

RADIO TEST REPORT FCC ID: 2ARZ2PIONA1925A

Product:	Panoramic Camera		
Trade Mark:	Labpano		
Model No.:	PIONA1925/A		
Family Model:	PIONA1925/B, PIONA1925/C, PIONA1925/D, PIONA1925/E		
Report No.:	S19112901716001		
Issue Date:	13 Mar. 2020		

Prepared for

Shenzhen Pisoftware Technology Co., Ltd. Room 1221, 12F,Shenzhen Newspaper Group and Periodicals Building, Qinghu Community, Longhua Street,Longhua District, Shenzhen, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel.: +86-755-6115 6588 Fax.: +86-755-6115 6599 Website:http://www.ntek.org.cn

TABLE OF CONTENTS

ACCREDITED

Certificate #4298.01

	TEST RESULT CERTIFICATION	
2	SUMMARY OF TEST RESULTS	4
3	FACILITIES AND ACCREDITATIONS	5
3.1 3.2 3.3	LABORATORY ACCREDITATIONS AND LISTINGS	5
4	GENERAL DESCRIPTION OF EUT	6
5	DESCRIPTION OF TEST MODES	8
6	SETUP OF EQUIPMENT UNDER TEST	9
6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	9 .10 .11
7	TEST REQUIREMENTS	.13
	RADIATED SPURIOUS EMISSION NUMBER OF HOPPING CHANNEL HOPPING CHANNEL SEPARATION MEASUREMENT AVERAGE TIME OF OCCUPANCY (DWELL TIME) 20DB BANDWIDTH TEST PEAK OUTPUT POWER CONDUCTED BAND EDGE MEASUREMENT SPURIOUS RF CONDUCTED EMISSION 0 ANTENNA APPLICATION 1 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	.16 .25 .26 .27 .29 .30 .31 .32 .33 .34
8	TEST RESULTS	.35
8.1 8.2 8.3 8.4 8.5 8.6 8.7	MAXIMUM CONDUCTED OUTPUT POWER OCCUPIED CHANNEL BANDWIDTH CARRIER FREQUENCIES SEPARATION NUMBER OF HOPPING CHANNEL. BAND EDGE	.40 .45 .55 .60 .61

NTEK北测

Report No.: S19112901716001

1 TEST RESULT CERTIFICATION

Applicant's name:	Shenzhen Pisoftware Technology Co., Ltd.
Address:	Room 1221, 12F,Shenzhen Newspaper Group and Periodicals Building, Qinghu Community, Longhua Street,Longhua District, Shenzhen, China
Manufacturer's Name	Shenzhen Pisoftware Technology Co., Ltd.
Address:	Room 1221, 12F,Shenzhen Newspaper Group and Periodicals Building, Qinghu Community, Longhua Street,Longhua District, Shenzhen, China
Product description	
Product name:	Panoramic Camera
Model and/or type reference:	PIONA1925/A
Family Model:	PIONA1925/B, PIONA1925/C, PIONA1925/D, PIONA1925/E

Certificate #4298.01

Measurement Procedure Used:

APPLICABLE STANDARDS

STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C KDB 174176 D01 Line Conducted FAQ v01r01 ANSI C63.10-2013	Complied

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	Dec. 18, 2019 ~ Mar. 11, 2020
Testing Engineer	:	Jerry Xie
0 0		(Jerry Xie)
Technical Manager	:	Jason chem
		(Jason Chen)
		Sam. Chen
Authorized Signatory	:	Contraction of the second second
		(Sam Chen)

NTEKJLW

2 SUMMARY OF TEST RESULTS

FCC Part15 (15.247), Subpart C			
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

ACC

Certificate #4298.01

Remark:

1. "N/A" denotes test is not applicable in this Test Report.

- All test items were verified and recorded according to the standards and without any deviation during the test.
- This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Laboratory has been assessed and proved to be in compliance with
	CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)
	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

NTEK北测

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment	Panoramic Camera	
Trade Mark	Labpano	
FCC ID	2ARZ2PIONA1925A	
Model No.	PIONA1925/A	
Family Model	PIONA1925/B, PIONA1925/C, PIONA1925/D, PIONA1925/E	
Model Difference	All models are the same circuit and RF module, except the model name.	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK, π/4-DQPSK, 8-DPSK	
Bluetooth Version	BT V4.0	
Number of Channels	79 Channels	
Antenna Type	FPCB Antenna	
Antenna Gain	1.81dBi	
	DC supply: DC 3.8V/3400mAh from Battery or DC 5V from Adapter.	
Power supply	Adapter supply: Model:A824A-120150U-EU1 Input: 100-240V~50/60Hz 0.5A Output: 5V3A/9V2A/12V1.5A	
HW Version	N/A	
SW Version	N/A	

ACC

Certificate #4298.01

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

ACCREDITED

Certificate #4298.01

	-	,	
Report No.	Version	Description	Issued Date
S19112901716001	Rev.01	Initial issue of report	Mar 13, 2020

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

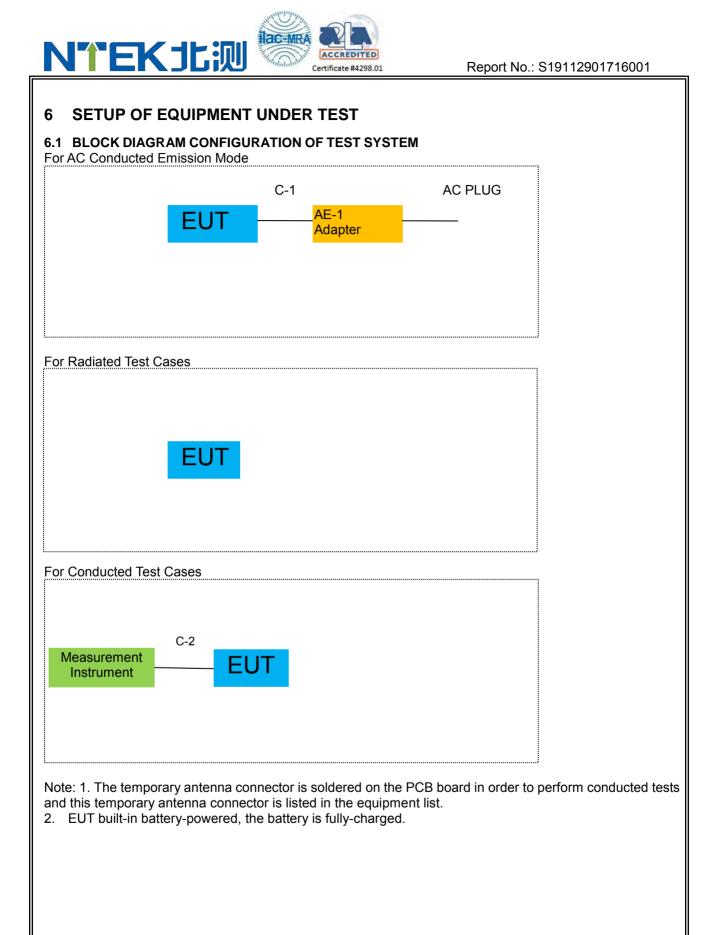
Channel	Frequency(MHz)	
0	2402	
1	2403	
39	2441	
40 2442		
77	2479	
78	2480	

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission		
Final Test Mode Description		
Mode 1 normal link mode		

Note: AC power line Conducted Emission was tested under maximum output power.


For Radiated Test Cases				
Final Test Mode	Description			
Mode 1	normal link mode			
Mode 2	CH00(2402MHz)			
Mode 3	CH39(2441MHz)			
Mode 4	CH78(2480MHz)			

Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases				
Final Test Mode	Description			
Mode 2	CH00(2402MHz)			
Mode 3	CH39(2441MHz)			
Mode 4	CH78(2480MHz)			
Mode 5	Hopping mode			
Note: The engineering	p test program was provided and the FUT was programmed to be in continuous			

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

1. AC power line Conducted Emission was tested under maximum output power.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
AE-1	Adapter	N/A	A824A-120150U-EU1	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	NO	NO	1.0m
C-2	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

NTEK北测

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

		est equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2019.05.13	2020.05.12	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2019.08.28	2020.08.27	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2019.08.28	2020.08.27	1 year
4	Test Receiver	R&S	ESPI7	101318	2019.05.13	2020.05.12	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2019.04.15	2020.04.14	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2018.05.19	2020.05.18	2 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2019.04.15	2020.04.14	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2019.12.11	2020.12.10	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2019.08.06	2020.08.05	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2019.12.11	2020.12.10	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2019.08.06	2020.08.05	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2017.04.21	2020.04.20	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2017.04.21	2020.04.20	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2017.04.21	2020.04.20	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2017.04.21	2020.04.20	3 year
16	Filter	TRILTHIC	2400MHz	29	2017.04.19	2020.04.18	3 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

ACCRED

Certificate #4298.01

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2019.05.13	2020.05.12	1 year
2	LISN	R&S	ENV216	101313	2019.04.15	2020.04.14	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2019.05.13	2020.05.12	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2018.05.19	2020.05.18	2 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2017.04.21	2020.04.20	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2017.04.21	2020.04.20	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2017.04.21	2020.04.20	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

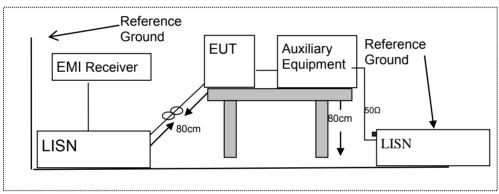
7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a) and KDB 174176 D01 Line Conducted FAQ v01r01

7.1.2 Conformance Limit


	Conducted Emission Limit			
Frequency(MHz)	Quasi-peak	Average		
0.15-0.5	66-56*	56-46*		
0.5-5.0	56	46		
5.0-30.0	60	50		

Note: 1. *Decreases with the logarithm of the frequency

2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

7.1.5 Test Results

Pass

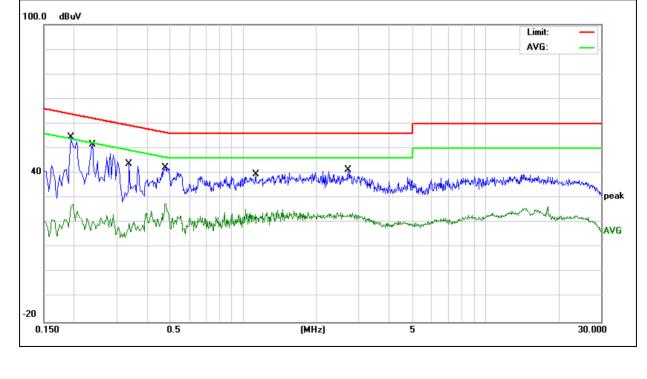
7.1.6 Test Results

EUT :	Panoramic Camera	Model Name :	PIONA1925/A
Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode :	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demente
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	- Remark
0.1580	49.65	9.74	59.39	65.56	-6.17	QP
0.1580	19.52	9.74	29.26	55.56	-26.30	AVG
0.2380	41.37	9.74	51.11	62.16	-11.05	QP
0.2380	16.46	9.74	26.20	52.16	-25.96	AVG
0.3620	39.07	9.75	48.82	58.68	-9.86	QP
0.3620	20.98	9.75	30.73	48.68	-17.95	AVG
0.5620	36.25	9.75	46.00	56.00	-10.00	QP
0.5620	20.72	9.75	30.47	46.00	-15.53	AVG
1.3460	36.38	9.76	46.14	56.00	-9.86	QP
1.3460	21.48	9.76	31.24	46.00	-14.76	AVG
2.5900	36.72	9.83	46.55	56.00	-9.45	QP
2.5900	21.79	9.83	31.62	46.00	-14.38	AVG

Remark:

1. All readings are Quasi-Peak and Average values.


Report No.: S19112901716001

EUT :	Panoramic Camera	Model Name :	PIONA1925/A
Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	1010hPa	Phase :	N
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode :	Mode 1

		1				
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1940	44.86	9.73	54.59	63.86	-9.27	QP
0.1940	17.71	9.73	27.44	53.86	-26.42	AVG
0.2379	41.95	9.74	51.69	62.17	-10.48	QP
0.2379	12.32	9.74	22.06	52.17	-30.11	AVG
0.3379	34.00	9.74	43.74	59.25	-15.51	QP
0.3379	10.74	9.74	20.48	49.25	-28.77	AVG
0.4779	32.74	9.75	42.49	56.38	-13.89	QP
0.4779	18.16	9.75	27.91	46.38	-18.47	AVG
1.1259	29.80	9.75	39.55	56.00	-16.45	QP
1.1259	14.10	9.75	23.85	46.00	-22.15	AVG
2.7139	31.48	9.84	41.32	56.00	-14.68	QP
2.7139	14.00	9.84	23.84	46.00	-22.16	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

7.0001 alling to 1 00 1 alt 10.200			
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricte Frequency(Field Str	ength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.4	490 2400	0/F(KHz)	20 log (uV/m)	300
0.490~1.7	705 2400	0/F(KHz)	20 log (uV/m)	30
1.705~30	0.0	30	29.5	30
30-88		100	40	3
88-216	3	150	43.5	3
216-96	0	200	46	3
Above 9	60	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/m) (at 3M)				
	PEAK	AVERAGE			
Above 1000	74	54			

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

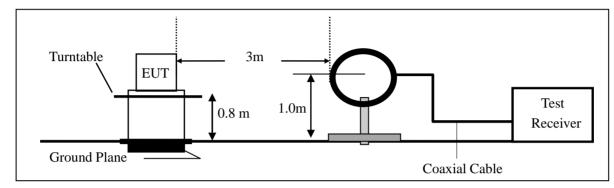
3. For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);


Limit line=Specific limits(dBuV) + distance extrapolation factor.

