RADIO TEST REPORT FCC ID: 2ARZ2PIONA1925A

Product: Panoramic Camera

Trade Mark: Labpano

Model No.: PIONA1925/A

Family Model: PIONA1925/B, PIONA1925/C, PIONA1925/D, PIONA1925/E

Report No.: S20082504102001

Issue Date: 11 Sep. 2020

Prepared for

Shenzhen Pisoftware Technology Co., Ltd.
Room 1221, 12F,Shenzhen Newspaper Group and Periodicals
Building, Qinghu Community, Longhua Street,Longhua District,
Shenzhen, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1/F, Building E, Fenda Science Park, Sanwei Community,
Xixiang Street Bao'an District, Shenzhen 518126 P.R. China

Tel.: +86-755-6115 6588 Fax.: +86-755-6115 6599 Website:http://www.ntek.org.cn

Version.1.2 Page 1 of 21

TABLE OF CONTENTS

1 T	EST RESULT CERTIFICATION	3
2 S	UMMARY OF TEST RESULTS	4
3 F	ACILITIES AND ACCREDITATIONS	5
3.1 3.2	FACILITIESLABORATORY ACCREDITATIONS AND LISTINGS	5
3.3	MEASUREMENT UNCERTAINTY	
4 G	SENERAL DESCRIPTION OF EUT	6
5 D	DESCRIPTION OF TEST MODES	8
6 S	ETUP OF EQUIPMENT UNDER TEST	9
6.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	9
6.2	SUPPORT EQUIPMENTEQUIPMENTS LIST FOR ALL TEST ITEMS	10
6.3	EQUIPMENTS LIST FOR ALL TEST ITEMS	11
7 T	EST REQUIREMENTS	
7.1	CONDUCTED EMISSIONS TEST	13
7.2	RADIATED SPURIOUS EMISSION	

Certificate #4298.01 Report No.: S20082504102001

1 TEST RESULT CERTIFICATION

Applicant's name:	Shenzhen Pisoftware Technology Co., Ltd.
Address:	Room 1221, 12F,Shenzhen Newspaper Group and Periodicals Building, Qinghu Community, Longhua Street,Longhua District, Shenzhen, China
Manufacturer's Name:	Shenzhen Pisoftware Technology Co., Ltd.
Address:	Room 1221, 12F,Shenzhen Newspaper Group and Periodicals Building, Qinghu Community, Longhua Street,Longhua District, Shenzhen, China
Product description	
Product name:	Panoramic Camera
Model and/or type reference:	PIONA1925/A
Family Model:	PIONA1925/B, PIONA1925/C, PIONA1925/D, PIONA1925/E

Measurement Procedure Used:

APPLICABLE STANDARDS		
STANDARD/ TEST PROCEDURE	TEST RESULT	
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C KDB 174176 D01 Line Conducted FAQ v01r01 ANSI C63.10-2013	Complied	

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Note: In addition to AC conduction and radiation data below 1G, other test data of this report are based on the original test report S19112901716001, dated by 2020-03-13.

Date of Test	Aug. 25, 2020 ~ Sep. 11, 2020
Testing Engineer	Jerry Die
	(Jerry Xie)
Technical Manager	Jason chen
•	(Jason Chen)
	San . Chen
Authorized Signatory	:
	(Sam Chen)

Version.1.2 Page 3 of 21

2 SUMMARY OF TEST RESULTS

FCC Part15 (15.247), Subpart C			
Standard Section	Test Item	Verdict	Remark
15.207	AC Conducted Emission	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	N/A	
15.247(b)(1)	Peak Output Power	N/A	
15.247(a)(iii)	Number of Hopping Frequency	N/A	
15.247(a)(iii)	Dwell Time	N/A	
15.247(a)(1)	Bandwidth	N/A	
15.247 (d)	Band Edge Emission	N/A	
15.247 (d)	Spurious RF Conducted Emission	N/A	
15.203	Antenna Requirement	N/A	

Remark:

- 1. "N/A" denotes test is not applicable in this Test Report.
- 2. All test items were verified and recorded according to the standards and without any deviation during the test.
- This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

Version.1.2 Page 4 of 21

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description

CNAS-Lab. : The Laboratory has been assessed and proved to be in compliance with

CNAS-CL01:2006 (identical to ISO/IEC 17025:2005) The Certificate Registration Number is L5516.

IC-Registration The Certificate Registration Number is 9270A.

