

Page 1 of73

TEST REPORT

Product Name	:	PilotPano Panoramic Camera
Brand Mark	:	Labpano
Model No.	:	PIP221
Extension Model	:	PIP221+
Report Number	:	BLA-EMC-202207-A1503
FCC ID	:	2ARZ2 -PIP221
Date of Sample Receipt	:	2022/8/1
Date of Test	:	2022/8/1 to 2022/9/5
Date of Issue	:	2022/9/5
Test Standard	:	47 CFR Part 15, Subpart C 15.247
Test Result	:	Pass

Prepared for:

Shenzhen Pisoftware Technology Co., Ltd. C11-B, TCL International E City, 1001 Zhongshanyuan Road, Nanshan District, Shenzhen City, 518057, P.R.China Prepared by: BlueAsia of Technical Services(Shenzhen) Co.,Ltd.

Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China TEL: +86-755-23059481

Compiled by: Charlie

Approved by: Blue Thong

meels Review by: 2022/9/5

BlueAsia of Technical Services(Shenzhen) Co., Ltd. Add: Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

REPORT REVISE RECORD

Version No.	rsion No. Date Description	
00	2022/9/5	Original

TABLE OF CONTENTS

1	TE	EST SUMMARY	5
2	GE	ENERAL INFORMATION	6
3	GE	ENERAL DESCRIPTION OF E.U.T.	6
4	TF	EST ENVIRONMENT	7
-		EST MODE	
5		EASUREMENT UNCERTAINTY	
6			
7		ESCRIPTION OF SUPPORT UNIT	
8	LA	ABORATORY LOCATION	8
9	ТЕ	EST INSTRUMENTS LIST	9
10	СС	ONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)	12
	0.1 0.2	BLOCK DIAGRAM OF TEST SETUP	
	0.2	PROCEDURE	
	0.4	TEST DATA	
11	co	ONDUCTED BAND EDGES MEASUREMENT	16
	1.1 1.2	BLOCK DIAGRAM OF TEST SETUP	
	1.2	TEST DATA	
12		ADIATED SPURIOUS EMISSIONS	
12	K/		
	2.1	LIMITS	
	2.2 2.3	BLOCK DIAGRAM OF TEST SETUP	
	2.5 2.4	TEST DATA	
13	R/	ADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	
	3.1	LIMITS	
	3.2	BLOCK DIAGRAM OF TEST SETUP	
	3.3 3.4	PROCEDURE	
	-		
14	CC	ONDUCTED SPURIOUS EMISSIONS	36
14	4.1	LIMITS	36

	14.2	BLOCK DIAGRAM OF TEST SETUP
	14.3	TEST DATA
15	POW	/ER SPECTRUM DENSITY
	15.1	LIMITS
	15.2	BLOCK DIAGRAM OF TEST SETUP
:	15.3	TEST DATA
16	CON	DUCTED PEAK OUTPUT POWER
	16.1	LIMITS
:	16.2	BLOCK DIAGRAM OF TEST SETUP
	16.3	TEST Data
17	MINI	MUM 6DB BANDWIDTH
	17.1	LIMITS
	17.2	BLOCK DIAGRAM OF TEST SETUP
	17.3	TEST DATA
18	ANT	ENNA REQUIREMENT
	18.1	CONCLUSION
19	APP	ENDIX
AP	PENDI	X A: PHOTOGRAPHS OF TEST SETUP71
AP	PENDI	X B: PHOTOGRAPHS OF EUT
, u		

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass

GENERAL INFORMATION 2

Applicant	Shenzhen Pisoftware Technology Co., Ltd.
Address	C11-B, TCL International E City, 1001 Zhongshanyuan Road,,Nanshan District, Shenzhen City, 518057, P.R.China
Manufacturer	Shenzhen Pisoftware Technology Co., Ltd.
Address	C11-B, TCL International E City, 1001 Zhongshanyuan Road, Nanshan District, Shenzhen City, 518057, P.R.China
Factory	SHENZHEN AONI ELECTRONIC CO,LTD
Address	2F、3F、6F、7F、The half laye of 8F 、9F,Honghui Industrial Park,2nd Liuxian Road,Xinan street,Baoan District,Shenzhen
Product Name	PilotPano Panoramic Camera
Test Model No.	PIP221
Extension Model	PIP221+
Remark	All above models are identical in the same PCB layout, interior structure and electrical circuits. The differences are model name for commercial purpose.

GENERAL DESCRIPTION OF E.U.T. 3

3 GENERAL DESCRIPTION OF E.U.T.				
Hardware Version	N/A			
Software Version	N/A			
Operation Frequency:	2402MHz-2480MHz			
Data Rata	1Mbps; 2Mbps			
Modulation Type:	GFSK			
Channel Spacing:	2MHz			
Number of Channels:	40			
Antenna Type:	FPC Antenna			
Antenna Gain:	0.5dBi(Provided by the customer)			

4 TEST ENVIRONMENT

Environment	Temperature	Voltage
Normal	25°C	DC3.7V

5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION		
ТХ	Keep the EUT in transmitting mode with modulation		
Remark:Only the data of the worst mode would be recorded in this report.For Radiated emission,1Mbps and 2Mbps mode all have been tested,only worse case 1Mbps mode is reported.			

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)		
Radiated Emission(9kHz-30MHz)	±4.34dB		
Radiated Emission(30Mz-1000MHz)	±4.24dB		
Radiated Emission(1GHz-18GHz)	±4.68dB		
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB		

7 DESCRIPTION OF SUPPORT UNIT

Device Type	Manufacturer	Model Name	Serial No.	Remark
AC Adapter	UGREEN	CD112	N/A	N/A
PC	HASEE	K610D	N/A	N/A

8 LABORATORY LOCATION

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673 No tests were sub-contracted.