7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

(b) For radiated emissions from 30MHz to 1000MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.

- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz:
 Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission to	During the radiated emission test, the Spectrum Analyzer was set with the following configurations:									
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth							
30 to 1000	QP	120 kHz	300 kHz							
Above 1000	Peak		1 MHz							
Above 1000	Average	1 MHz	10 Hz							

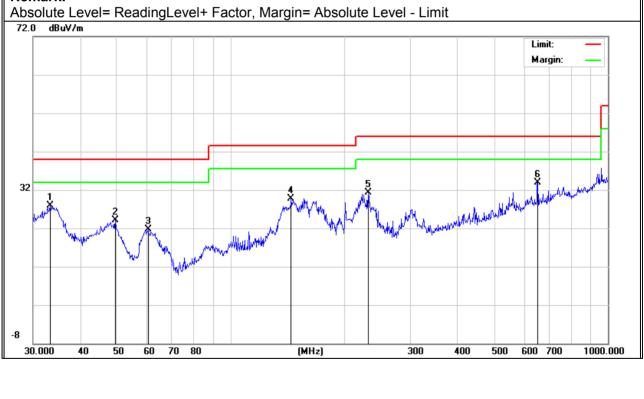
Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz])., the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

EUT:	Panoramic Camera	Model No.:	PIONA1925/A
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Jerry Xie

Freq.	Ant.Pol.	Emission L	evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK AV		PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.



Spurious Emission below 1GHz (30MHz to 1GHz)
 All the modulation modes have been tested, and the worst result was report as below:

EUT:	Panoramic Camera	Model Name:	PIONA1925/A
Temperature:	20 ℃	Relative Humidity:	48%
Pressure:	1010hPa	Test Mode:	Mode 1
Test Voltage:	DC 3.8V		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark	
(H/V)	(MHz)	(dBuV)	(dB) (dBuV/m)		(dBuV/m)	(dB)		
V	33.3279	10.74	17.18	27.92	40.00	-12.08	QP	
V	49.5328	14.73	9.34	24.07	40.00	-15.93	QP	
V	60.4919	15.77	5.96	21.73	40.00	-18.27	QP	
V	144.8418	17.54	12.25	29.79	43.50	-13.71	QP	
V	231.7179	20.27	11.07	31.34	46.00	-14.66	QP	
V	651.9417	11.53	22.43	33.96	46.00	-12.04	QP	

Remark:

Report No.: S19112901716001

Polar (H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	147.9214	10.17	12.03	22.20	43.50	-21.30	QP
Н	160.3456	11.65	10.78	22.43	43.50	-21.07	QP
Н	225.3080	21.88	10.89	32.77	46.00	-13.23	QP
Н	245.9508	16.47	13.02	29.49	46.00	-16.51	QP
Н	307.8313	11.40	14.91	26.31	46.00	-19.69	QP
Н	425.0280	8.83	18.42	27.25	46.00	-18.75	QP
	ELevel= Reading ₩/m	gLevel+ Facto	r, Margin= /	Absolute Level	- Limit	Limit: Margin:	_
32		Magnet Wether Market	ntully Martin		5. Mary Mary Mary Mary Mary Mary Mary Mary	yman Maria	
8	40 50 60	70 80	(MH;	2)	300 400 50	0 600 700	1000.000

EUT:	Panoramic Camera Model No.:					PIC)NA1925/A	١			
Temperatu	ire:	20 ℃		Relative Humidity: 4			48%	48%			
Test Mode	:	Mode2	/Mode3/Mo	ode4	Test	By:		Jerry Xie			
All the mod	dulation m	odes hav	e been tes	ted, a	nd the	e worst res	ult was	rep	ort as belo	W:	
Frequenc V	Read Level	Cable loss	Antenna Factor	Prea Fac	•	Emission Level	Limit	ts	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dl	3)	(dBµV/m)	(dBµV	/m)	(dB)		
			Low Cha	annel (2402	MHz)(GFS	K)Abo	ove	1G		•
#######							74.0	0	-15.82	Pk	Vertical
#######	40.89	5.21	35.59	44.	30	37.39	54.0	0	-16.61	AV	Vertical
#######	60.69	6.48	36.27	44.	60	58.84	74.0	0	-15.16	Pk	Vertical
#######	41.44	6.48	36.27	44.	60	39.59	54.0	0	-14.41	AV	Vertical
#######	60.79	5.21	35.55	44.	30	57.25	74.0	0	-16.75	Pk	Horizontal
#######	41.39	5.21	35.55	44.30		37.85	54.0	0	-16.15	AV	Horizontal
#######	61.43	6.48	36.27	44.52		59.66	74.0	0	-14.34	Pk	Horizontal
#######	41.79	6.48	36.27	44.	52	40.02	54.00		-13.98	AV	Horizontal
			Mid Cha	nnel (2	2441	MHz)(GFS	K)Abo	ove	1G		
#######	61.31	5.21	35.66	44.	20	57.98	74.0	0	-16.02	Pk	Vertical
#######	40.42	5.21	35.66	44.	20	37.09	54.0	0	-16.91	AV	Vertical
#######	60.15	7.10	36.50	44.	43	59.32	74.0	0	-14.68	Pk	Vertical
#######	40.26	7.10	36.50	44.	43	39.43	54.0	0	-14.57	AV	Vertical
#######	61.89	5.21	35.66	44.	20	58.56	74.0	0	-15.44	Pk	Horizontal
#######	41.07	5.21	35.66	44.	-	37.74	54.0	0	-16.26	AV	Horizontal
#######	61.38	7.10	36.50	44.	43	60.55	74.0	0	-13.45	Pk	Horizontal
#######	41.94	7.10	36.50	44.		41.11	54.0	-	-12.89	AV	Horizontal
			High Cha	nnel (2480	MHz)(GFS	K) Ab	ove	1G		
#######	60.34	5.21	35.52	44.	21	56.86	74.0	0	-17.14	Pk	Vertical
#######	40.61	5.21	35.52	44.	21	37.13	54.0	0	-16.87	AV	Vertical
#######	60.75	7.10	36.53	44.	60	59.78	74.0	0	-14.22	Pk	Vertical
#######	40.49	7.10	36.53	44.	60	39.52	54.0	-	-14.48	AV	Vertical
#######	61.89	5.21	35.52	44.	21	58.41	74.0	0	-15.59	Pk	Horizontal
#######	42.56	5.21	35.52	44.	21	39.08	54.0	0	-14.92	AV	Horizontal
#######	60.99	7.10	36.53	44.	60	60.02	74.0	0	-13.98	Pk	Horizontal
########	42.90	7.10	36.53	44.	60	41.93	54.0	0	-12.07	AV	Horizontal

ACCRED

Certificate #4298.01

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

EUT:	ous Emissio		ic Camera	1	Model			1	A1925/A		
Temperati	ure:	20 ℃		F	Relati	ve Humidit	v:	48%			
Test Mode		Mode2/ M					Jerry Xie				
						the worst result was report as below:					
Frequenc	Meter	Cable	Antenna		amp	Emission					
y	Reading	Loss	Factor	Fac	ctor	Level	Lin	nits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(d	B)	(dBµV/m)	(dBµ	V/m)	(dB)	Туре	
1Mbps(GFSK)- Non-hopping											
2310.00	61.58	2.97	27.80	43	.80	48.55	7	4	-25.45	Pk	Horizontal
2310.00	40.17	2.97	27.80	43	.80	27.14	5	4	-26.86	AV	Horizontal
2310.00	60.94	2.97	27.80	43	.80	47.91	7		-26.09	Pk	Vertical
2310.00	41.50	2.97	27.80	43	.80	28.47	5	4	-25.53	AV	Vertical
2390.00	61.94	3.14	27.21	43.80		48.49	7	4	-25.51	Pk	Vertical
2390.00	42.63	3.14	27.21	43	.80	29.18	5	4	-24.82	AV	Vertical
2390.00	59.46	3.14	27.21	43	.80	46.01	7	4	-27.99	Pk	Horizontal
2390.00	41.80	3.14	27.21	43	.80	28.35	5	4	-25.65	AV	Horizontal
2483.50	60.79	3.58	27.70	44	.00	48.07	7	4	-25.93	Pk	Vertical
2483.50	41.99	3.58	27.70	44	.00	29.27	5	4	-24.73	AV	Vertical
2483.50	59.64	3.58	27.70	44	.00	46.92	7	4	-27.08	Pk	Horizontal
2483.50	42.99	3.58	27.70	44	.00	30.27	5	4	-23.73	AV	Horizontal
			1	Mbps	s (GFS	SK)- hoppin	g				
2310.00	60.48	2.97	27.80	43	.80	47.45	7	4	-26.55	Pk	Horizontal
2310.00	42.42	2.97	27.80	43	.80	29.39	5	4	-24.61	AV	Horizontal
2310.00	60.14	2.97	27.80	43	.80	47.11	7	4	-26.89	Pk	Vertical
2310.00	41.45	2.97	27.80	43	.80	28.42	5	4	-25.58	AV	Vertical
2390.00	61.50	3.14	27.21	43	.80	48.05	7	4	-25.95	Pk	Vertical
2390.00	41.64	3.14	27.21	43	.80	28.19	5	4	-25.81	AV	Vertical
2390.00	60.81	3.14	27.21	43	.80	47.36	7	4	-26.64	Pk	Horizontal
2390.00	42.99	3.14	27.21	43	.80	29.54	5	4	-24.46	AV	Horizontal
2483.50	59.75	3.58	27.70	44	.00	47.03	7	4	-26.97	Pk	Vertical
2483.50	40.18	3.58	27.70	44	.00	27.46	5	4	-26.54	AV	Vertical
2483.50	60.45	3.58	27.70	44	.00	47.73	7	4	-26.27	Pk	Horizontal
2483.50	42.41	3.58	27.70	44	.00	29.69	5	4	-24.31	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