CAB identifier:CN0074

FCC- Accredited Test Firm Registration Number: 463705.

Designation Number: CN1184

A2LA-Lab. The Certificate Registration Number is 4298.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for

Report No.: S20082504102001

the competence of testing and calibration laboratories.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Name of Firm : Shenzhen NTEK Testing Technology Co., Ltd.

Site Location : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang

Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

Version.1.2 Page 5 of 21

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment	Panoramic Camera	
Trade Mark	Labpano	
FCC ID	2ARZ2PIONA1925A	
Model No.	PIONA1925/A	
Family Model	PIONA1925/B, PIONA1925/C, PIONA1925/D, PIONA1925/E	
Model Difference	All models are the same circuit and RF module, except the model name.	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK, π/4-DQPSK, 8-DPSK	
Bluetooth Version	BT V4.0	
Number of Channels	79 Channels	
Antenna Type	FPCB Antenna	
Antenna Gain	1.81dBi	
	☑DC supply: DC 3.8V/3400mAh from Battery or DC 5V from Adapter.	
Power supply		
HW Version	Pilot?MINI-MB_V03	
SW Version	rftesttool-cn-v57	

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Version.1.2 Page 6 of 21

Revision History

Version	Description	Issued Date
Rev.01	Initial issue of report	Mar 13, 2020
Rev.02	Added the GPS module and Update appearance photos. Update the AC Conducted Emission and Radiated Test data	Sep. 11, 2020
	Rev.01	Rev.01 Initial issue of report Added the GPS module and Update appearance photos. Update the AC Conducted Emission and Radiated Test

Version.1.2 Page 7 of 21

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Report No.: S20082504102001

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for $\pi/4$ -DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement –X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
	•••
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission		
Final Test Mode	Description	
Mode 1	normal link mode	

Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	

Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

	For Conducted Test Cases
Final Test Mode	Description
Mode 2	CH00(2402MHz)
Mode 3	CH39(2441MHz)
Mode 4	CH78(2480MHz)
Mode 5	Hopping mode

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

AC power line Conducted Emission was tested under maximum output power.

Version.1.2 Page 8 of 21

Certificate #4298.01 **SETUP OF EQUIPMENT UNDER TEST** 6 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM For AC Conducted Emission Mode C-1 AC PLUG AE-1 Adapter For Radiated Test Cases For Conducted Test Cases C-2 Measurement Instrument Note: 1. The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list. 2. EUT built-in battery-powered, the battery is fully-charged.

Version.1.2 Page 9 of 21

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

tooto.					
Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
AE-1	Adapter	N/A	A824A-120150U-EU1	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	NO	NO	1.0m
C-2	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>[Length]</code> column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

Version.1.2 Page 10 of 21

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

Radiati	on& Conducted 1	lest equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2020.05.11	2021.05.10	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2020.7.13	2021.7.12	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2020.08.07	2021.08.06	1 year
4	Test Receiver	R&S	ESPI7	101318	2020.05.11	2021.05.10	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2020.04.11	2021.04.10	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2018.04.08	2021.04.07	3 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2019.11.18	2020.11.17	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2020.7.13	2021.7.12	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2019.11.18	2020.11.17	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN O84	2020.7.13	2021.7.12	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2019.08.06	2022.08.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2019.08.06	2022.08.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2019.6.28	2022.6.27	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2019.6.28	2022.6.27	3 year
16	Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

Version.1.2 Page 11 of 21

AC.	Conduction	Test ed	uinmen	t
\sim	Conduction	1031 00	4 aipiiicii	·

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2020.05.11	2021.05.10	1 year
2	LISN	R&S	ENV216	101313	2020.05.11	2021.05.10	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2020.05.11	2021.05.10	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

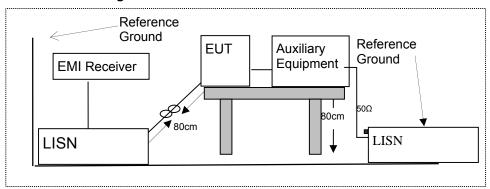
Version.1.2 Page 12 of 21

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)


7.1.2 Conformance Limit

Fraguapov(MHz)	Conducted Emission Limit			
Frequency(MHz)	Quasi-peak	Average		
0.15-0.5	66-56*	56-46*		
0.5-5.0	56	46		
5.0-30.0	60	50		

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
- 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