9 TEST INSTRUMENTS LIST

Test Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz)					
Equipment	Manufacturer Model S/N Cal.Date Cal.Due				
Shield room	SKET	833	N/A	25/11/2020	24/11/2023
Receiver	R&S	ESPI3	101082	24/9/2021	23/9/2022
LISN	R&S	ENV216	3560.6550.15	24/9/2021	23/9/2022
LISN	AT	AT166-2	AKK1806000003	26/9/2021	25/9/2022
EMI software	EZ	EZ-EMC	N/A	N/A	N/A

Test Equipment Of Conducted Band Edges Measurement						
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due	
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022	
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022	
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022	
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022	

Test Equipment Of Radiated Spurious Emissions					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Chamber	SKET	966	N/A	10/11/2020	9/11/2023
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Receiver	R&S	ESR7	101199	24/9/2021	23/9/2022
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	26/9/2020	25/9/2022
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	26/9/2020	25/9/2022

Amplifier	SKET	LNPA-0118-45	N/A	24/9/2021	23/9/2022
EMI software	EZ	EZ-EMC	N/A	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	26/9/2020	25/9/2022

Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Chamber	SKET	966	N/A	10/11/2020	9/11/2023
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Receiver	R&S	ESR7	101199	24/9/2021	23/9/2022
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	26/9/2020	25/9/2022
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	26/9/2020	25/9/2022
Amplifier	SKET	LNPA-0118-45	N/A	24/9/2021	23/9/2022
EMI software	EZ	EZ-EMC	N/A	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	26/9/2020	25/9/2022

Test Equipment Of Conducted Spurious Emissions					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

Test Equipment Of Power Spectrum Density					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due

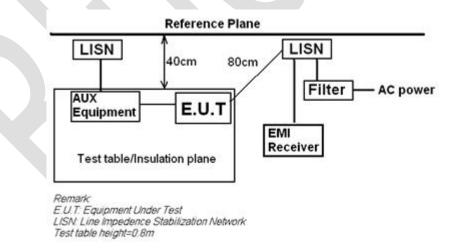
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

Test Equipment Of Conducted Peak Output Power					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022
	•				

Test Equipment Of Minimum 6dB Bandwidth					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

Test Equipment Of Antenna Requirement					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due

10 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)


Test Standard	47 CFR Part 15, Subpart C 15.247		
Test Method	ANSI C63.10 (2013) Section 6.2		
Test Mode (Pre-Scan)	ТХ		
Test Mode (Final Test)	ТХ		
Tester	Charlie		
Temperature	25 ℃		
Humidity	60%		

10.1 LIMITS

Frequency of	Conducted limit(dBµV)			
emission(MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	-60	50		

*Decreases with the logarithm of the frequency.

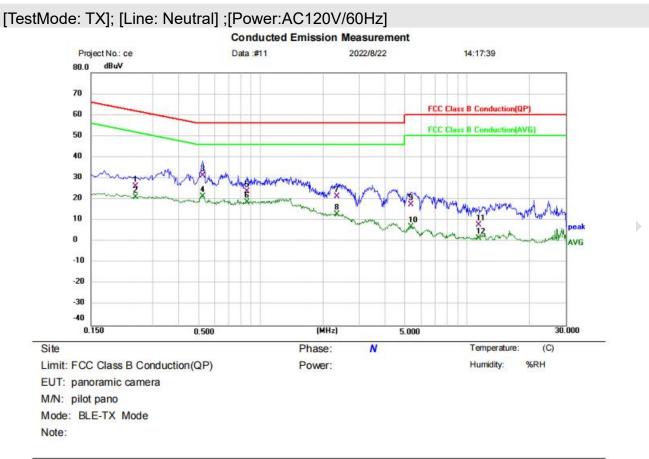
10.2 BLOCK DIAGRAM OF TEST SETUP

10.3 PROCEDURE

1) The mains terminal disturbance voltage test was conducted in a shielded room.

2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

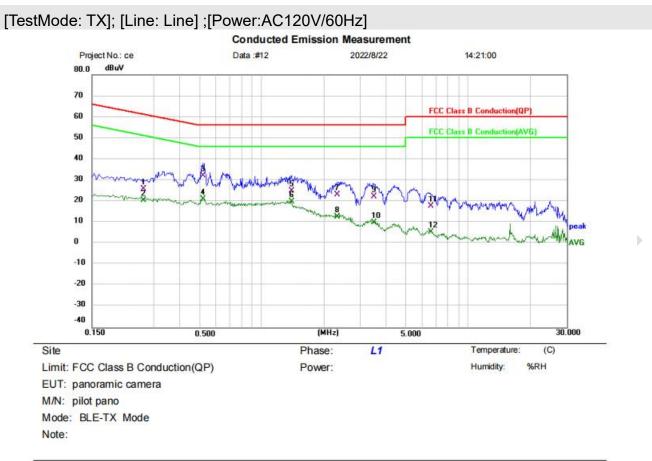
3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,


