.247(a)(1)(iii)	Number of hopping frequencies					
§15.247(a)(1)(iii)	Dwell Time					
§15.247(a)(2)	6dB bandwidth and 99% Occupied Bandwidth	13	Site 1			
§15.247(e)	Power spectral density	16	Site 1	\boxtimes		
§15.247(d)	Spurious RF conducted emissions	19	Site 1	\boxtimes		
§15.247(d)	Band edge	23	Site 1	\boxtimes		
§15.247(d) & §15.209	Spurious radiated emissions for transmitter	25	Site 1			
§15.203	Antenna requirement	See note	2			

Note 1: N/A=Not Applicable.

Note 2: The EUT uses an Integrated antenna, which gain is 5.0dBi. In accordance to §15.203, it is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: 2ARZX -H600 complies with Section 15.207, 15.209, 15.205, 15.247 of the FCC Part 15, Subpart C.

All modes have same technical construction including circuit diagram, PCB Layout, components and component layout, all electrical construction and mechanical construction except color of appearance. So the EMC full tests were applied on H600W, the others were deemed to fulfil the EMC requirement without the further test.

Note: The report is BLE only

SUMMARY:

All tests according to the regulations cited on page 5 were

- Performed
- □ Not Performed

The Equipment under Test

- - Fulfills the general approval requirements.
- □ **Does not** fulfill the general approval requirements.

Sample Received Date: September 14, 2018

Testing Start Date: September 14, 2018

Testing End Date: October 26, 2018

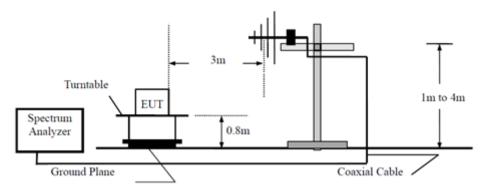
- TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -

Reviewed by:

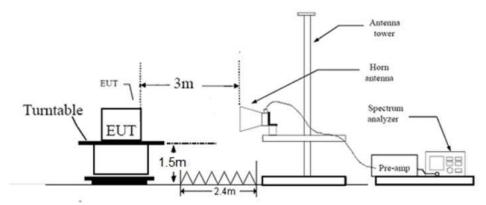
Prepared by:

Tested by:

Laurent Yuan EMC Project Manager Dawi Xu EMC Project Engineer

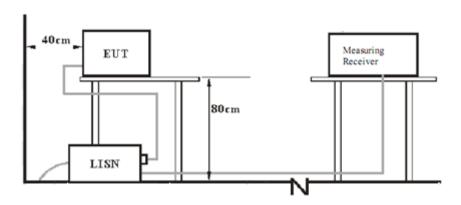

Davis do

Tree Zhan EMC Test Engineer



7 Test Setups

Below 1GHz


Above 1GHz

Conducted RF test setups

7.3 AC Power Line Conducted Emission test setups

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.	S/N
Adapter	Fly power	PS06C050K1000UU	/

The system was configured to channel 0, 19, and 39 for the test.

9 Technical Requirement

9.1 Conducted Emission

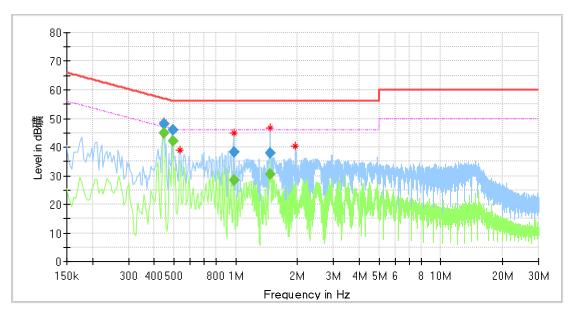
Test Method

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit

Frequency		QP Limit	AV Limit
_	MHz	dΒμV	dΒμV
	0.150-0.500	66-56*	56-46*
	0.500-5	56	46
	5-30	60	50