UT:		Pan	oramic C	Camera	Model N	lo.:	PI	PIONA1925/A			
Temp	erature:	20 °	С		Relative	Relative Humidity:		48%			
Test Mode: Mode2/ Mode4			Test By	:	Je	rry Xie					
All the modulation modes have been tested, a			, and the v	vorst resul	t was r	eport as b	elow:				
	Frequenc	Readin	Cable	Antenn	Preamp	Emission	Limits	s Margin	Detecto		
	у	g Level	Loss	а	Factor	Level		, wiargin	r	Comment	
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµ V/m)	(dBµ V/m)		Туре	oominent	
	3260	62.28	4.04	29.57	44.70	51.19	74	-22.81	Pk	Vertical	
	3260	49.55	4.04	29.57	44.70	38.46	54	-15.54	AV	Vertical	
	3260	60.05	4.04	29.57	44.70	48.96	74	-25.04	Pk	Horizontal	
	3260	50.34	4.04	29.57	44.70	39.25	54	-14.75	AV	Horizontal	
	3332	60.44	4.26	29.87	44.40	50.17	74	-23.83	Pk	Vertical	
	3332	50.08	4.26	29.87	44.40	39.81	54	-14.19	AV	Vertical	
	3332	62.13	4.26	29.87	44.40	51.86	74	-22.14	Pk	Horizontal	
	3332	49.63	4.26	29.87	44.40	39.36	54	-14.64	AV	Horizontal	
	17797	40.92	10.99	43.95	43.50	52.36	74	-21.64	Pk	Vertical	
	17797	30.52	10.99	43.95	43.50	41.96	54	-12.04	AV	Vertical	
	17788	41.00	11.81	43.69	44.60	51.90	74	-22.10	Pk	Horizontal	
	17788	29.87	11.81	43.69	44.60	40.77	54	-13.23	AV	Horizontal	

ACCREDIT

Certificate #4298.01

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

VBW ≥ RBW

Sweep = auto

Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	Panoramic Camera	Model No.:	PIONA1925/A
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Jerry Xie

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Measurement Bandwidth or Channel Separation RBW: Start with the RBW set to approximately 3% of the channel spacing; adjust as necessary to best identify the center of each individual channel. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	Panoramic Camera	Model No.:	PIONA1925/A
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Jerry Xie

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 Test Results

EUT:	Panoramic Camera	Model No.:	PIONA1925/A
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Jerry Xie

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4 DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to (1600 / 6 / 79) x (0.4 x 79) = 106.67 hops.
- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	Panoramic Camera	Model No.:	PIONA1925/A
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Jerry Xie

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW \geq the 20 dB bandwidth of the emission being measured VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	Panoramic Camera	Model No.:	PIONA1925/A
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Jerry Xie

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Panoramic Camera	Model No.:	PIONA1925/A
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Jerry Xie

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level. Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

The worst mode is GFSK mode, and the report only show the worst mode data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible partyshall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached FPCB antenna (Gain:1.81dBi). It comply with the standard requirement.

NTEK北测

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Certificate #4298 01

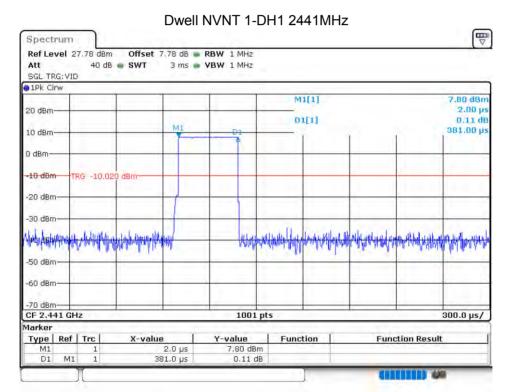
7.11.2 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

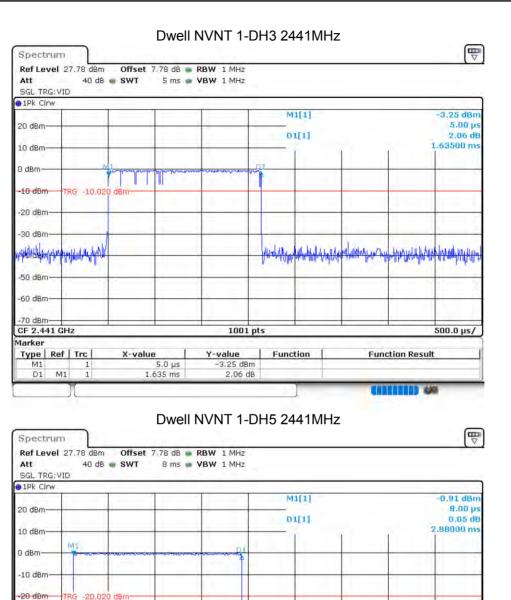

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

8 TEST RESULTS

8.1 DWELL TIME

Condition	Mode	Frequency	Pulse Time	Total Dwell	Period Time	Limit	Verdict
		(MHz)	(ms)	Time (ms)	(ms)	(ms)	
NVNT	1-DH1	2441	0.381	121.92	31600	400	Pass
NVNT	1-DH3	2441	1.635	261.6	31600	400	Pass
NVNT	1-DH5	2441	2.88	307.2	31600	400	Pass
NVNT	2-DH1	2441	0.382	122.24	31600	400	Pass
NVNT	2-DH3	2441	1.64	262.4	31600	400	Pass
NVNT	2-DH5	2441	2.88	307.2	31600	400	Pass
NVNT	3-DH1	2441	0.387	123.84	31600	400	Pass
NVNT	3-DH3	2441	1.625	260	31600	400	Pass
NVNT	3-DH5	2441	2.88	307.2	31600	400	Pass