4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

10.4 TEST DATA



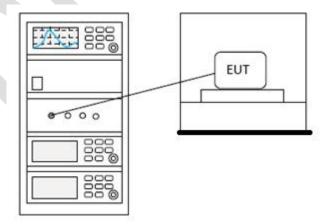
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
_		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2460	15.98	10.26	26.24	61.89	-35.65	QP	
2		0.2460	10.75	10.26	21.01	51.89	-30.88	AVG	
3		0.5220	21.55	9.79	31.34	56.00	-24.66	QP	
4	*	0.5220	11.68	9.79	21.47	46.00	-24.53	AVG	
5		0.8580	14.07	9.83	23.90	56.00	-32.10	QP	
6		0.8580	8.93	9.83	18.76	46.00	-27.24	AVG	
7		2.3380	11.59	9.87	21.46	56.00	-34.54	QP	
8		2.3380	3.09	9.87	12.96	46.00	-33.04	AVG	
9		5.3420	7.49	9.96	17.45	60.00	-42.55	QP	
10		5.3420	-2.93	9.96	7.03	50.00	-42.97	AVG	
11		11.4060	-2.30	10.21	7.91	60.00	-52.09	QP	
12	(11.4060	-8.53	10.21	1.68	50.00	-48.32	AVG	

*:Maximum data x:Over limit !:over margin

(Reference Only

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2660	15.54	10.38	25.92	61.24	-35.32	QP	
2		0.2660	10.17	10.38	20.55	51.24	-30.69	AVG	
3	*	0.5180	22.37	9.87	32.24	56.00	-23.76	QP	
4	1	0.5180	11.31	9.87	21.18	46.00	-24.82	AVG	
5		1.3900	15.06	9.93	24.99	56.00	-31.01	QP	
6		1.3900	9.87	9.93	19.80	46.00	-26.20	AVG	
7		2.3260	13.25	9.95	23.20	56.00	-32.80	QP	
8		2.3260	2.81	9.95	12.76	46.00	-33.24	AVG	
9	6	3.4940	12.35	9.93	22.28	56.00	-33.72	QP	
10		3.4940	-0.08	9.93	9.85	46.00	-36.15	AVG	
11		6.6220	7.61	10.08	17.69	60.00	-42.31	QP	
12	(6.6220	-4.52	10.08	5.56	50.00	-44.44	AVG	

(Reference Only


Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Charlie
Temperature	25°C
Humidity	60%

11 CONDUCTED BAND EDGES MEASUREMENT

11.1 LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

11.2 BLOCK DIAGRAM OF TEST SETUP

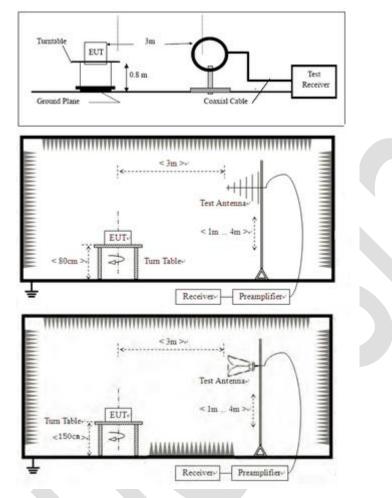
Report No.: BLA-EMC-202207-A1503 Page 17 of 73

11.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

12 RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Charlie
Temperature	25 ℃
Humidity	60%


12.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

12.2 BLOCK DIAGRAM OF TEST SETUP

12.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

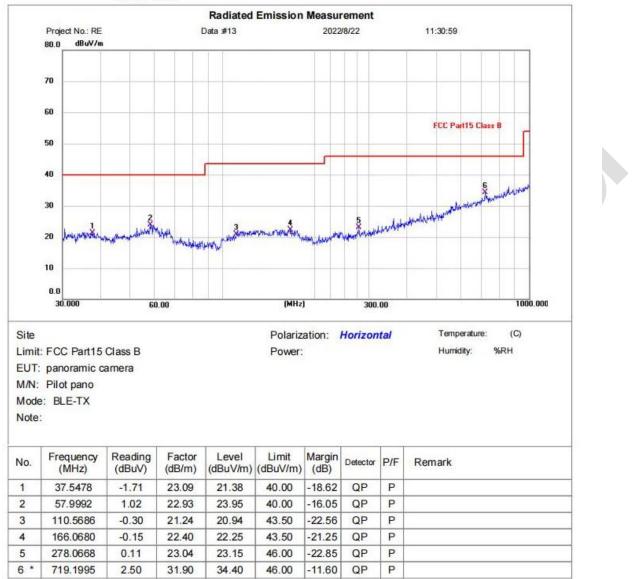
Remark:

1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

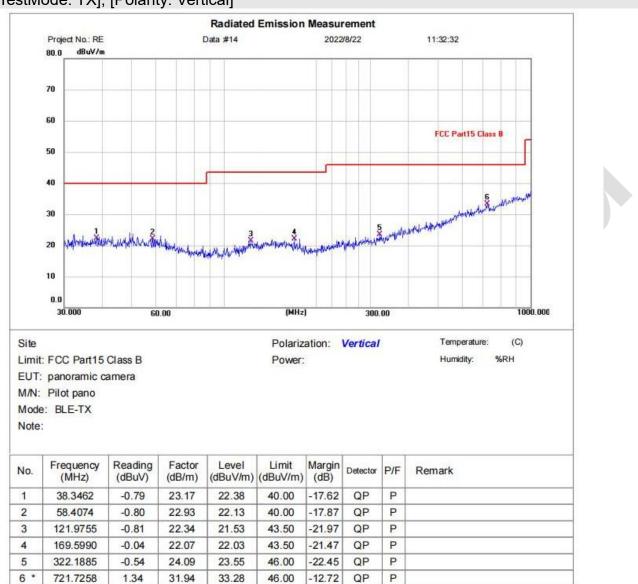
2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. fundamental frequency is blocked by filter, and only spurious emission is shown.