Decreasing linea


Conducted Emission

M/N: H600W

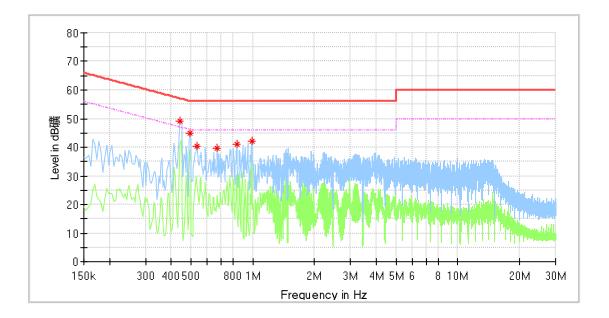
Op Cond.: Induction charging

Comment: DC 5V supplied by adapter

Test Spec: Power Line, Live

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.445500		45.04	46.96	1.92	L1	10.3
0.445500	48.16		56.96	8.80	L1	10.3
0.494500		42.25	46.09	3.84	L1	10.3
0.494500	45.86		56.09	10.23	L1	10.3
0.981500		28.28	46.00	17.72	L1	10.3
0.981500	38.40		56.00	17.60	L1	10.3
1.474500		30.41	46.00	15.59	L1	10.3
1.474500	37.76		56.00	18.24	L1	10.3

Remark: "*" Correct factor=cable loss + LISN factor



M/N: H600W

Op Cond.: Induction charging

Comment: DC 5V supplied by adapter

Test Spec: Power Line, Neutral

Frequency (MHz)	MaxPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.442000	49.25		57.02	7.77	N	10.3
0.494000	44.75		56.10	11.35	N	10.3
0.534000	40.36		56.00	15.64	N	10.3
0.670000	39.79		56.00	16.21	N	10.3
0.834000	41.05		56.00	14.95	N	10.3
0.990000	42.21		56.00	13.79	N	10.3

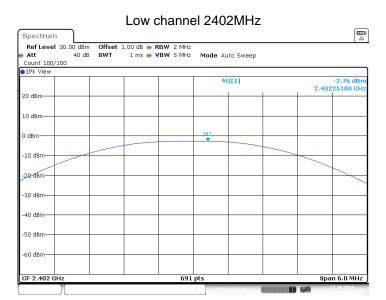
Remark: "*" Correct factor=cable loss + LISN factor

9.2 Conducted peak output power

Test Method

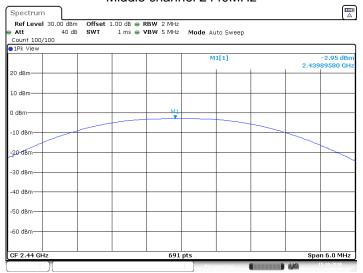
- Use the following spectrum analyzer settings:
 RBW > the 6dB bandwidth of the emission being measured, VBW≥3RBW, Span≥3RBW
 Sweep = auto, Detector function = peak, Trace = max hold.
- 2. Add a correction factor to the display.
- 3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

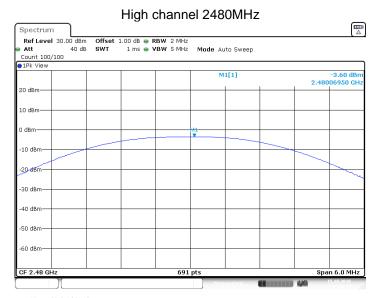
Limits


According to §15.247 (b) (1), conducted peak output power limit as below:

Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤1	≤30

Test result as below table


Frequency MHz	Conducted Peak Output Power dBm	Result
Bottom channel 2402MHz	-2.76	Pass
Middle channel 2440MHz	-2.95	Pass
Top channel 2480MHz	-3.60	Pass


Date: 15.0 CT.2018 16:44:07

Middle channel 2440MHz

Date:15.0CT.2018 16:48:51

Date: 15.0 CT 2018 16:51:16

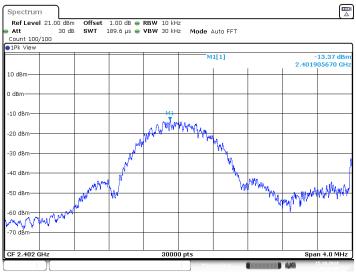
9.3 Power spectral density

Test Method

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

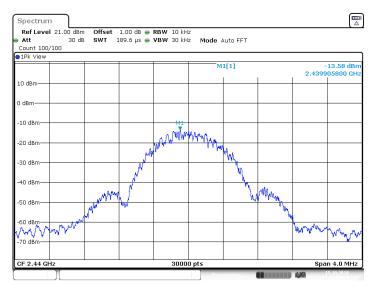
- Set analyzer center frequency to DTS channel center frequency. RBW=3kHz, VBW≥3RBW, Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
- 2. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
- 3. Repeat above procedures until other frequencies measured were completed.