Function Result


800.0 µs/

di kana anta a panta alaha da ana ang bata

1001 pts

Y-value

-0.91 dBm 0.05 dB Function

ACCREDITED

Certificate #4298.01

Version.1.2

-30 dBm

-50 dBm---60 dBm----70 dBm----

CF 2.441 GHz Marker

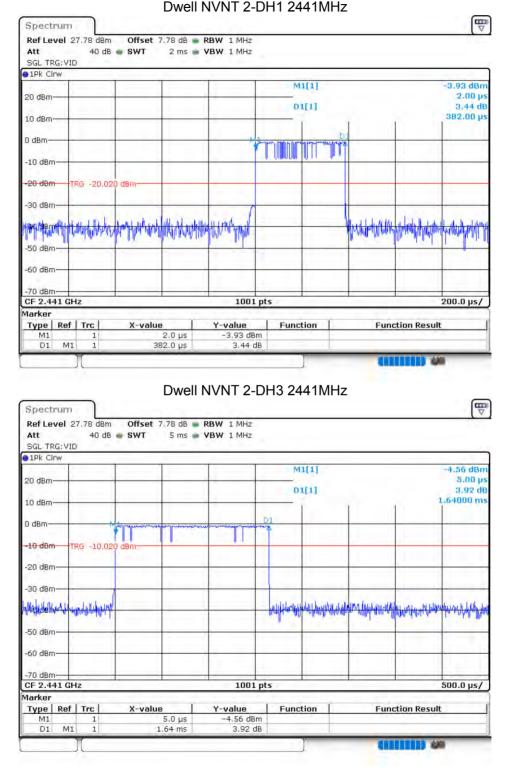
M1

D1 M1 1

Type | Ref | Trc

1

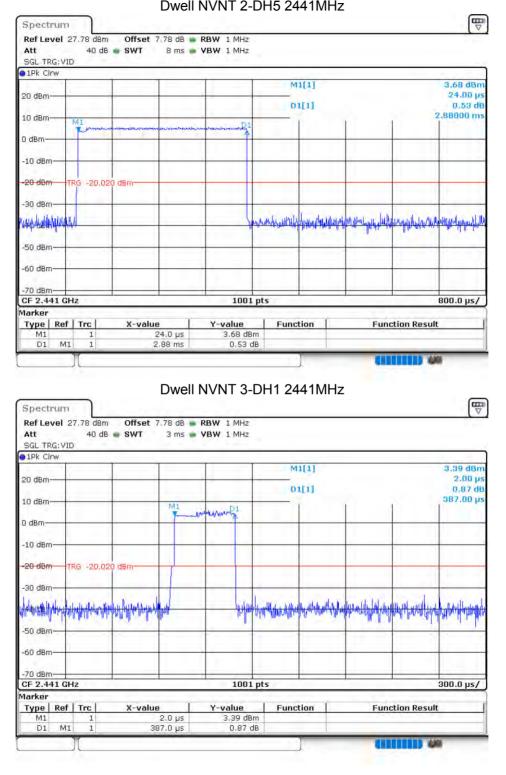
X-value


8.0 µs 2.88 ms

Page 36 of 83

Dwell NVNT 2-DH1 2441MHz

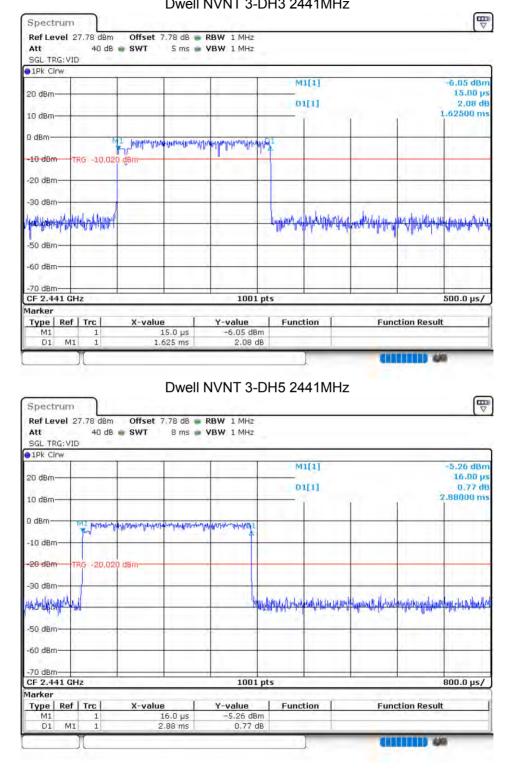
ACCREDITED



Dwell NVNT 2-DH5 2441MHz

ACCREDITED

Certificate #4298.01



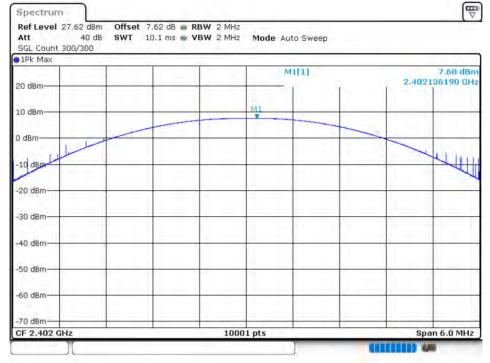
ACCREDITED

Certificate #4298.01

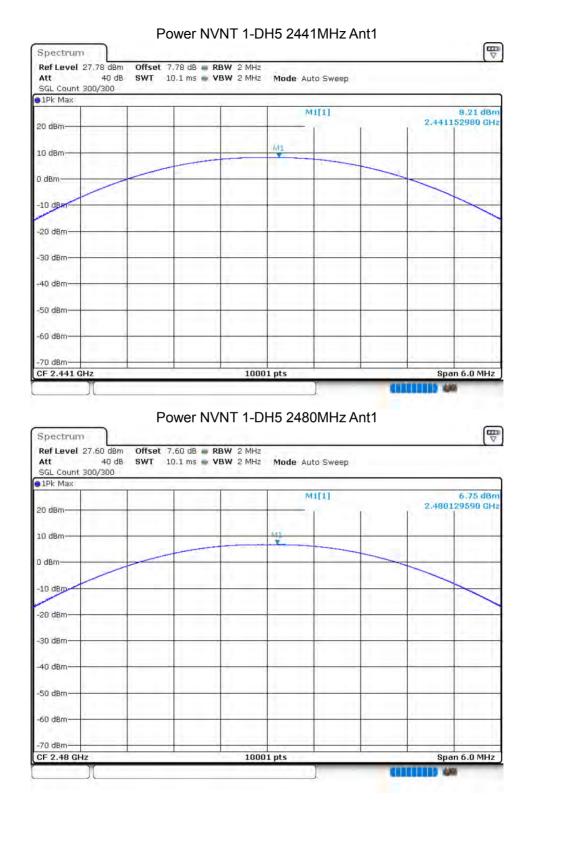
NTEK北测

Report No.: S19112901716001

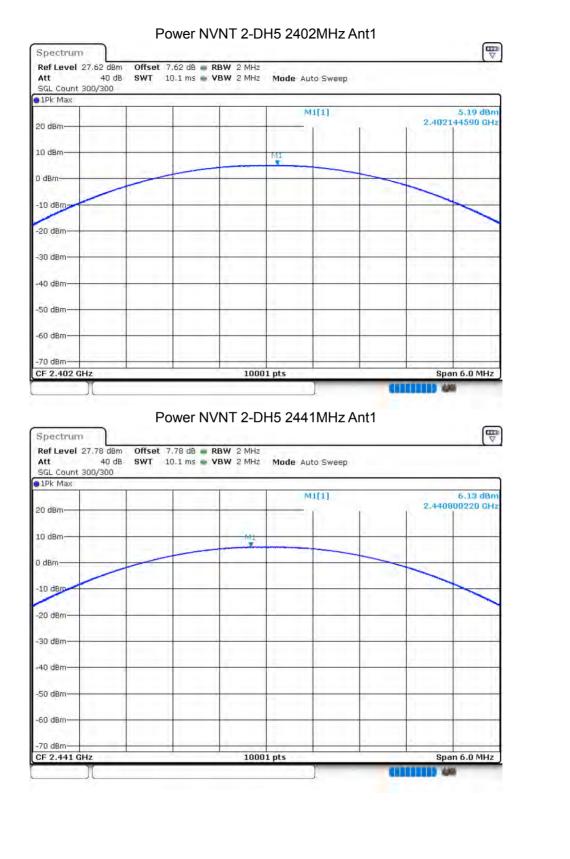
8.2 MAXIMUM CONDUCTED OUTPUT POWER

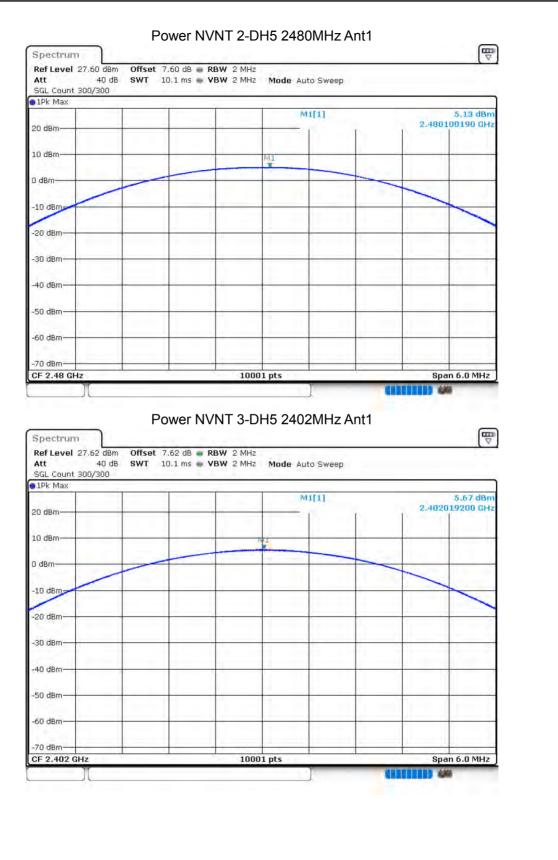

Condition	Mode	Frequency (MHz)	Antenna	Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant 1	7.601	30	Pass
NVNT	1-DH5	2441	Ant 1	8.211	30	Pass
NVNT	1-DH5	2480	Ant 1	6.754	30	Pass
NVNT	2-DH5	2402	Ant 1	5.192	20.97	Pass
NVNT	2-DH5	2441	Ant 1	6.132	20.97	Pass
NVNT	2-DH5	2480	Ant 1	5.128	20.97	Pass
NVNT	3-DH5	2402	Ant 1	5.671	20.97	Pass
NVNT	3-DH5	2441	Ant 1	6.537	20.97	Pass
NVNT	3-DH5	2480	Ant 1	5.437	20.97	Pass

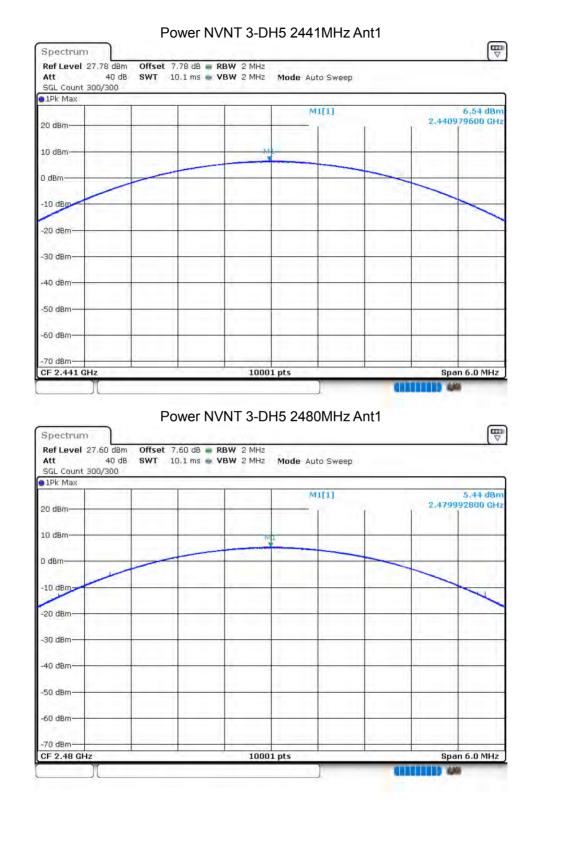
ACCREDITED


Certificate #4298.01

ilac-M


Power NVNT 1-DH5 2402MHz Ant1

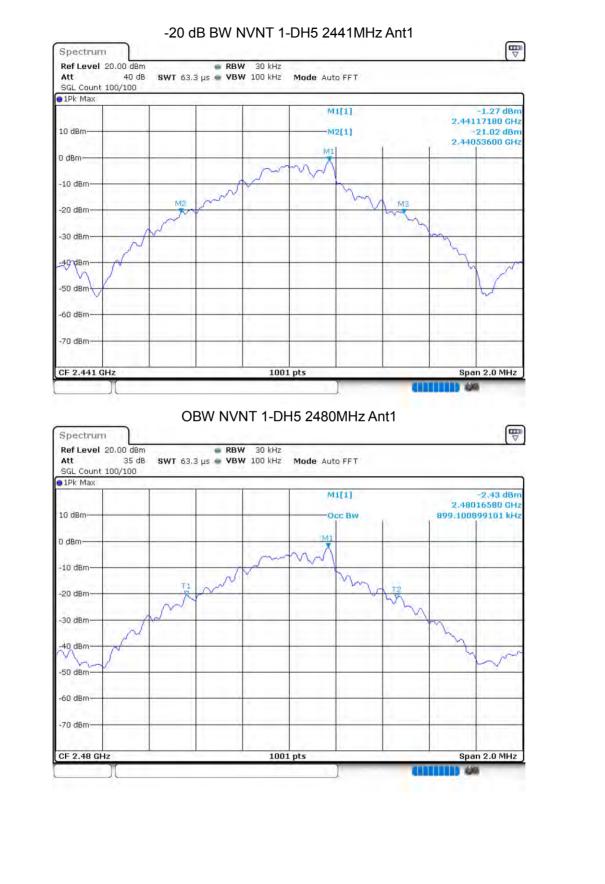




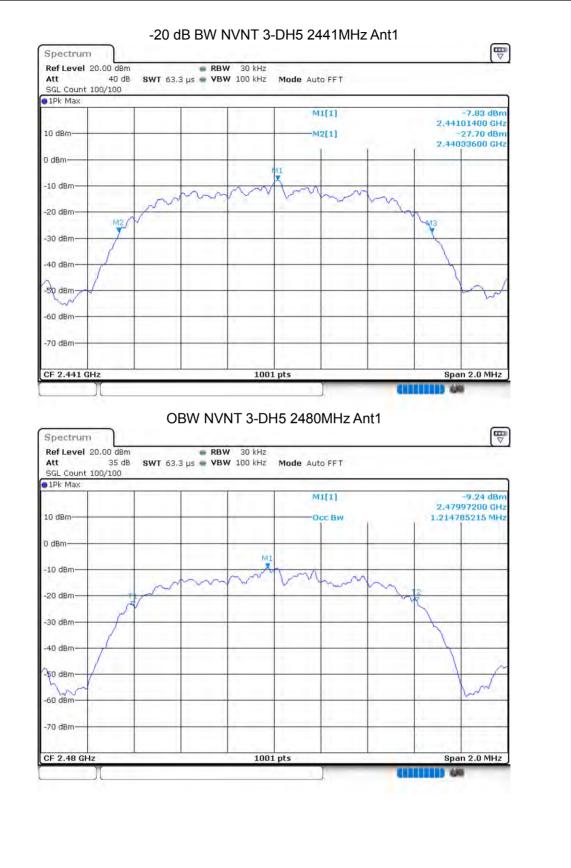
Version.1.2

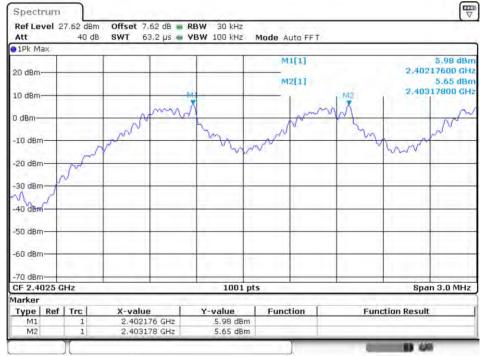
8.3 OCCUPIED CHANNEL BANDWIDTH

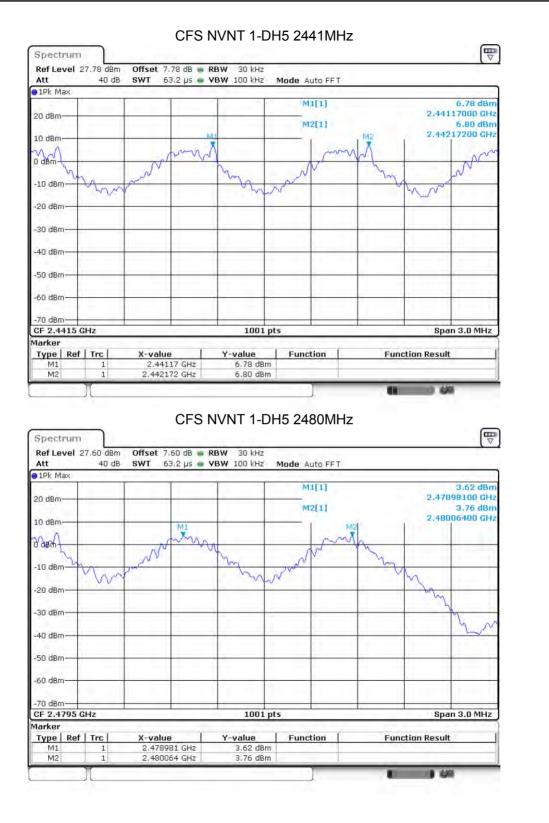
Condition	Mode	Frequency	Antenna	99% OBW	-20 dB Bandwidth	Verdict
Contaition	Wiede	(MHz)	/ internite	(MHz)	(MHz)	Verdiet
NVNT	1-DH5	2402	Ant 1	0.9351	0.962	Pass
NVNT	1-DH5	2441	Ant 1	0.8971	0.954	Pass
NVNT	1-DH5	2480	Ant 1	0.8991	0.954	Pass
NVNT	2-DH5	2402	Ant 1	1.2108	1.37	Pass
NVNT	2-DH5	2441	Ant 1	1.2048	1.358	Pass
NVNT	2-DH5	2480	Ant 1	1.2108	1.364	Pass
NVNT	3-DH5	2402	Ant 1	1.2028	1.322	Pass
NVNT	3-DH5	2441	Ant 1	1.2128	1.34	Pass
NVNT	3-DH5	2480	Ant 1	1.2148	1.33	Pass