4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

12.4 TEST DATA

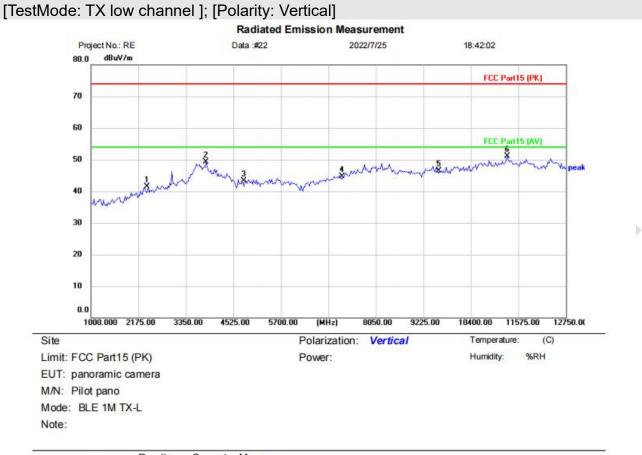

Below 1GHz

*:Maximum data x:Over limit !:over margin

[TestMode: TX]; [Polarity: Vertical]

*:Maximum data x:Over limit I:over margin

Above 1GHz



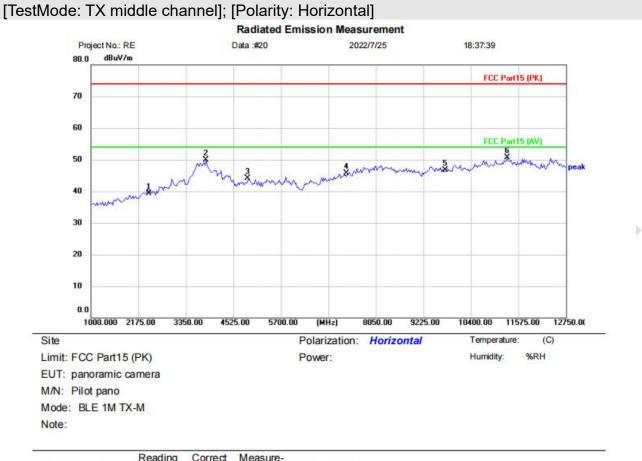
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
_		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2402.000	42.95	-0.93	42.02	74.00	-31.98	peak		
2		3843.500	42.39	7.12	49.51	74.00	-24.49	peak		
3		4804.000	39.12	3.71	42.83	74.00	-31.17	peak		
4		7206.000	38.61	5.96	44.57	74.00	-29.43	peak		
5		9608.000	37.53	9.29	46.82	74.00	-27.18	peak		
6	*	11763.000	39.02	11.63	50.65	74.00	-23.35	peak		

*:Maximum data x:Over limit I:over margin

(Reference Only

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
_		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		2402.000	42.48	-0.93	41.55	74.00	-32.45	peak	
2		3843.500	42.24	7.12	49.36	74.00	-24.64	peak	
3		4804.000	39.64	3.71	43.35	74.00	-30.65	peak	
4		7206.000	38.66	5.96	44.62	74.00	-29.38	peak	
5		9608.000	37.24	9.29	46.53	74.00	-27.47	peak	
6	*	11293.000	39.10	11.91	51.01	74.00	-22.99	peak	

(Reference Only



No.	Mk.	Freq.	Level	Factor	ment	Limit	Over			
_		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2442.000	40.73	-1.09	39.64	74.00	-34.36	peak		
2		3843.500	41.62	7.12	48.74	74.00	-25.26	peak		
3		4884.000	39.84	3.34	43.18	74.00	-30.82	peak		
4		7326.000	39.87	6.44	46.31	74.00	-27.69	peak		
5		9768.000	37.07	9.63	46.70	74.00	-27.30	peak		
6	*	11269.500	38.34	11.94	50.28	74.00	-23.72	peak		

(Reference Only

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over			
_		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2442.000	40.32	-1.09	39.23	74.00	-34.77	peak		
2		3843.500	42.77	7.12	49.89	74.00	-24.11	peak		
3		4884.000	40.67	3.34	44.01	74.00	-29.99	peak		
4		7326.000	39.25	6.44	45.69	74.00	-28.31	peak		
5		9768.000	36.99	9.63	46.62	74.00	-27.38	peak		
6	*	11293.000	38.86	11.91	50.77	74.00	-23.23	peak		

(Reference Only

No.	Mk.	Freq.	Level	Factor	ment	Limit	Over			
_		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2480.000	42.05	-1.26	40.79	74.00	-33.21	peak		
2		3655.500	41.11	7.76	48.87	74.00	-25.13	peak		
3		4960.000	39.32	3.75	43.07	74.00	-30.93	peak		
4		7440.000	38.72	6.86	45.58	74.00	-28.42	peak		
5		9920.000	36.57	10.16	46.73	74.00	-27.27	peak		
6	*	11457.500	38.87	11.84	50.71	74.00	-23.29	peak		

