

FCC Radio Test Report FCC ID: 2ARXM9502PP

Original Grant

:	TB-FCC162453
:	Shenzhen Huitonexing Electronic Co.,Ltd.
t (El	(TL
:	RFID Reader
:	9502
	9502E, 9511, 9511E, 9512, 9512E, 9514, 9514E, 9518, 9518E, 8201, 8201E, 8203, 8203E, 8502, 8502E, 8503, 8503E
3	HQS
1	2018-10-27
à	2018-10-28 to 2018-11-16
:	2018-11-30
:	FCC Part 15: 2018, Subpart C(15.247)
:	ANSI C63.10: 2013
÷	PASS
	: (EU : : : : : : :

In the configuration tested, the EUT complied with the standards specified above, The EUT technically complies with the FCC requirements

CHNGASON

ai

Test/Witness Engineer

Engineer Supervisor

Engineer Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

: Jason xu

: WAN SU : foy Loi.

Contents

CON	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	6
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	7
	1.7 Measurement Uncertainty	8
	1.8 Test Facility	
2.	TEST SUMMARY	10
3.	TEST EQUIPMENT	
4.	CONDUCTED EMISSION TEST	12
	4.1 Test Standard and Limit	
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	
	4.5 Test Data	
5.	RADIATED EMISSION TEST	14
	5.1 Test Standard and Limit	14
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 EUT Operating Condition	
	5.5 Test Data	16
6.	RESTRICTED BANDS REQUIREMENT	17
	6.1 Test Standard and Limit	
	6.2 Test Setup	
	6.3 Test Procedure	
	6.4 EUT Operating Condition	
	6.5 Test Data	
7.	NUMBER OF HOPPING CHANNEL	
	7.1 Test Standard and Limit	
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 EUT Operating Condition	
	7.5 Test Data	
8.	AVERAGE TIME OF OCCUPANCY	
	8.1 Test Standard and Limit	
	8.2 Test Setup	

	8.3 Test Procedure	
	8.4 EUT Operating Condition	
	8.5 Test Data	
9.	CHANNEL SEPARATION AND BANDWIDTH TEST	
	9.1 Test Standard and Limit	
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 EUT Operating Condition	
	9.5 Test Data	
10.	PEAK OUTPUT POWER TEST	22
	10.1 Test Standard and Limit	
	10.2 Test Setup	
	10.3 Test Procedure	
	10.4 EUT Operating Condition	
	10.5 Test Data	22
11.	ANTENNA REQUIREMENT	
	11.1 Standard Requirement	
	11.2 Antenna Connected Construction	
	11.3 Result	23
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	24
ATT	ACHMENT B RADIATED EMISSION TEST DATA	
	ACHMENT C RESTRICTED BANDS REQUIREMENT TEST DATA	
	ACHMENT D NUMBER OF HOPPING CHANNEL TEST DATA	
ATT	ACHMENT E AVERAGE TIME OF OCCUPANCY TEST DATA	41
	ACHMENT G PEAK OUTPUT POWER TEST DATA	

Revision History

Report No.	Version	Description	Issued Date
TB-FCC162453	Rev.01	Initial issue of report	2018-11-30
Con Bi	608	Di Cuito	1 Long
S C		The second	and the
anis)	- <u>()</u>	A Dealer	60033
		TODO TO TOTAL	
		a fundad	CTUDI L
- m			
and is	TOBL	a line of	and s
TOB			B mor
	ODD OT		GOBY -
TUD	A 02	THE REAL	TOD.
		THE PARTY	
TO U		THE FUEL	
			m = 1

1. General Information about EUT

1.1 Client Information

Applicant		Shenzhen Huitonexing Electronic Co.,Ltd.			
Address	:	Floor 4. East Block, F#, North No.2, Bantian, Longgang Distric Shenzhen, China			
Manufacturer	1	Shenzhen Huitonexing Electronic Co.,Ltd.			
Address		Floor 4. East Block, F#, North No.2, Bantian, Longgang District, Shenzhen, China			