Limit

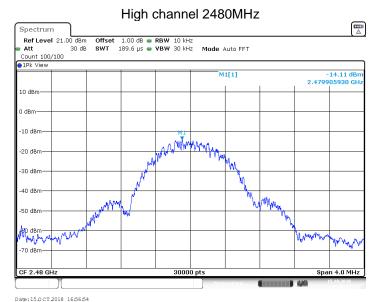

Limit [dBm]	
≤8	

Test result

		Power spectral		
	Frequency	density	Result	
_	MHz	dBm		
	Top channel 2402MHz	-13.37	Pass	
	Middle channel 2440MHz	-13.58	Pass	
	Bottom channel 2480MHz	-14.11	Pass	



Low channel 2402MHz


Date: 15.0 CT.2018 16:54:49

Middle channel 2440MHz

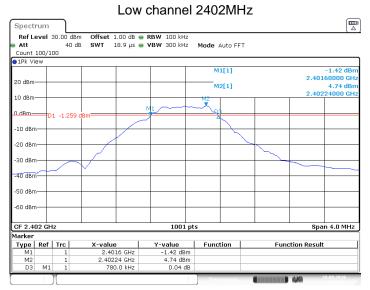
Date: 15.0 CT 2018 16:55:56

9.4 6 dB Bandwidth

Test Method

- 1. Use the following spectrum analyzer settings: RBW=100K, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 6 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.
- 3. Allow the trace to stabilize, record the X dB Bandwidth value.

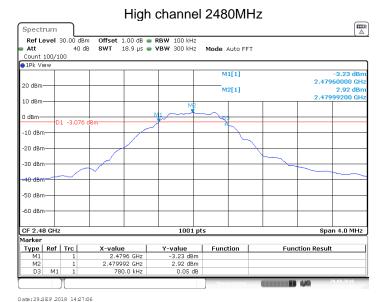
Limit


Limit [kHz]	
≥500	_

Test result

Frequency MHz	6dB bandwidth kHz	Result
Bottom channel 2402MHz	0.780	Pass
Middle channel 2440MHz	0.780	Pass
Top channel 2480MHz	0.780	Pass

6 dB Bandwidth



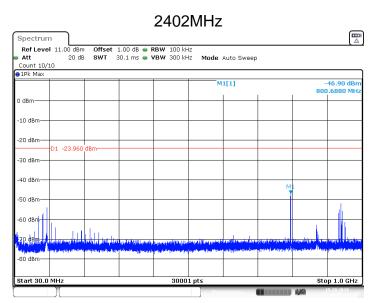
Date: 29 SEP 2018 14:21:49

Middle channel 2440MHz Spectrum Ref Level 30.00 dBm Offset 1.00 dB ■ RBW 100 kHz SWT 18.9 µs ■ VBW 300 kHz Mode Auto FFT 40 dB • Att Count 100/100 • 1Pk View M1[1] 20 dBm M2[1] 4.17 dB 10 dBm -10 dBr -30 dBm -40 dBm -50 dBm CF 2.44 GHz 1001 pts Span 4.0 MHz X-value 2.4396 GHz 2.439992 GHz 780.0 kHz Y-value Function -2.00 dBm 4.17 dBm 0.06 dB Type | Ref | Trc | **Function Result**