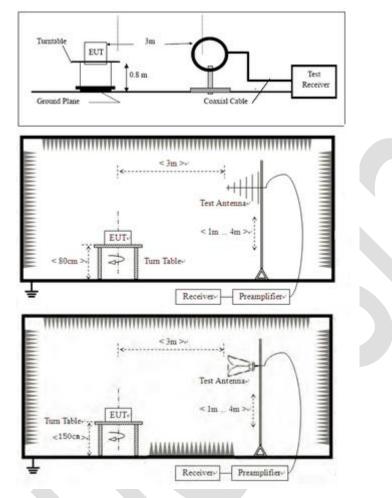
(Reference Only

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
	2480.000	41.28	-1.26	40.02	74.00	-33.98	peak	
	3820.000	41.78	7.41	49.19	74.00	-24.81	peak	
	4960.000	38.99	3.75	42.74	74.00	-31.26	peak	
	7440.000	39.10	6.86	45.96	74.00	-28.04	peak	
	9920.000	35.94	10.16	46.10	74.00	-27.90	peak	
*	11786.500	39.09	11.57	50.66	74.00	-23.34	peak	
		MHz 2480.000 3820.000 4960.000 7440.000	MHz dBuV 2480.000 41.28 3820.000 41.78 4960.000 38.99 7440.000 39.10 9920.000 35.94	Mk. Freq. Level Factor MHz dBuV dB/m 2480.000 41.28 -1.26 3820.000 41.78 7.41 4960.000 38.99 3.75 7440.000 39.10 6.86 9920.000 35.94 10.16	Mk. Freq. Level Factor ment MHz dBuV dB/m dBuV/m 2480.000 41.28 -1.26 40.02 3820.000 41.78 7.41 49.19 4960.000 38.99 3.75 42.74 7440.000 39.10 6.86 45.96 9920.000 35.94 10.16 46.10	Mk. Freq. Level Factor ment Limit MHz dBuV dB/m dBuV/m dBuV/m 2480.000 41.28 -1.26 40.02 74.00 3820.000 41.78 7.41 49.19 74.00 4960.000 38.99 3.75 42.74 74.00 7440.000 39.10 6.86 45.96 74.00 9920.000 35.94 10.16 46.10 74.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB/m dBuV/m dBuV/m dB 2480.000 41.28 -1.26 40.02 74.00 -33.98 3820.000 41.78 7.41 49.19 74.00 -24.81 4960.000 38.99 3.75 42.74 74.00 -31.26 7440.000 39.10 6.86 45.96 74.00 -28.04 9920.000 35.94 10.16 46.10 74.00 -27.90	Mk. Freq. Level Factor ment Limit Over MHz dBu// dB/m dBu//m dBu//m dBu//m dB Detector 2480.000 41.28 -1.26 40.02 74.00 -33.98 peak 3820.000 41.78 7.41 49.19 74.00 -24.81 peak 4960.000 38.99 3.75 42.74 74.00 -31.26 peak 7440.000 39.10 6.86 45.96 74.00 -28.04 peak 9920.000 35.94 10.16 46.10 74.00 -27.90 peak

(Reference Only

13 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.10.5
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Charlie
Temperature	25°C
Humidity	60%


13.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)	
0.009-0.490	2400/F(kHz)	300	
0.490-1.705	24000/F(kHz)	30	
1.705-30.0	30	30	
30-88	100	3	
88-216	150	3	
216-960	200	3	
Above 960	500	3	

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

13.2 BLOCK DIAGRAM OF TEST SETUP

13.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

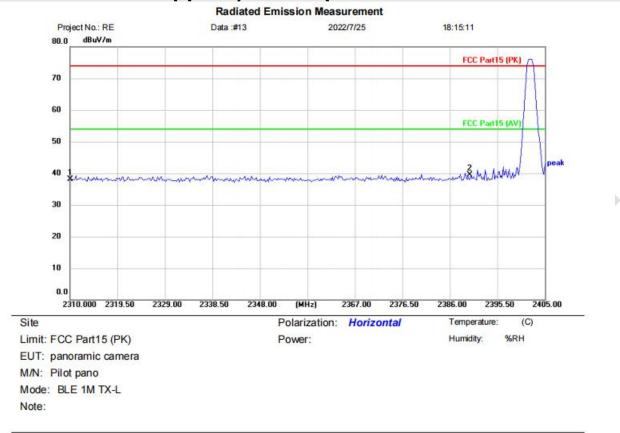
e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

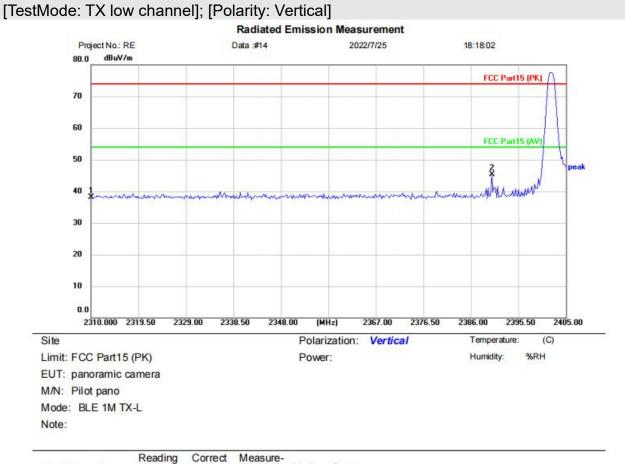
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.