1.2 General Description of EUT (Equipment Under Test)

EUT Name		RFID Reader			
Models No.		9502, 9502E, 9511, 9511E, 9512, 9512E, 9514, 9514E, 9518, 9518E, 8201, 8201E, 8203, 8203E, 8502, 8502E, 8503, 8503E			
Model Difference	:	All these models are identical in the same PCB, layout and electrical circuit, the only difference is model name.			
		Operation Frequency: 902.5MHz~927NHz			
Product Description		Modulation Type:	AFSK		
		RF Output Power:	26.48dBm		
		Antenna Gain:	8dBi Circular Polarized Antenna		
Power Rating	:	Input: DC 9.0 V/3A from the AC/DC Adapter.(ADS-18H-12-2 0918G)			
Software Version		N/A			
Hardware Version	-	N/A			
Connecting I/O Port(S)		Please refer to the User's Manual			

Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

(2) Channel List:

Channel List						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
01	902.5	19	911.5	37	920.5	
02	903	20	912	38	921	
03	903.5	21	912.5	39	921.5	
04	904	22	913	40	922	
05	904.5	23	913.5	41	922.5	
06	905	24	914	42	923	
07	905.5	25	914.5	43	923.5	
08	906	26	915	44	924	
09	906.5	27	915.5	45	924.5	
10	907	28	916	46	925	
11	907.5	29	916.5	47	925.5	
12	908	30	917	48	926	
13	908.5	31	917.5	49	926.5	
14	909	32	918	50	927	
15	909.5	33	918.5			
16	910	34	919			
17	910.5	35	919.5			
18	911	36	920			

(3) The Antenna information about the equipment is provided by the applicant.

1.3 Block Diagram Showing the Configuration of System Tested

TX Mode

	Adapter		EUT
--	---------	--	-----

1.4 Description of Support Units

Equipment Information				nation	
	Name	Model	Model FCC ID/VOC Manufactur		Used "√"
	ADAPTER	ADS-18H-12-2 0918G		1081	V

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test				
Final Test Mode	Description			
Mode 1	TX Mode			

For Radiated Test				
Final Test Mode Description				
Mode 1	TX AFSK Mode			
Mode 2	TX Mode(AFSK) Channel 00/26/50			
Mode 3	Hopping Mode(AFSK)			

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate. We have pretested all the test modes above. According to ANSI C63.10 standards, the measurements are performed at the highest,

middle, lowest available channels.
(2) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on X-plane as the normal use. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of Bluetooth mode.

Test Software Version		N/A	TUDE A
Frequency	902.5 MHz	915MHz	927 MHz
AFSK	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.42 dB ±3.42 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.40 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01. FCC Accredited Test Site Number: 854351.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

2. Test Summary

	FCC Part 15 Subpart C(15.247)/ RSS 247 Issue 2				
Standard S	ection				
FCC	IC	- Test Item	Judgment	Remark	
15.203	2	Antenna Requirement	PASS	N/A	
15.207	RSS-GEN 7.2.2	Conducted Emission	PASS	N/A	
15.205	RSS-Gen 7.2.3	Restricted Bands	PASS	N/A	
15.247(a)(1)	RSS 247 5.1 (2)	Hopping Channel Separation	PASS	N/A	
15.247(a)(1)	RSS 247 5.1 (4)	Dwell Time	PASS	N/A	
15.247(b)(1)	RSS 247 5.4 (2)	Peak Output Power	PASS	N/A	
15.247(b)(1)	RSS 247 5.1 (4)	Number of Hopping Frequency	PASS	N/A	
15.247(d)	RSS 247 5.5	Band Edge	PASS	N/A	
15.247(c)& 15.209	RSS 247 5.5	Radiated Spurious Emission	PASS	N/A	
15.247(a)	RSS 247 5.1 (1)	99% Occupied Bandwidth & 20dB Bandwidth	PASS	99%OBW: AFSK: 193.7525kHz	

Note: N/A is an abbreviation for Not Applicable.