OBW NVNT 1-DH5 2402MHz Ant1

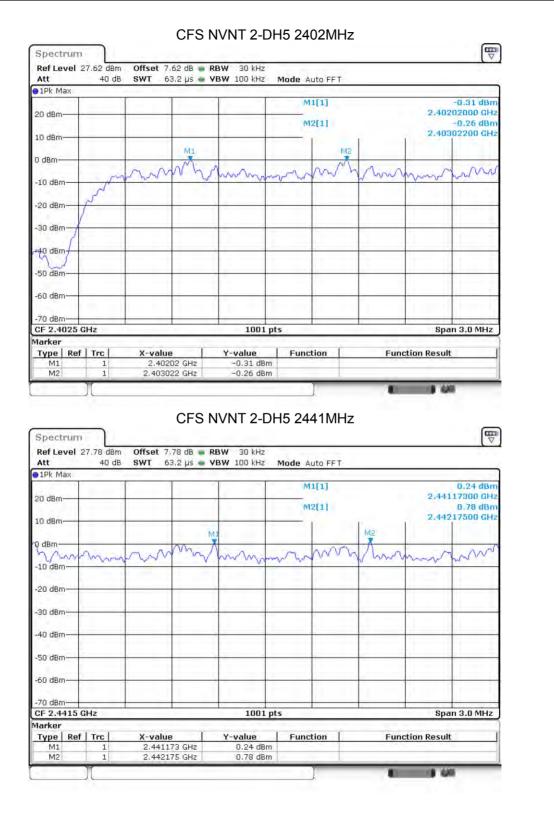




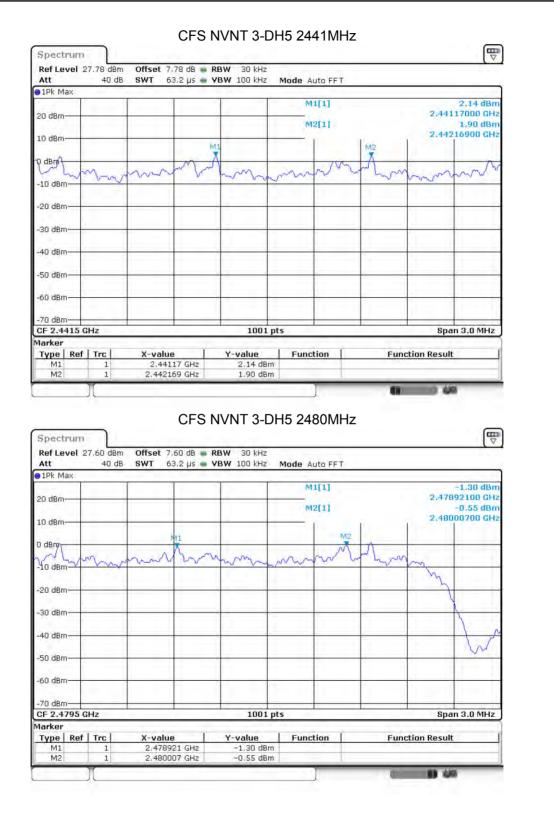



8.4 CARRIER FREQUENCIES SEPARATION

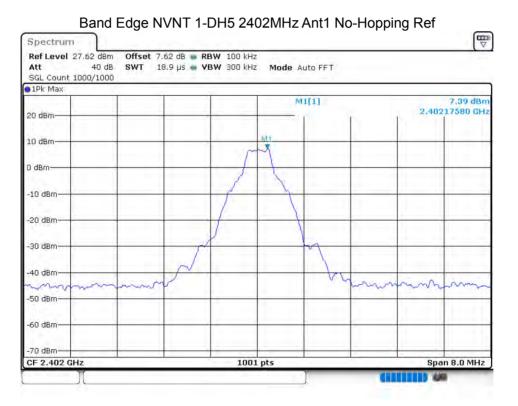
Condition	Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
		(MHz)	(MHz)	(MHz)	(MHz)	
NVNT	1-DH5	2402.176	2403.178	1.002	0.954	Pass
NVNT	1-DH5	2441.17	2442.172	1.002	0.954	Pass
NVNT	1-DH5	2478.981	2480.064	1.083	0.954	Pass
NVNT	2-DH5	2402.02	2403.022	1.002	0.909	Pass
NVNT	2-DH5	2441.173	2442.175	1.002	0.909	Pass
NVNT	2-DH5	2478.972	2479.98	1.008	0.909	Pass
NVNT	3-DH5	2402.176	2403.178	1.002	0.881	Pass
NVNT	3-DH5	2441.17	2442.169	0.999	0.887	Pass
NVNT	3-DH5	2478.921	2480.007	1.086	0.887	Pass


CFS NVNT 1-DH5 2402MHz

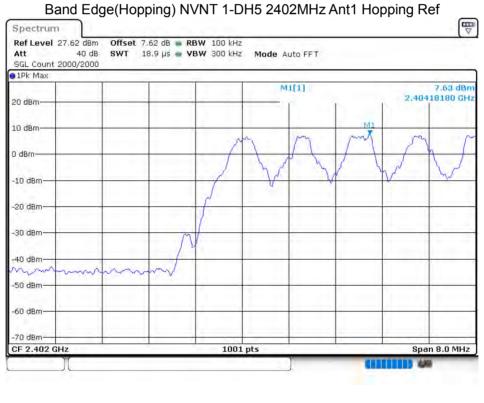




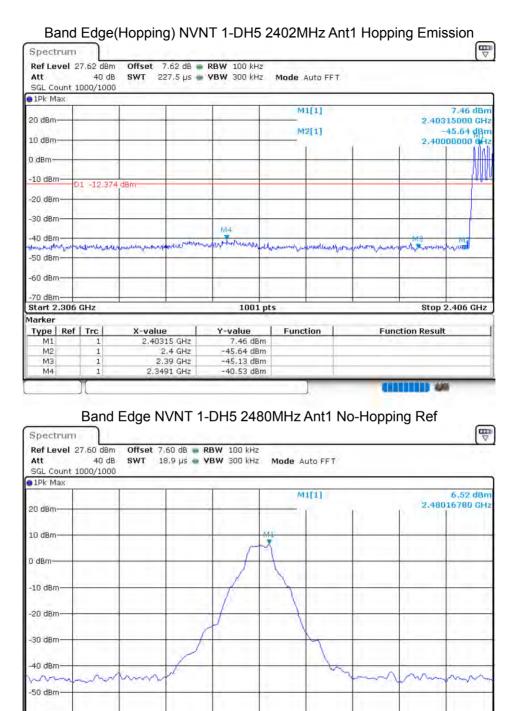
Version.1.2


8.5 NUMBER OF HOPPING CHANNEL Condition Mode Hopping Number Limit Verdict NVNT 1-DH5 79 15 Pass Hopping No. NVNT 1-DH5 2402MHz E Spectrum Offset 7.62 dB 🝙 RBW 100 kHz Ref Level 27.62 dBm Att 40 dB SWT 1 ms 🖷 VBW 300 kHz Mode Auto Sweep SGL Count 20000/20000 1Pk Max M1[1] 6.58 dBn 2.4018370 GHz 20 dBm M2[1] 6.48 dBm 2.4802435/GHz 10-dBm hanan 18nnahahananahahanah 0 der W 10 dBm 20 dBm 30 dBm 40 dBm -50 dBm--60 dBm -70 dBm Stop 2.4835 GHz Start 2.4 GHz 1001 pts Marker Type | Ref | Trc | Y-value Function **Function Result** X-value 2.401837 GHz 6.58 dBm M1 1 M2 1 2.4802435 GHz 6.48 dBm

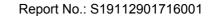
NTEK北测


8.6 BAND EDGE

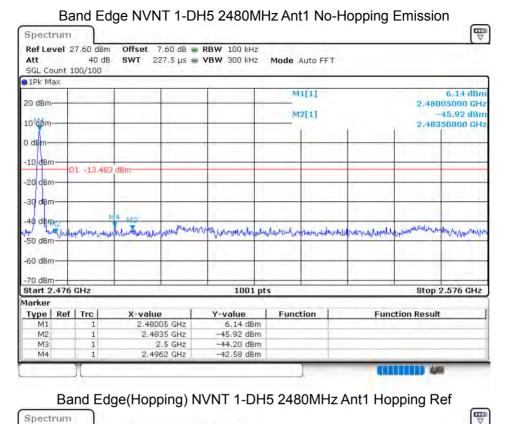
0.0 DANDL							
Condition	Mode	Frequency	Antenna	Hopping	Max Value	Limit	Verdict
		(MHz)		Mode	(dBc)	(dBc)	
NVNT	1-DH5	2402	Ant 1	No-Hopping	-48.76	-20	Pass
NVNT	1-DH5	2402	Ant 1	Hopping	-48.16	-20	Pass
NVNT	1-DH5	2480	Ant 1	No-Hopping	-49.1	-20	Pass
NVNT	1-DH5	2480	Ant 1	Hopping	-47.84	-20	Pass
NVNT	2-DH5	2402	Ant 1	No-Hopping	-44.21	-20	Pass
NVNT	2-DH5	2402	Ant 1	Hopping	-43.62	-20	Pass
NVNT	2-DH5	2480	Ant 1	No-Hopping	-46.02	-20	Pass
NVNT	2-DH5	2480	Ant 1	Hopping	-44.71	-20	Pass
NVNT	3-DH5	2402	Ant 1	No-Hopping	-43.9	-20	Pass
NVNT	3-DH5	2402	Ant 1	Hopping	-42.35	-20	Pass
NVNT	3-DH5	2480	Ant 1	No-Hopping	-44.15	-20	Pass
NVNT	3-DH5	2480	Ant 1	Hopping	-45.17	-20	Pass

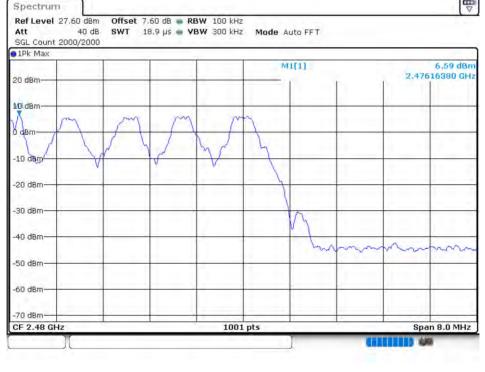


Att		27.62 dBm 40 dB 100/100			RBW 100 kHz VBW 300 kHz	Mode Au	to FFT.				₽
D1Pk M	эх				201						
	- 1					M1[1]		- 0.00	6.69 d	
20 dBm						LAGE				205000	
10 dBm	_					M2[11			-46.00 d	
20 0011						1		1	1 2.40		11.12
0 dBm-	-		-	-						1 1	
ale con					-						
-10 dBm		1 -12,61	1 dBm	-				-			
-20 dBm		8 - Sec. 1									
-20 050					1.			1			11
-30 dBm			+		1			-			1.1
				M4					1.000		
-40 dBm		1000	1.00	Tura	a Aaiz ta			1.000	M3	M	
-50 dBm	why and	himshahydres	-unapplication and	der an and and	in a subscription of the s	with and the holy have been and the	led through pub	you with an all the	Atma Otrable	ughungin tim	wyb
-SU GBU					1 1				1.0		
-60 dBm					1						11
oo abn									1		11
-70 dBm								-	-	-	
Start 2	.306	GHz		<u></u>	1001 p	ots			Stop	2.406 G	Hz
larker		V				1			1.1		
Type	Ref		X-valu		Y-value	Functio	on	Fun	ction Resul	lt	
M1		1		205 GHz	6.69 dBm						
M2		1		2.4 GHz	-46.00 dBm						-
M3	-	1		.39 GHz	-46.39 dBm						_
M4		1	2	.34 GHz	-41.38 dBm						
		T						100		10	