j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

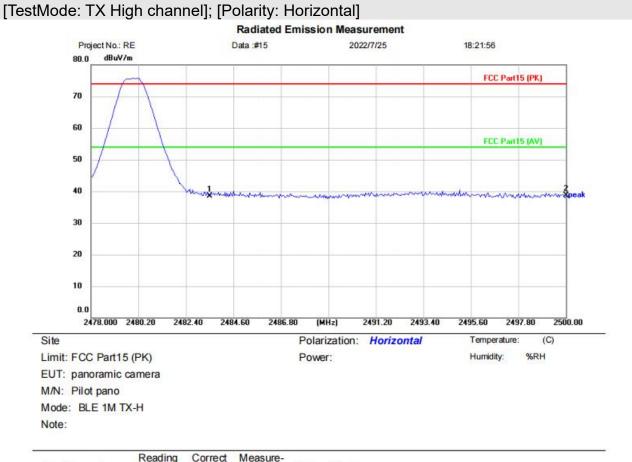
13.4 TEST DATA


[TestMode: TX low channel]; [Polarity: Horizontal]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment		Over			
_		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2310.000	42.01	-3.93	38.08	74.00	-35.92	peak		
2	*	2390.000	43.04	-3.58	39.46	74.00	-34.54	peak		

*:Maximum data x:Over limit !:over margin

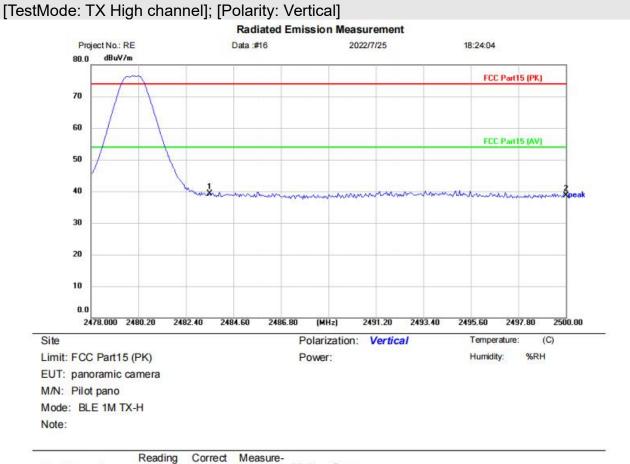
(Reference Only



No.	Mk.	Freq.	Level	Factor	ment		Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2310.000	42.08	-3.93	38.15	74.00	-35.85	peak		
2	*	2390.180	48.85	-3.57	45.28	74.00	-28.72	peak		

*:Maximum data x:Over limit !:over margin

(Reference Only



No.	Mk.	Freq.	Reading Level	Factor	Measure- ment		Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2483.500	41.72	-3.14	38.58	74.00	-35.42	peak		
2	*	2500.000	41.71	-3.08	38.63	74.00	-35.37	peak		

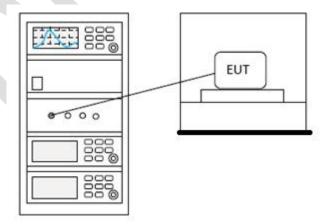
*:Maximum data x:Over limit !:over margin

(Reference Only

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
		MHz	MHz	dBuV	dB/m	dBuV/m	dBuV/m	BuV/m dB	Detector	Comment	
1	*	2483.500	42.39	-3.14	39.25	74.00	-34.75	peak			
2		2500.000	41.78	-3.08	38.70	74.00	-35.30	peak			

*:Maximum data x:Over limit !:over margin

(Reference Only


14 CONDUCTED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11					
Test Mode (Pre-Scan)	ТХ					
Test Mode (Final Test)	ТХ					
Tester	Charlie					
Temperature	25°C					
Humidity	60%					

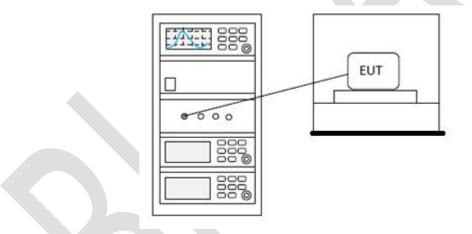
14.1 LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).

14.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202207-A1503 Page 37 of 73

14.3 TEST DATA


15 POWER SPECTRUM DENSITY

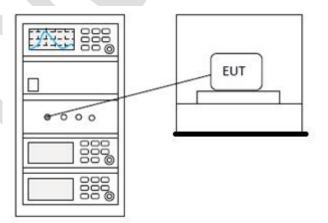
Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 11.10.2				
Test Mode (Pre-Scan)	ТХ				
Test Mode (Final Test)	ТХ				
Tester	Charlie				
Temperature	25°C				
Humidity	60%				

15.1 LIMITS

Limit: \leq 8dBm in any 3 kHz band during any time interval of continuous transmission

15.2 BLOCK DIAGRAM OF TEST SETUP

15.3 TEST DATA


16 CONDUCTED PEAK OUTPUT POWER

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 7.8.5				
Test Mode (Pre-Scan)	ТХ				
Test Mode (Final Test)	ТХ				
Tester	Charlie				
Temperature	25 ℃				
Humidity	60%				

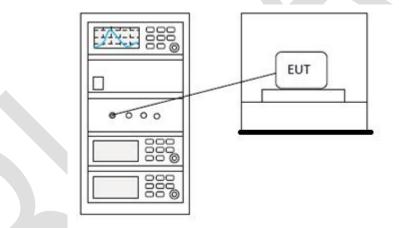
16.1 LIMITS

Frequency range(MHz)	Output power of the intentional radiator(watt)			
	1 for \geq 50 hopping channels			
902-928	0.25 for 25≤ hopping channels <50			
	1 for digital modulation			
	1 for ≥75 non-overlapping hopping channels			
2400-2483.5	0.125 for all other frequency hopping systems			
	1 for digital modulation			
5705 5050	1 for frequency hopping systems and digital			
5725-5850	modulation			

16.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202207-A1503 Page 40 of 73