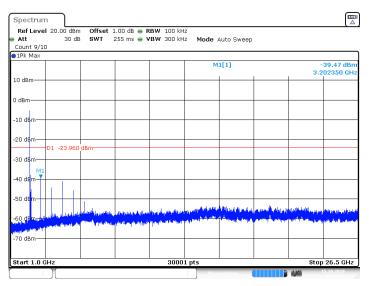
Date: 29.SEP.2018 14.25:02

9.5 Spurious RF conducted emissions

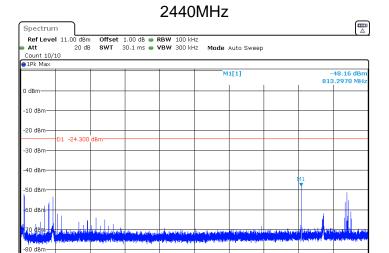
Test Method


- 1. Establish a reference level by using the following procedure:
 - a. Set RBW=100 kHz. VBW≥3RBW. Detector =peak, Sweep time = auto couple, Trace mode = max hold.
 - b. Allow trace to fully stabilize, use the peak marker function to determine the maximum PSD level.
- 2. Use the maximum PSD level to establish the reference level.
 - a. Set the center frequency and span to encompass frequency range to be measured.
 - b. Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements, report the three highest emissions relative to the limit.
- 3. Repeat above procedures until other frequencies measured were completed.

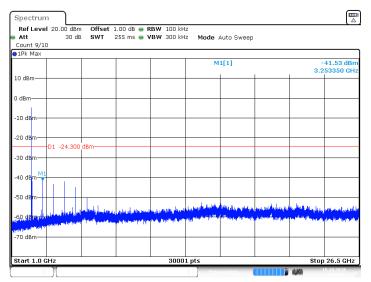
Limit


Frequency Range MHz	Limit (dBc)
30-25000	-20

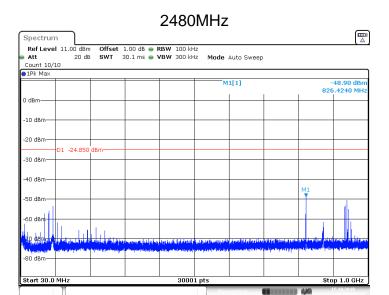
Spurious RF conducted emissions



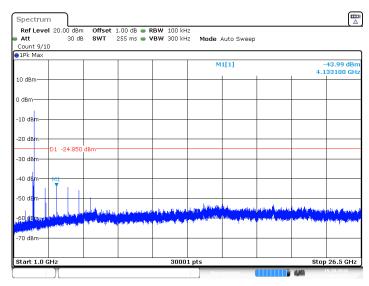
Date: 15.0 CT 2018 16:55:13



Date: 15.0 CT 2018 16:55:25



Date: 15.0 CT 2018 16:56:11



Date: 15.0 CT 2018 16:56:23

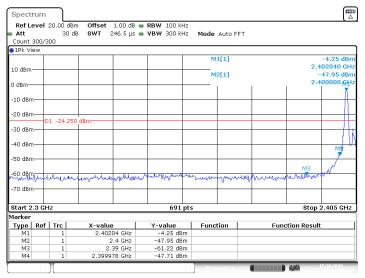
Date: 15.0 CT 2018 16:57:18

Date:15.0CT.2018 16:57:29

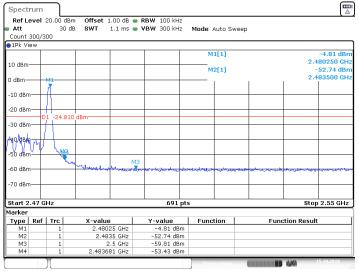
9.6 Band edge

Test Method

- 1 Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold.
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section.


Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20


Band edge testing

2402MHz

Date: 15.0 CT.2018 16:54:58

2480MHz

Date: 15.0 CT.2018 16:57:03

9.7 Spurious radiated emissions for transmitter

Test Method

- 1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2: The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5: Use the following spectrum analyzer settings According to C63.10:

For Above 1GHz

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement and VBW = 10Hz for average measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

Note:

- 1: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for peak detection (PK) at frequency above 1GHz.
- 3: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average ((duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (20log(1/duty cycle).
- 4: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (duty cycle > 98%) for Average detection (AV) at requencyabove1GHz

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209.