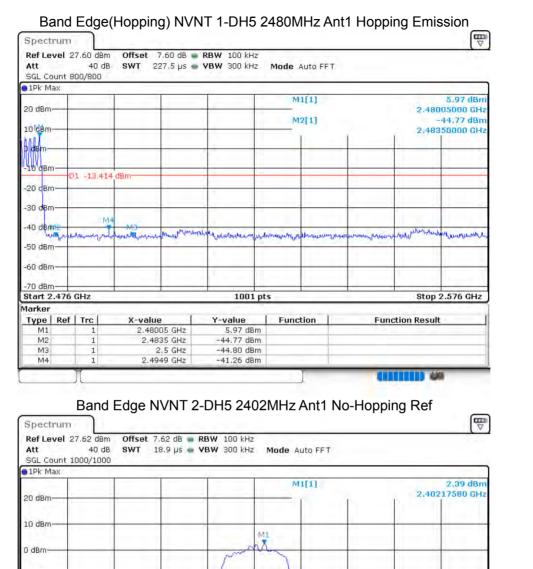


1001 pts


-60 dBm -70 dBm


CF 2.48 GHz

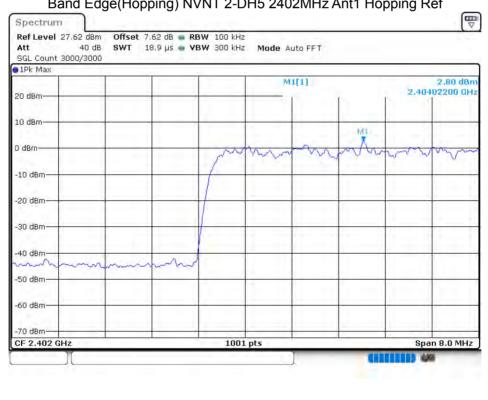
Span 8.0 MHz



1001 pts

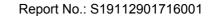
-10 dBm -20 dBm -30 dBm

-40 dBm

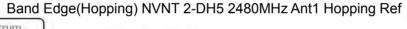

-60 dBm--70 dBm-

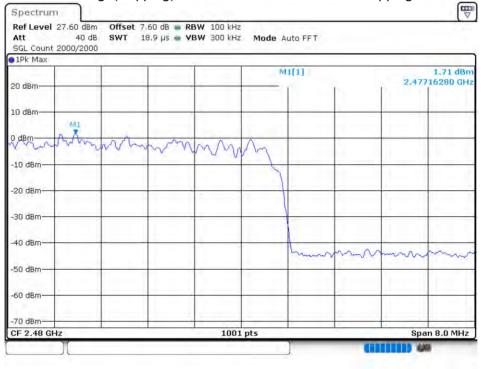
CF 2.402 GHz

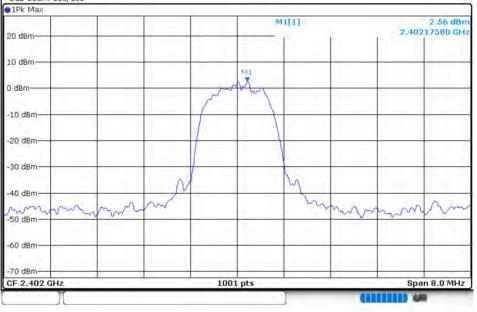
Span 8.0 MHz

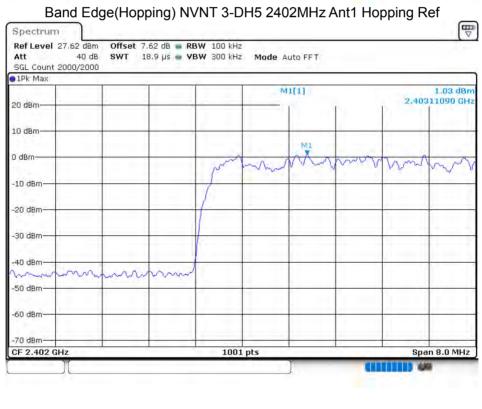


Ref Level 2 Att SGL Count 1	40 dB		RBW 100 kHz VBW 300 kHz	Mode Auto FF	т		
1Pk Max		1	1 1	M1[1]		_	2.27 dBm
20 dBm	_		-			2.40	205000 GHz
		the second s	1	M2[1]			-45.61 dBm
10 dBm	-		7		6	2.40	000000 GHz
0 dBm							T.
			1			1	1
-10 dBm			3	-	-		
0	1 -17.60	5 dBm	1				
-20 dBm							
-30 dBm-							
			M4				
-40 dBm	-	the second second		States 10.0	-	M3	NI2
-50 dBm	And Milling and	with man will be have a set	and margaret in March	where the second and the second	winder Muthan	and and the	addient have
-50 dBm						1	
-60 dBm							
							1
-70 dBm		-	-			-	
Start 2.306	GHz		1001 pt	s		Stop	2.406 GHz
larker							
Type Ref		X-value	Y-value	Function	Fun	ction Resul	t
M1 M2	1	2.40205 GHz	2.27 dBm -45.61 dBm	-			
M3	1	2.4 GHz 2.39 GHz	-45.61 dBm				
M4	1	2.35 GHz	-41.83 dBm				
11111	- · · ·	2.0000 dife	12100 00111				




Att SGL Count 1Pk Max	27.62 dBm 40 dB 500/500			RBW 100 kHz VBW 300 kHz		Auto FFT	_		
		[1		M	1[1]		- 0.00	1.06 dB
20 dBm					м	2[1]		-	95000 GH -45.72 dB 100000 GH
0 dBm				-			-		ling
-10 dBm	-	-	-	-	-	-			
-20 dBm	D1 -17.201	dBm							
-30 dBm							-	-	
-40 dBm	Later and		M4	water Manufal whe				MIS	M2
-50 dBm-	ward wards wards	and and and and a	anny and a same	and a second	and a second and the	and and and and	holomonitrationstheast	handle advantual	- Contractor
-60 dBm				-	_				
-70 dBm		· · · · · · · · · · · · · · · · · · ·		1.		1	1	1	1.00
Start 2.30 Marker	6 GHz		2	1001	pts			Stop	2.406 GH
Type Re		X-valu		Y-value	Func	tion	Fund	tion Result	
	1	2 40	595 GHz	1.06 dBr					
M1 M2	1			-45.72 dBr	n				
		2	2.4 GHz 2.39 GHz 404 GHz	-45.72 dBr -45.96 dBr -40.82 dBr	n]	(11		8
M2 M3 M4 Spectrum Ref Level	Band 27.60 dBm	2.3 Edge N	2.4 GHz 2.39 GHz 404 GHz VVNT 2- 7.60 dB • F	-45.96 dBr -40.82 dBr •DH5 248 BW 100 kHz	oMHz .		o-Hoppin	ng Ref	
M2 M3 M4 Spectrum Ref Level Att SGL Count	Band	2.3 Edge N	2.4 GHz 2.39 GHz 404 GHz VVNT 2- 7.60 dB • F	-45.96 dBr -40.82 dBr •DH5 248	oMHz .		o-Hoppin	ng Ref	۵ (۹
M2 M3 M4 Spectrum Ref Level Att	1 1 1 27.60 dBm 40 dB	2.3 Edge N	2.4 GHz 2.39 GHz 404 GHz VVNT 2- 7.60 dB • F	-45.96 dBr -40.82 dBr •DH5 248 BW 100 kHz	OMHZ A		o-Hoppin		2.26 dB
M2 M3 M4 Spectrum Ref Level Att SGL Count	1 1 1 27.60 dBm 40 dB	2.3 Edge N	2.4 GHz 2.39 GHz 404 GHz VVNT 2- 7.60 dB • F	-45.96 dBr -40.82 dBr •DH5 248 BW 100 kHz	OMHZ A	uto FFT	p-Hoppin		2.26 dB
M2 M3 M4 Spectrun Ref Level Att SGL Count • 1Pk Max	1 1 1 27.60 dBm 40 dB	2.3 Edge N	2.4 GHz 2.39 GHz 404 GHz VVNT 2- 7.60 dB • F	-45.96 dBr -40.82 dBr •DH5 248 BW 100 kHz	OMHZ A	uto FFT	p-Hoppin		2.26 dB
M2 M3 M4 Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm	1 1 1 27.60 dBm 40 dB	2.3 Edge N	2.4 GHz 2.39 GHz 404 GHz VVNT 2- 7.60 dB • F	-45.96 dBr -40.82 dBr •DH5 248 BW 100 kHz	OMHz /	uto FFT	p-Hoppin		2.26 dB
M2 M3 M4 Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm-	1 1 1 27.60 dBm 40 dB	2.3 Edge N	2.4 GHz 2.39 GHz 404 GHz VVNT 2- 7.60 dB • F	-45.96 dBr -40.82 dBr DH5 248 BW 100 kHz /BW 300 kHz	OMHz /	uto FFT	p-Hoppin		2.26 dB
M2 M3 M4 Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm	1 1 1 27.60 dBm 40 dB	2.3 Edge N	2.4 GHz 2.39 GHz 404 GHz VVNT 2- 7.60 dB • F	-45.96 dBr -40.82 dBr DH5 248 BW 100 kHz /BW 300 kHz	OMHz /	uto FFT	p-Hoppin		2.26 dB
M2 M3 M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm-	1 1 1 27.60 dBm 40 dB	2.3 Edge N	2.4 GHz 2.39 GHz 404 GHz VVNT 2- 7.60 dB • F	-45.96 dBr -40.82 dBr DH5 248 BW 100 kHz /BW 300 kHz	OMHz /	uto FFT	p-Hoppin		2.26 dB
M2 M3 M4 Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm- 10 dBm- 0 dBm-	1 1 1 27.60 dBm 40 dB	2.3 Edge N	2.4 GHz 2.39 GHz 404 GHz VVNT 2- 7.60 dB • F	-45.96 dBr -40.82 dBr DH5 248 BW 100 kHz /BW 300 kHz	OMHz /	uto FFT	p-Hoppin		2.26 dB
M2 M3 M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm-	1 1 1 27.60 dBm 40 dB	2.3 Edge N	2.4 GHz 2.39 GHz 404 GHz VVNT 2- 7.60 dB • F	-45.96 dBr -40.82 dBr DH5 248 BW 100 kHz /BW 300 kHz	OMHz /	uto FFT	p-Hoppin		2.26 dB
M2 M3 M4 Spectrum Ref Level Att SGL Count 10 dBm- 10 dBm- -10 dBm- -20 dBm-	1 1 1 27.60 dBm 40 dB	2.3 Edge N	2.4 GHz 2.39 GHz 404 GHz VVNT 2- 7.60 dB • F	-45.96 dBr -40.82 dBr DH5 248 BW 100 kHz /BW 300 kHz	OMHz /	uto FFT	p-Hoppin		2.26 dB
M2 M3 M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 1 1 27.60 dBm 40 dB	2.3 Edge N	2.4 GHz 2.39 GHz 404 GHz VVNT 2- 7.60 dB • F	-45.96 dBr -40.82 dBr DH5 248 BW 100 kHz /BW 300 kHz	OMHz /	uto FFT	p-Hoppin		2.26 dB
M2 M3 M4 Spectrum Ref Level Att SGL Count 10 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	1 1 1 27.60 dBm 40 dB	2.3 Edge N	2.4 GHz 2.39 GHz 404 GHz VVNT 2- 7.60 dB • F	-45.96 dBr -40.82 dBr DH5 248 BW 100 kHz /BW 300 kHz	OMHz /	uto FFT	p-Hoppin		2.26 dB 100800 Gł
M2 M3 M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 1 1 27.60 dBm 40 dB	2.3 Edge N	2.4 GHz 2.39 GHz 404 GHz VVNT 2- 7.60 dB • F	-45.96 dBr -40.82 dBr DH5 248 BW 100 kHz /BW 300 kHz	OMHz /	uto FFT	p-Hoppin		2.26 dB
M2 M3 M4 Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm	1 1 1 27.60 dBm 40 dB	2.3 Edge N	2.4 GHz 2.39 GHz 404 GHz VVNT 2- 7.60 dB • F	-45.96 dBr -40.82 dBr DH5 248 BW 100 kHz /BW 300 kHz	OMHz /	uto FFT	p-Hoppin		2.26 dB
M2 M3 M4 Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm- -50 dBm-	1 1 1 27.60 dBm 40 dB 1000/1000	2.3 Edge N	2.4 GHz 2.39 GHz 404 GHz VVNT 2- 7.60 dB • F	-45.96 dBr -40.82 dBr DH5 248 BW 100 kHz /BW 300 kHz	OMHz /	uto FFT	p-Hoppin	2.480	2.26 dB