16.3 TEST DATA


17 MINIMUM 6DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 11.8.1				
Test Mode (Pre-Scan)	ТХ				
Test Mode (Final Test)	ТХ				
Tester	Charlie				
Temperature	25°C				
Humidity	60%				

17.1 LIMITS

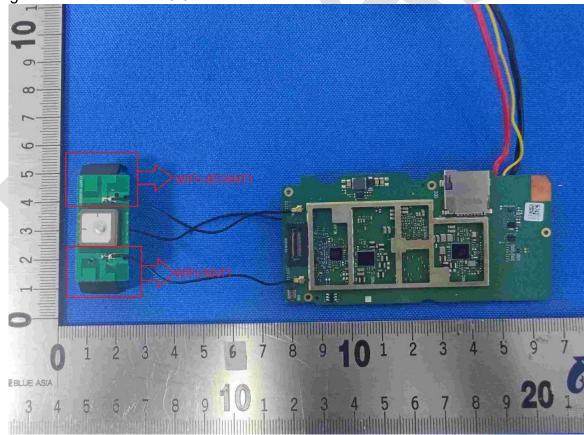
Limit: \geq 500 kHz

17.2 BLOCK DIAGRAM OF TEST SETUP

17.3 TEST DATA

18 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A


18.1 CONCLUSION

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0.5dBi.

19 APPENDIX

Appendix1

Maximum Conducted Output Power


Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-5.154	30	Pass
NVNT	BLE 1M	2442	Ant1	-5.451	30	Pass
NVNT	BLE 1M	2480	Ant1	-6.164	30	Pass
NVNT	BLE 2M	2402	Ant1	-5.036	30	Pass
NVNT	BLE 2M	2442	Ant1	-5.236	30	Pass
NVNT	BLE 2M	2480	Ant1	-5.861	30	Pass

Power NVNT BLE 1M 2402MHz Ant1

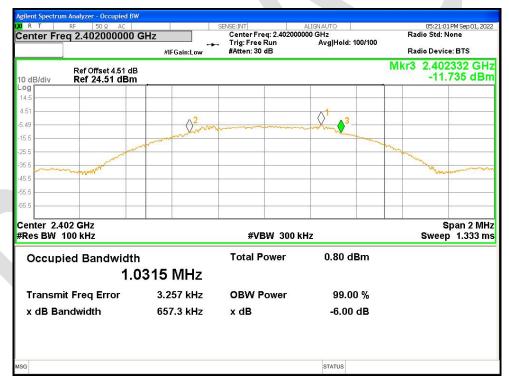
Power NVNT BLE 1M 2442MHz Ant1

Power NVNT BLE 1M 2480MHz Ant1

Power NVNT BLE 2M 2402MHz Ant1

Power NVNT BLE 2M 2442MHz Ant1

Power NVNT BLE 2M 2480MHz Ant1


RT	RF 50 Ω AC	SENSE:INT	ALIGNAUTO	05:44:43 PM Sep 01, 2022
enter F	req 2.480000000 GH		Avg Type: Log-Pwr Avg Hold: 100/100	TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N
dB/div	Ref Offset 4.58 dB Ref 20.00 dBm		M	kr1 2.479 482 GHz -5.861 dBm
0.0				
.00		1		
0.0				
0.0				
0.0				
0.0 (1) (1)				
0.0				
0.0				
0.0				
	480000 GHz 2.0 MHz	#VBW 6.0 MHz	Sweer	Span 10.00 MHz 5 1.333 ms (10001 pts)
G			STATUS	·

-6dB Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	0.657	0.5	Pass
NVNT	BLE 1M	2442	Ant1	0.655	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.657	0.5	Pass
NVNT	BLE 2M	2402	Ant1	1.372	0.5	Pass
NVNT	BLE 2M	2442	Ant1	1.366	0.5	Pass
NVNT	BLE 2M	2480	Ant1	1.357	0.5	Pass

-6dB Bandwidth NVNT BLE 1M 2402MHz Ant1

-6dB Bandwidth NVNT BLE 1M 2442MHz Ant1

gilent Spectrum Analyze	er - Occupied BW						
R T RF Center Freq 2.44	42000000 GI	Hz		ALIGN AUTO 000 GHz Avg Hold: 100/100		05:41:42 PM Se dio Std: None	
		#IFGain:Low	#Atten: 30 dB	2073	Ra	dio Device: BT	s
	Offset 4.53 dB 24.53 dBm				Mkr3	2.44233	
.og							
14.5							
4.53		~2 () ¹					
5.47		Inntry	www.www.www.www.www.	mm			
15.5					m		
25.5					many	h	
35.5	WW					Margaren	******
15.5		8				22	
55.5							
85.6							
Center 2.442 GH Res BW 100 kH		h	#VBW 300 k	ίHz		Span Sweep 1.	2 MHz 333 ms
Occupied B	andwidth		Total Power	0.47 dBm			
	1.03	316 MHz					
Transmit Fred	l Error	4.789 kHz	OBW Power	99.00 %			
x dB Bandwid	lth	655.1 kHz	x dB	-6.00 dB			
SG				STATUS			