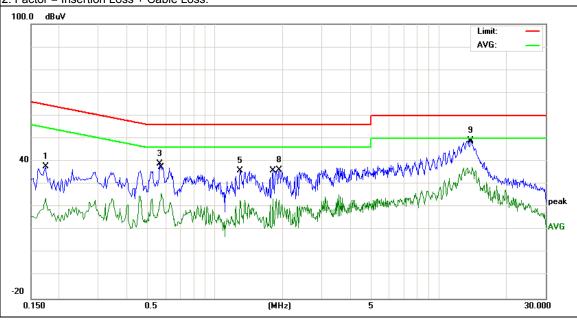
According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

7.1.5 Test Results

Pass

Version.1.2 Page 13 of 21


7.1.6 Test Results

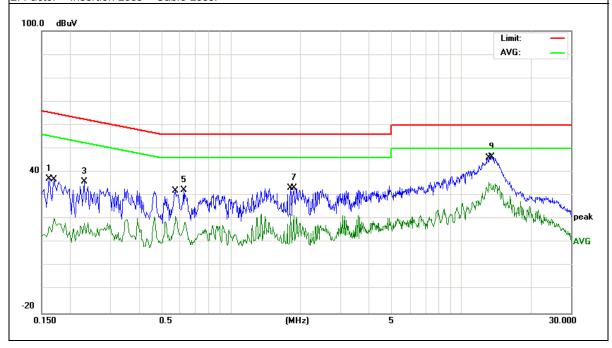
EUT:	Panoramic Camera	Model Name :	PIONA1925/A
Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode :	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1740	27.88	9.76	37.64	64.76	-27.12	QP
0.1740	14.26	9.76	24.02	54.76	-30.74	AVG
0.5660	29.23	9.74	38.97	56.00	-17.03	QP
0.5740	16.18	9.74	25.92	46.00	-20.08	AVG
1.2940	26.25	9.75	36.00	56.00	-20.00	QP
1.2940	13.34	9.75	23.09	46.00	-22.91	AVG
1.8140	13.93	9.78	23.71	46.00	-22.29	AVG
1.9340	26.46	9.78	36.24	56.00	-19.76	QP
13.9059	39.02	10.08	49.10	60.00	-10.90	QP
14.1059	27.46	10.09	37.55	50.00	-12.45	AVG

Remark:

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.

Version.1.2 Page 14 of 21



·			
EUT:	Panoramic Camera	Model Name :	PIONA1925/A
Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	1010hPa	Phase :	N
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode :	Mode 1

Certificate #4298.01

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1620	27.30	9.73	37.03	65.36	-28.33	QP
0.1700	10.60	9.73	20.33	54.96	-34.63	AVG
0.2300	26.19	9.74	35.93	62.45	-26.52	QP
0.5739	11.52	9.75	21.27	46.00	-24.73	AVG
0.6219	22.47	9.75	32.22	56.00	-23.78	QP
1.8140	12.35	9.79	22.14	46.00	-23.86	AVG
1.8700	23.59	9.79	33.38	56.00	-22.62	QP
13.2619	25.66	10.07	35.73	50.00	-14.27	AVG
13.6059	36.38	10.07	46.45	60.00	-13.55	QP

- All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

Version.1.2 Page 15 of 21

7.2 RADIATED SPURIOUS EMISSION

7.2.1 **Applicable Standard**

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Accordi	ng to FCC Part15.20	5, Restricted bands
	N A1 1—	N 41 1—

recording to 1 00 1 dicto.20	According to 1 00 1 art 15.205, Nestricted barids						
MHz	MHz	MHz	GHz				
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46				
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75				
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5				
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2				
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5				
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7				
6.26775-6.26825	123-138	2200-2300	14.47-14.5				
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2				
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4				
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12				
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0				
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8				
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5				
12.57675-12.57725	322-335.4	3600-4400	(2)				
13.36-13.41							

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBµV/m)	Measurement Distance	
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300	
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30	
1.705~30.0	30	29.5	30	
30-88	100	40	3	
88-216	150	43.5	3	
216-960	200	46	3	
Above 960	500	54	3	

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/m) (at 3M)			
	PEAK	AVERAGE		
Above 1000	74	54		

Remark :1. Emission level in dBuV/m=20 log (uV/m)

- 2. Measurement was performed at an antenna to the closed point of EUT distance of meters.
- 3. For Frequency 9kHz~30MHz:

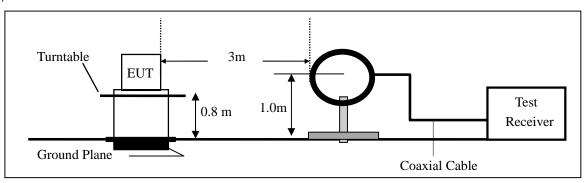
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

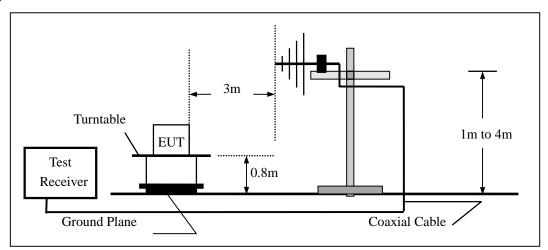
For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

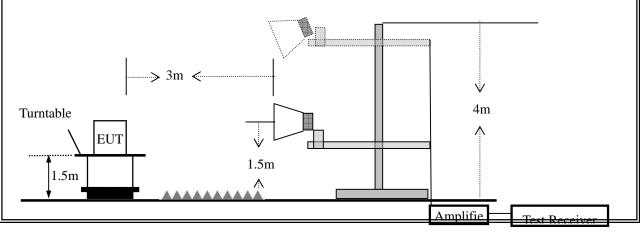
Version.1.2 Page 16 of 21 Certificate #4298.01 Report No.: S20082504102001


Limit line=Specific limits(dBuV) + distance extrapolation factor.

7.2.3 Measuring Instruments


The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration


(a) For radiated emissions below 30MHz

(b) For radiated emissions from 30MHz to 1000MHz

(c) For radiated emissions above 1000MHz

Version.1.2 Page 17 of 21

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT.

Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz:
 - Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

Version.1.2 Page 18 of 21

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:							
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth				
30 to 1000	QP	120 kHz	300 kHz				
Ab 4000	Peak	1 MHz	1 MHz				
Above 1000	Average	1 MHz	10 Hz				

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

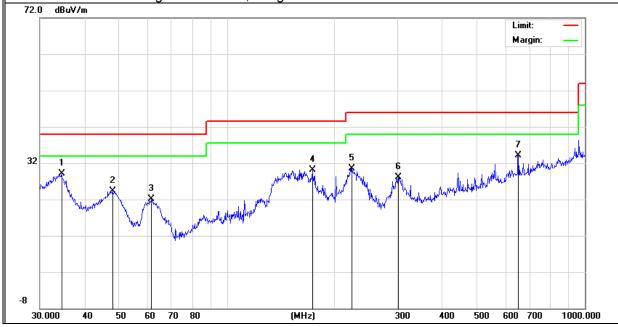
EUT:	Panoramic Camera	Model No.:	PIONA1925/A
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Jerry Xie

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Version.1.2 Page 19 of 21

Certificate #4298.01 Report No.: S20082504102001


■ Spurious Emission below 1GHz (30MHz to 1GHz)
All the modulation modes have been tested, and the worst result was report as below:

EUT:	Panoramic Camera	Model Name:	PIONA1925/A				
Temperature:	20 ℃	Relative Humidity:	48%				
Pressure:	1010hPa	Test Mode:	Mode 1				
Test Voltage:	DC 3.8V						

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	34.5173	12.50	16.62	29.12	40.00	-10.88	QP
V	47.9940	13.39	10.96	24.35	40.00	-15.65	QP
V	61.5618	16.11	5.91	22.02	40.00	-17.98	QP
V	173.2051	20.10	10.08	30.18	43.50	-13.32	QP
V	223.7334	19.67	10.91	30.58	46.00	-15.42	QP
V	301.4224	13.29	14.77	28.06	46.00	-17.94	QP
V	651.9417	11.77	22.43	34.20	46.00	-11.80	QP

Remark:

Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit

Version.1.2 Page 20 of 21

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	31.3992	6.10	18.08	24.18	40.00	-15.82	QP
Н	160.3456	11.65	10.78	22.43	43.50	-21.07	QP
Н	225.3080	21.88	10.89	32.77	46.00	-13.23	QP
Н	307.8313	11.40	14.91	26.31	46.00	-19.69	QP
Н	750.1083	7.81	24.92	32.73	46.00	-13.27	QP
Н	962.1622	9.35	28.24	37.59	54.00	-16.41	QP

Remark:

Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit

END OF REPORT

Version.1.2 Page 21 of 21