Ref Le Att SGL Co	unt 1	7.60 dBm 40 dB 00/100		1 C C	RBW 100 kHz VBW 300 kHz	Mode	Auto FF T	h —		
20 dBm 10 dBm	9X						1[1] 2[1]	5.1	-	1.19 dBm 95000 GHz 45.61 dBm 50000 GHz
M1 0 dBm-										
-10 cBm	1									
-20 dBm		1 -17.74	1 dBm				_	-		
-30 dBm	-	_							11	:== :
-40 dBn -50 dBn	Anhue	isa almanya	Ers Herry Interly	unio 144 Min	monnationanty	HAMMAN	the the hadron of	timetradientic	walliterende	49 Julius William
-60 dBrr					1	_	1			
-70 dBm				-			1			+
Start 2		GHz	11		1001 pt	s	l		Stop 3	2.576 GHz
1arker	1.1	0.00				1.44	1.4		740.00	
Type M1	Ref	Trc 1	X-value 2,4799		Y-value 1.19 dBm	Fund	tion	Fund	ction Result	
M2	-	1		35 GHZ	-45.61 dBm					
MЗ		1		.5 GHz	-43.97 dBm					
M4		1	2.488	34 GHz	-43.76 dBm					



	1	1	T T	M1[1]		-0.05 dBm
20 dBm	-		-		2	47895000 GHz
10 dBm			1.1	M2[1]		-43,74 dBm 48350000 GHz
MI					1 1 4	.40030000 GHZ
ProBm			1			
-10 dBm-						
-10 CDIII-	1 month					
-20 dBm-	D1 -18.29	3 dBm				
-30 dBm						
-40 dBm	M4	MB				
Japril Aler		many who per interest the deal	how much the low prime	marin y un reversally re	dependent its being advance of a links	and have with the have me
-50 dBm	1 10 10 10 20					
-60 dBm			1			
-70 dBm-						
Start 2.47	76 GHz	<u>^</u>	1001 pt		S	top 2.576 GHz
A 17 14 17 1	10 A					
		X-value	Y-value	Function	Function Re	sult
Marker Type R			-0.05 dBm			
Type R M1	1	2.47895 GHz				
Type R M1 M2	1	2.4835 GHz	-43.74 dBm			
Type R M1	1					
Type Ro M1 M2 M3	1 1 1	2.4835 GHz 2.5 GHz	-43.74 dBm -44.10 dBm			-

	40 dB				Mode /	uto FFT.			V
эх	2.1.2								
-					M	1[1]		0.000	2.56 dBm
						Tel			46.06 dBm
_					191	2[1]			1000000,GHz
- 11			- 1				1	1 2.700	MI
				-			-	14	A
								1 1	
-			- 1				-		
D	1 -17.440	0 dBm	-			-			
			-	-					
				M4					
	1.6.6.1.4		A house of the	million .			1	Mã	M4
Alter	hirdadhahira	epakersp. http://www.	molante	and an advertise of the	rubilition	mulaydownabiode	signal have been added	uling plan jour 19	builtinger when
			-						
			-						1.000
						-	-	-	
.306	GHz			1001 p	ts	_		Stop	2.406 GHz
						1			
Ref		X-value	-	Y-value	Func	tion	Fun	ction Result	
_	1								
		2.4 GH 2.39 GH							
	1	2 30 66	2	-47.57 dBm					
	unt 1	40 dB unt 100/100 ax 01 -17,444 0 01 -17,444 0 0 01 -17,444 0 0 0 0 0 0 0 0 0 0 0 0 0	40 dB SWT 227.5 µ unt 100/100 ax 0 01 -17,440 dBm 0 01 -17,440	40 dB SWT 227.5 μs VI unt 100/100 ax C1 -17,440 dBm C1 -17,440 dBm An An A	40 dB SWT 227.5 µs VBW 300 kHz unt 100/100 ax 01 -17,440 dBm 01 -17,440 dBm M4 M4 M4 M4 M4 M4 M4 M4 M4 M4	40 dB SWT 227.5 μs VBW 300 kHz Mode A unt 100/100 3X 01 -17.440 dBm 01 -17.440 dBm M1 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4	40 dB SWT 227.5 μs VBW 300 kHz Mode Auto FFT. unt 100/100 M1[1] M2[1] M2[1] ax M1[1] M2[1] M2[1] ax M4 M4 M4 M4 M4 M4 M4<	40 dB SWT 227.5 μs VBW 300 kHz Mode Auto FFT unt 100/100 ax M1[1] M2[1] ax M2[1] M2[1] b 1 M4 M4 M4 M4 M4 M4	40 dB SWT 227.5 μs VBW 300 kHz Mode Auto FFT. unt 100/100 ax M1[1] 2.402 ax M2[1] 2.402 b a M2[1] 2.402 c a a a a c a a a a a c a a a a a a c a

Spectrum				IT 3-DH5 2				-	
Ref Level Att	27.62 dBm 40 dB			RBW 100 kHz VBW 300 kHz	Mode Au	ITO FET			
SGL Count			and He		Hous Au				
1Pk Max	-	1		1	M1[1]		-	1.63 dBm
20 dBm					M2[305000 GHz -43.58 dBm
							(2.400	000000 GHz
0 dBm									polyall
-20 dBm	D1 -18.968	dBm=				· · · · ·			إلى الطر
							1	1	
-30 dBm			M4			1.001	1	1.00	
-40 dBm	Manakah Mas	Munihan	white the second	maymonthere	miline and	apply of an 1	La comortico and been	M3	M2
-50 dBm	100 000 U.M.	a name destantes			and a such and the	and the Area	and a second second	- or drawn , and	in William
-60 dBm								-	
-70 dBm-								-	0.405.000
Start 2.306 Narker	GHZ			1001 pt	s		_	Stop	2.406 GHz
Type Ref		X-value		Y-value	Functio	on	Fun	tion Result	t d
M1 M2	1		15 GHz	1.63 dBm -43.58 dBm					
		2.	.4 GHZ	-43.50 upm					
M3 M4		2.3 2.340	.4 GHz 89 GHz 01 GHz VNT 3-	-44.72 dBm -41.32 dBm) MHz A	nt1 No	D-Hoppi	ng Ref	
M3 M4 Spectrum Ref Level	Band	2.340 2.340 Edge N Offset 7.0	89 GHz 01 GHz VNT 3- 60 dB • F	-44.72 dBm -41.32 dBm -DH5 2480	8.20		o-Hoppi	ng Ref	
M3 M4 Spectrum	1 1 Band 27.60 dBm 40 dB	2.340 2.340 Edge N Offset 7.0	89 GHz 01 GHz VNT 3- 60 dB • F	-44.72 dBm -41.32 dBm	8.20		o-Hoppi	ng Ref	
M3 M4 Spectrum Ref Level Att SGL Count	1 1 Band 27.60 dBm 40 dB	2.340 2.340 Edge N Offset 7.0	89 GHz 01 GHz VNT 3- 60 dB • F	-44.72 dBm -41.32 dBm -DH5 2480	Mode Aut	O FFT	o-Hoppi	ng Ref	
M3 M4 Spectrum Ref Level Att SGL Count 1Pk Max	1 1 Band 27.60 dBm 40 dB	2.340 2.340 Edge N Offset 7.0	89 GHz 01 GHz VNT 3- 60 dB • F	-44.72 dBm -41.32 dBm -DH5 2480	8.20	O FFT	o-Hoppi		1.20 dBm 101600 GH2
M3 M4 Spectrum Ref Level Att SGL Count IPk Max 20 dBm	1 1 Band 27.60 dBm 40 dB	2.340 2.340 Edge N Offset 7.0	89 GHz 01 GHz VNT 3- 60 dB • F	-44.72 dBm -41.32 dBm	Mode Aut	O FFT	o-Hoppi		1.20 dBm
M3 M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	1 1 Band 27.60 dBm 40 dB	2.340 2.340 Edge N Offset 7.0	89 GHz 01 GHz VNT 3- 60 dB • F	-44.72 dBm -41.32 dBm -DH5 2480	Mode Aut	O FFT	o-Hoppi		1.20 dBm
M3 M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	1 1 Band 27.60 dBm 40 dB	2.340 2.340 Edge N Offset 7.0	89 GHz 01 GHz VNT 3- 60 dB • F	-44.72 dBm -41.32 dBm	Mode Aut	O FFT	o-Hoppi		1.20 dBm
M3 M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm	1 1 Band 27.60 dBm 40 dB	2.340 2.340 Edge N Offset 7.0	89 GHz 01 GHz VNT 3- 60 dB • F	-44.72 dBm -41.32 dBm	Mode Aut	O FFT	p-Hoppi		1.20 dBm
M3 M4 Spectrum Ref Level Att SGL Count IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	1 1 Band 27.60 dBm 40 dB	2.340 2.340 Edge N Offset 7.0	89 GHz 01 GHz VNT 3- 60 dB • F	-44.72 dBm -41.32 dBm	Mode Aut	O FFT	p-Hoppi		1.20 dBm
M3 M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm	1 1 Band 27.60 dBm 40 dB	2.340 2.340 Edge N Offset 7.0	89 GHz 01 GHz VNT 3- 60 dB • F	-44.72 dBm -41.32 dBm	Mode Aut	O FFT	p-Hoppi		1.20 dBm
M3 M4 Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm	1 1 Band 27.60 dBm 40 dB	2.340 2.340 Edge N Offset 7.0	89 GHz 01 GHz VNT 3- 60 dB • F	-44.72 dBm -41.32 dBm	Mode Aut	O FFT	p-Hoppi		1.20 dBm
M3 M4 Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm	1 1 Band 27.60 dBm 40 dB	2.340 2.340 Edge N Offset 7.0	89 GHz 01 GHz VNT 3- 60 dB • F	-44.72 dBm -41.32 dBm	Mode Aut	O FFT			1.20 dBm

8

Att SGL Cou	IM el 27.60 dBm 40 dB nt 200/200	Offset 7.60 dB SWT 227.5 μs	RBW 100 kHz VBW 300 kHz	Mode Auto FFT		
20 dBm— 10 dBm—				M1[1] M2[1]	. 5	2.24 dBm 2.48015000 GHz -46.04 dBm 2.48350000 GHz
0 dBm						
-20 dBm-	D1 -18,803	dBm	1			
-40 dBm -50 dBm-	MA Mandadaman My	1015 Hendheilian Turniget helen Alamak	-	personal production and the	ablema de comunadore	punulumunum
-60 dBm- -70 dBm- Start 2.4	76 GHz		1001 pt			Stop 2.576 GHz
larker Type F M1	Ref Trc	X-value 2.48015 GHz	Y-value 2.24 dBm	Function	Function	n Result
M2 M3 M4	1	2.4835 GHz 2.5 GHz 2.494 GHz	-46.04 dBm -45.01 dBm -42.96 dBm			
	N				CIRCO	
1		ge(Hopping) N	IVNT 3-DH	5 2480MHz	Ant1 Hoppi	ng Ref
	el 27.60 dBm 40 dB	Offset 7.60 dB 👜 SWT 18.9 µs 🛶	RBW 100 kHz VBW 300 kHz r	Mode Auto FFT		
Spectru Ref Leve Att SGL Cou	nt 2000/2000			M1[1]		2,24 dBm
Spectru Ref Leve Att					É – É	2.47916080 GHz