-6dB Bandwidth NVNT BLE 1M 2480MHz Ant1

-6dB Bandwidth NVNT BLE 2M 2402MHz Ant1

gilent Spectrum Analyzer - Occupied B	W			
R T RF 50 Ω AC Center Freq 2.402000000) GHz #IFGain:Low	Center Freq: 2.402000	ALIGN AUTO D00 GHz Avg Hold: 100/100	05:29:38 PM Sep 01, 2022 Radio Std: None Radio Device: BTS
Ref Offset 4.51 d 0 dB/div Ref 24.51 dBn	в	MALLEN. OU VID		Mkr3 2.402691 GHz -13.389 dBm
og 4.5				
4.51				10070
5.49	-monorman marine	moment	man man man	3
15.5 mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm				mon man and a second and a second and a second and a second a se
35.5				
15.5				
5.5				
35.5	0			
enter 2.402 GHz Res BW 100 kHz		#VBW 300 k	Hz	Span 2 MHz Sweep 1.333 ms
Occupied Bandwidt	h	Total Power	1.45 dBm	
1.	8369 MHz			
Transmit Freq Error	5.169 kHz	OBW Power	99.00 %	
x dB Bandwidth	1.372 MHz	x dB	-6.00 dB	
SG			STATUS	

-6dB Bandwidth NVNT BLE 2M 2442MHz Ant1

-6dB Bandwidth NVNT BLE 2M 2480MHz Ant1

gilent Spectrum Analyzer - Occupied BV	V			
enter Freq 2.480000000	GHz #IEGain:Low	SENSE:INT Center Freq: 2.4800000 , Trig: Free Run #Atten: 30 dB	ALIGN AUTO 000 GHz Avg Hold: 100/100	05:44:58 PM Sep 01, 2022 Radio Std: None Radio Device: BTS
Ref Offset 4.58 dB 0 dB/div Ref 24.58 dBm	3		2	Mkr3 2.480676 GHz -15.211 dBm
9g 4.6				
58		A1		
42 02	mound	mannahamman	mmmmmmmm.	3
14 month mark				and to a strange when we want the strange when we want the strange when th
.4				
.4				
5.4				
5.4				
enter 2.48 GHz Res BW 100 kHz		#VBW 300 k	Hz	Span 2 MHz Sweep 1.333 ms
Occupied Bandwidth	n	Total Power	0.68 dBm	
	8275 MHz			
Transmit Freq Error	-2.421 kHz	OBW Power	99.00 %	
x dB Bandwidth	1.357 MHz	x dB	-6.00 dB	
G			STATUS	

1				
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.0218
NVNT	BLE 1M	2442	Ant1	1.0238
NVNT	BLE 1M	2480	Ant1	1.0166
NVNT	BLE 2M	2402	Ant1	2.0225
NVNT	BLE 2M	2442	Ant1	1.9941
NVNT	BLE 2M	2480	Ant1	1.9849

Occupied Channel Bandwidth

OBW NVNT BLE 1M 2402MHz Ant1

OBW NVNT BLE 1M 2442MHz Ant1

OBW NVNT BLE 1M 2480MHz Ant1

OBW NVNT BLE 2M 2402MHz Ant1

gilent Spectrum Analyzer - Occupied BW				
R T RF 50Ω AC Senter Freq 2.402000000	GHz #IFGain:Low	SENSE:INT Center Freq: 2.402000 Trig: Free Run #Atten: 30 dB	ALIGN AUTO 000 GHz Avg Hold: 100/100	05:29:31 PM Sep 01, 2022 Radio Std: None Radio Device: BTS
Ref Offset 4.51 dB dB/div Ref 24.51 dBm				_
4.5				
51				
49				
.5	mmm	www.www.www.	more marine	A
www.				and many me
5 ~~~~~~				and the second
5				and the second sec
5				
enter 2.402 GHz Res BW 30 kHz		#VBW 100 k	Hz	Span 3 MHz Sweep 3.333 ms
Occupied Bandwidth	1	Total Power	2.66 dBm	
2.0	0225 MHz			
Transmit Freq Error	6.802 kHz	OBW Power	99.00 %	
x dB Bandwidth	2.532 MHz	x dB	-26.00 dB	
3			STATUS	

OBW NVNT BLE 2M 2442MHz Ant1

OBW NVNT BLE 2M 2480MHz Ant1

gilent Spectrum Analyzer - Occupied BW	/				
R T RF 50 Ω AC Center Freq 2.480000000 C C C C	GHz #IFGain:Low	SENSE:INT ALIGNAUTO Center Freq: 2.48000000 GHz		05:44:50 PM Sep 01, 2022 Radio Std: None Radio Device: BTS	
Ref Offset 4.58 dB 0 dB/div Ref 24.58 dBm 9g					
4.6					
.58					
42	man	mannon	man		
a market			all war	mm	
5.4 phonometric				month	
5.4	9.			May	
5.4					
5.4					
enter 2.48 GHz Res BW 30 kHz		Span 3 MHz Sweep 3.333 ms			
Occupied Bandwidth	n	Total Power	2.25 dBm		
	9850 MHz				
Transmit Freq Error	-3.793 kHz	OBW Power	99.00 %		
x dB Bandwidth	2.505 MHz	x dB	-26.00 dB		
G			STATUS		

Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-6.416	8	Pass
NVNT	BLE 1M	2442	Ant1	-5.975	8	Pass
NVNT	BLE 1M	2480	Ant1	-6.973	8	Pass
NVNT	BLE 2M	2402	Ant1	-7.045	8	Pass
NVNT	BLE 2M	2442	Ant1	-7.351	8	Pass
NVNT	BLE 2M	2480	Ant1	-8.415	8	Pass

PSD NVNT BLE 1M 2402MHz Ant1

PSD NVNT BLE 1M 2442MHz Ant1

PSD NVNT BLE 1M 2480MHz Ant1

PSD NVNT BLE 2M 2402MHz Ant1