Frequency MHz	Field Strength uV/m	Field Strength dBµV/m	Detector
-		•	
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Spurious radiated emissions for transmitter

Transmitting spurious emission test result as below:

Low channel 2402MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Dallu	MHz	dBuV/m		dBµV/m		dBuV/m	(dB)	
30-	873.19	25.42	Н	46	QP	20.58	-15.8	Pass
1000MHz	74.35	27.99	V	40	QP	12.01	-31.7	Pass
			Н	74	PK			Pass
1000-			Н	54	AV			Pass
25000MHz			V	74	PK			Pass
			V	54	AV			Pass

Middle channel 2440MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Dallu	MHz	dBuV/m		dBµV/m		dBuV/m	(dB)	
30-			Н	43.5	QP			Pass
1000MHz			Н	46	QP			Pass
			Н	74	PK			Pass
1000-			Н	54	AV			Pass
25000MHz			V	74	PK		1	Pass
			V	54	AV		1	Pass

High channel 2480MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Dallu	MHz	dBuV/m		dBµV/m		dBuV/m	(dB)	
30-			Н	43.5	QP			Pass
1000MHz			Н	46	QP			Pass
			Н	74	PK			Pass
1000-			Н	54	AV			Pass
25000MHz			V	74	PK			Pass
			V	54	AV			Pass

Remark:

- (1) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.
- (2) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are the noise floor or attenuated more than 10dB below the permissible limits or the field strength is too small to be measured.
- (3) Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss

10 Test Equipment List

List of Test Instruments

Radiated Emission Test

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 26	101269	2019-7-6
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2019-6-28
Horn Antenna	Rohde & Schwarz	HF907	102294	2019-6-28
Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2019-7-6
Signal Generator	Rohde & Schwarz	SMY01	839369/005	2019-7-6
Attenuator	Agilent	8491A	MY39264334	2019-7-6
3m Semi-anechoic chamber	TDK	9X6X6		2020-7-7
Test software	Rohde & Schwarz	EMC32	Version 9.15.00	N/A

Conducted Emission Test

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 3	101782	2019-7-6
LISN	Rohde & Schwarz	ENV4200	100249	2019-7-6
LISN	Rohde & Schwarz	ENV432	101318	2019-7-6
LISN	Rohde & Schwarz	ENV216	100326	2019-7-6
ISN	Rohde & Schwarz	ENY81	100177	2019-7-6
ISN	Rohde & Schwarz	ENY81-CA6	101664	2019-7-6
High Voltage Probe	Rohde & Schwarz	TK9420(VT94 20)	9420-584	2019-6-30
RF Current Probe	Rohde & Schwarz	EZ-17	100816	2019-6-30
Attenuator	Shanghai Huaxiang	TS2-26-3	080928189	2019-7-6
Test software	Rohde & Schwarz	EMC32	Version9.15.00	N/A

TS8997 Test System

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
Signal Generator	Rohde & Schwarz	SMB100A	108272	2019-7-6
Vector Signal Generator	Rohde & Schwarz	SMBV100A	262825	2019-7-6
Communication Synthetical Test Instrument	Rohde & Schwarz	CMW 270	101251	2019-5-31
Signal Analyzer	Rohde & Schwarz	FSV40	101030	2019-7-6
Vector Signal Generator	Rohde & Schwarz	SMU 200A	105324	2019-7-6
RF Switch Module	Rohde & Schwarz	OSP120/OSP-B157	101226/100851	2019-7-6
Power Splitter	Weinschel	1580	SC319	2019-7-5
10dB Attenuator	Weinschel	56-10	58764	2019-7-6
10dB Attenuator	R&S	DNF	DNF-001	2019-7-6
10dB Attenuator	R&S	DNF	DNF-002	2019-7-6
10dB Attenuator	R&S	DNF	DNF-003	2019-7-6
10dB Attenuator	R&S	DNF	DNF-004	2019-7-6
Test software	Rohde & Schwarz	EMC32	Version 10.38.00	N/A
Test software	Tonscend	System for BT/WIFI	Version 2.6	N/A

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty					
Items	Extended Uncertainty				
Uncertainty for Radiated Spurious Emission 25MHz-3000MHz	Horizontal: 4.80dB; Vertical: 4.87dB;				
Uncertainty for Radiated Spurious Emission 3000MHz-18000MHz	Horizontal: 4.59dB; Vertical: 4.58dB;				
Uncertainty for Radiated Spurious Emission 18000MHz-40000MHz	Horizontal: 5.05dB; Vertical: 5.04dB;				
Uncertainty for Conducted RF test with TS 8997	Power level test involved: 1.16dB Frequency test involved: 0.6×10 ⁻⁷				
Uncertainty for Conducted Emission 150kHz-30MHz (for test using AMN ENV432 or ENV4200)	3.21dB				