1001 pts

-20 dBm

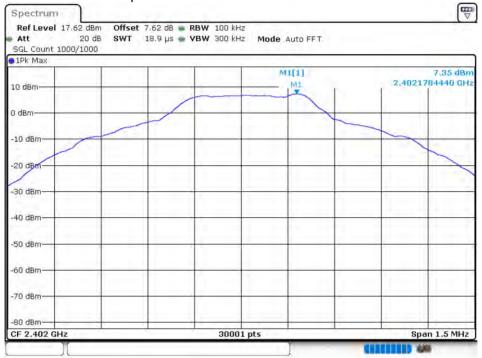
-30 dBm--40 dBm--50 dBm--60 dBm--70 dBm-

CF 2.48 GHz

Span 8.0 MHz

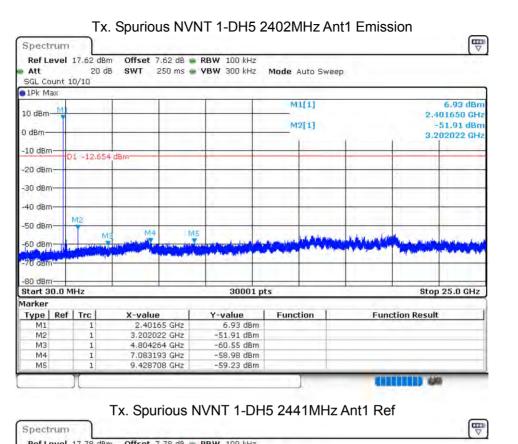
10

Spectrum								
Ref Level Att	40 di		RBW 100 kHz VBW 300 kHz	Mode Auto Fl	F.T.			
SGL Count	500/500			-				
				M1[1]		-0.08 dBm		
20 dBm			-			2.47695000 GH2 -44.48 dBn		
10.10				M2[1]				
10 dBm	1				6	2.48350000 GHz		
dBm-								
Martin						A second at the second at		
-10 cBm			>	1				
- 1 P	D1 -17.75	7 dBro						
-20 aBm	01-1/75	V UDIN						
-30 dBm								
-30 0811								
-40 dBm		M#13						
UNIT MAN	and a stranger	alour and a star and the second	studied here was the man	maladrenandrition	Minun another water	chine partitudes and a provide a pro		
-50 dBm-	A contract of the							
1								
-60 dBm						f f		
-70 dBm-						1		
Start 2.476	GHz	1 1	1001 pt	s		Stop 2.576 GHz		
Marker								
Type Ref	Trc	X-value	Y-value	Function	Fun	ction Result		
M1	1	2.47695 GHz	-0.08 dBm					
M2	1	2.4835 GHz	-44.48 dBm					
MЗ	1	2.5 GHz	-43,19 dBm					
M4	1	2.4983 GHz	-42.93 dBm					

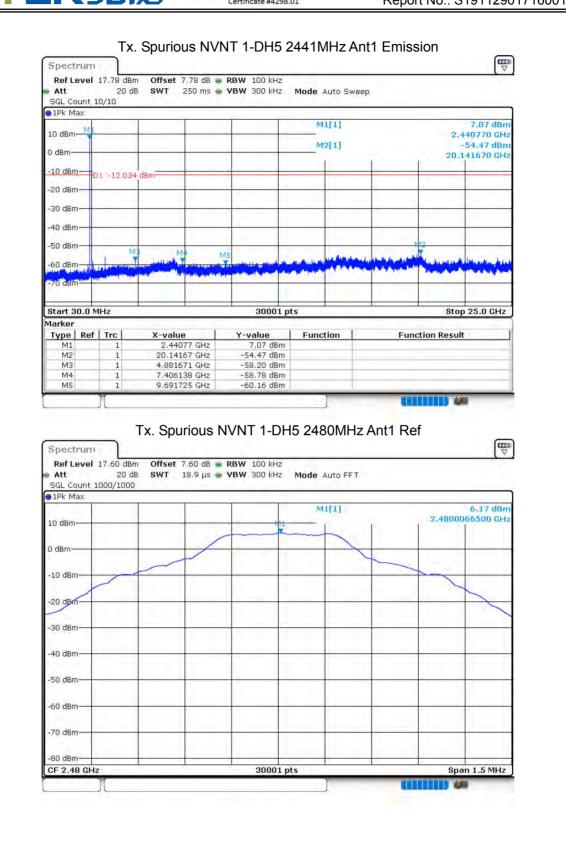


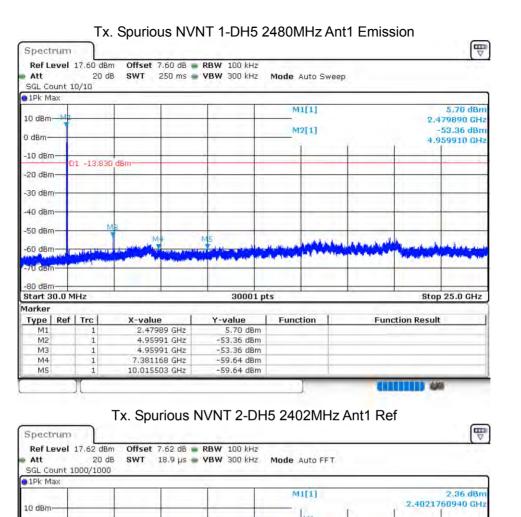
8.7 CONDUCTED RF SPURIOUS EMISSION

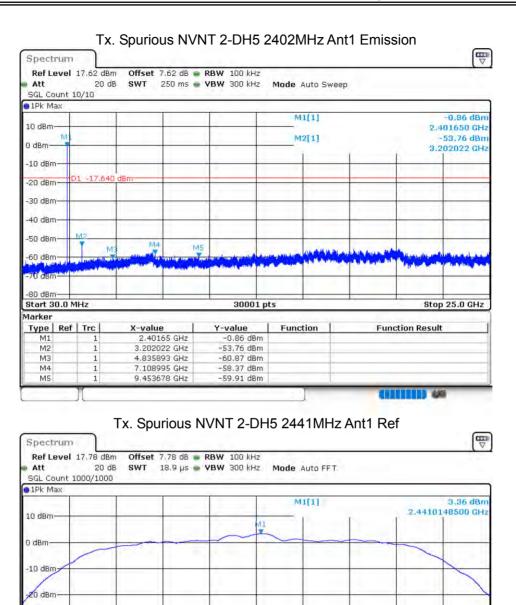
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict				
NVNT	1-DH5	2402	Ant 1	-59.25	-20	Pass				
NVNT	1-DH5	2441	Ant 1	-62.44	-20	Pass				
NVNT	1-DH5	2480	Ant 1	-59.53	-20	Pass				
NVNT	2-DH5	2402	Ant 1	-56.11	-20	Pass				
NVNT	2-DH5	2441	Ant 1	-57.53	-20	Pass				
NVNT	2-DH5	2480	Ant 1	-57	-20	Pass				
NVNT	3-DH5	2402	Ant 1	-56.19	-20	Pass				
NVNT	3-DH5	2441	Ant 1	-58.01	-20	Pass				
NVNT	3-DH5	2480	Ant 1	-56.74	-20	Pass				


ACCREDITED

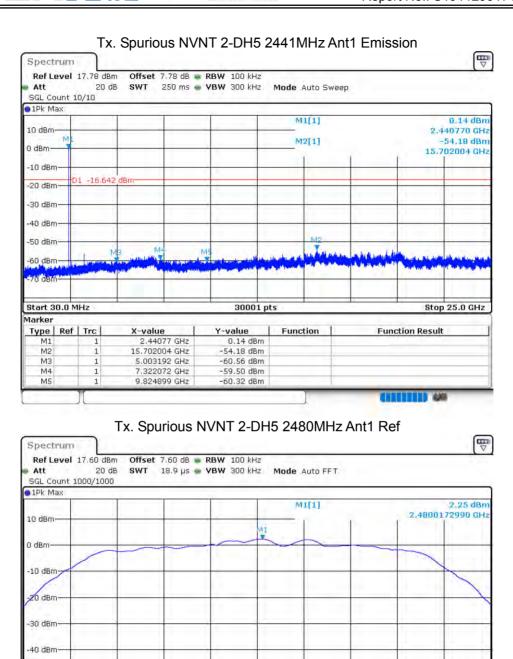
Certificate #4298.01


Tx. Spurious NVNT 1-DH5 2402MHz Ant1 Ref





30001 pts


-30 dBm

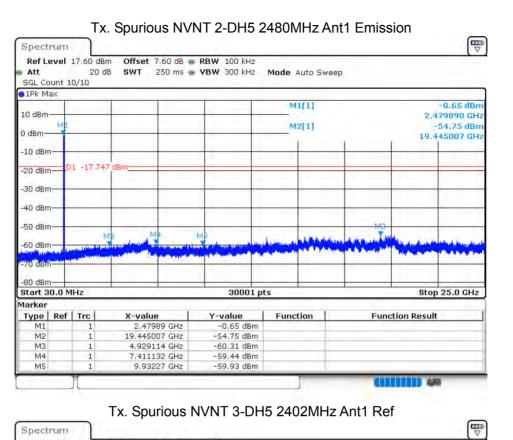
-50 dBm--60 dBm--70 dBm--80 dBm-

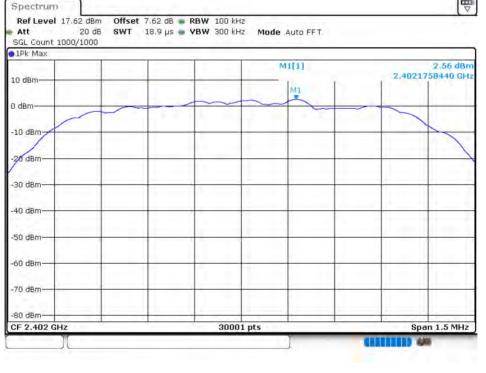
CF 2.441 GHz

Span 1.5 MHz

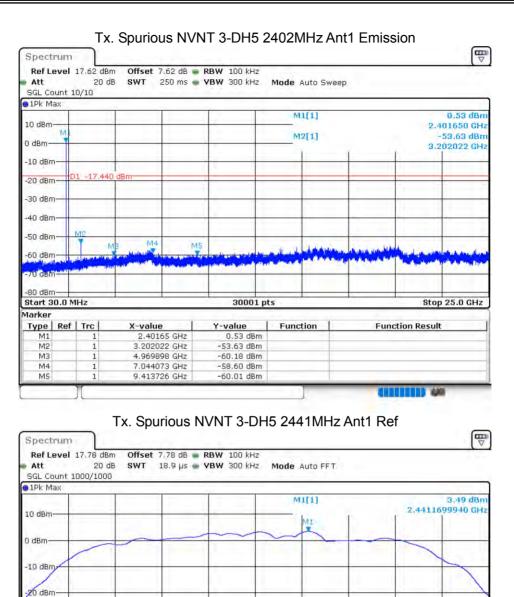
30001 pts

-50 dBm -60 dBm


-70 dBm -80 dBm


CF 2.48 GHz

Span 1.5 MHz

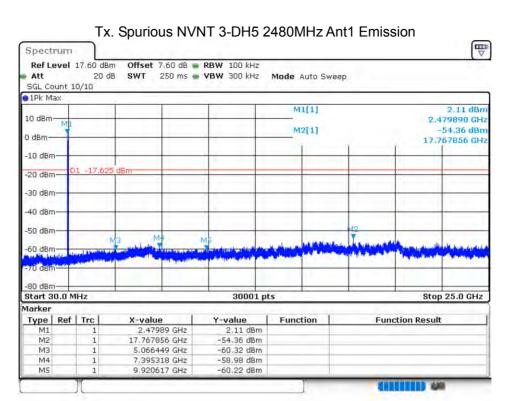

1

30001 pts

-30 dBm -40 dBm

-50 dBm--60 dBm--70 dBm--80 dBm-

CF 2.441 GHz


Span 1.5 MHz

1

END OF REPORT

Version.1.2