3. Test Equipment

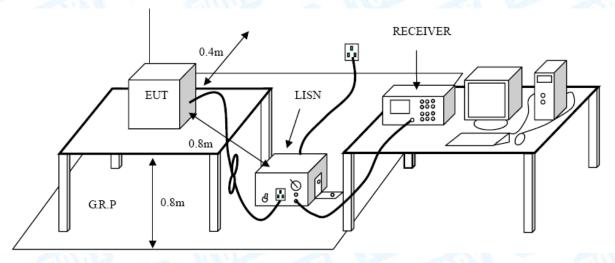
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 18, 2018	Jul. 17, 2019
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 18, 2018	Jul. 17, 2019
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 18, 2018	Jul. 17, 2019
LISN	Rohde & Schwarz	ENV216	101131	Jul. 18, 2018	Jul. 17, 2019
Radiation Emissio	n Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 18, 2018	Jul. 17, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.16, 2018	Mar.15, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar.16, 2018	Mar.15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.16, 2018	Mar.15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.16, 2018	Mar.15, 2019
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 14, 2018	Jul. 13, 2019
Pre-amplifier	Sonoma	310N	1 <mark>8</mark> 5903	Mar.16, 2018	Mar.15, 2019
Pre-amplifier	HP	8449B	3008A00849	Mar.16, 2018	Mar.15, 2019
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.16, 2018	Mar.15, 2019
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducte	ed Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 18, 2018	Jul. 17, 2019
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 15, 2018	Sep. 14, 2019
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 15, 2018	Sep. 14, 2019
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 15, 2018	Sep. 14, 2019
83 6	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO26	Sep. 15, 2018	Sep. 14, 2019
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO29	Sep. 15, 2018	Sep. 14, 2019
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO31	Sep. 15, 2018	Sep. 14, 2019
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO33	Sep. 15, 2018	Sep. 14, 2019

4. Conducted Emission Test

- 4.1 Test Standard and Limit
 - 4.1.1Test Standard FCC Part 15.207
 - 4.1.2 Test Limit

Frequency	Maximum RF Line	e Voltage (dBµV)
	Quasi-peak Level	Average Level
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50

Conducted Emission Test Limit


Notes:

(1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequencies.

(3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Please refer to the Attachment A.

5. Radiated Emission Test

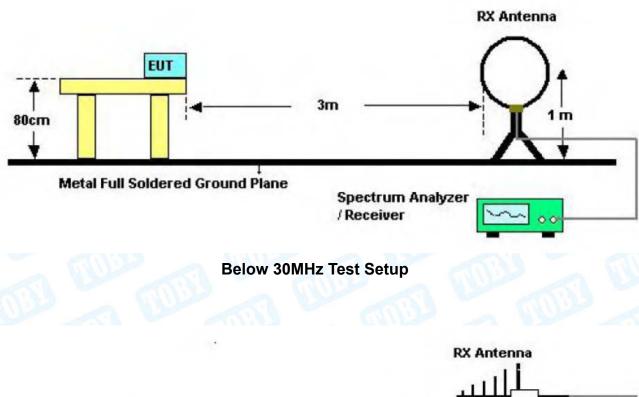
- 5.1 Test Standard and Limit
 - 5.1.1 Test Standard
 - FCC Part 15.209
 - 5.1.2 Test Limit

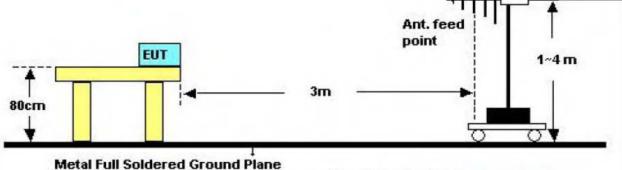
Radiated Emission Limit (9 kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Frequency (MHz)	Distance of 3m (dBuV/m)	
	Peak	Average
bove 1000	74	54

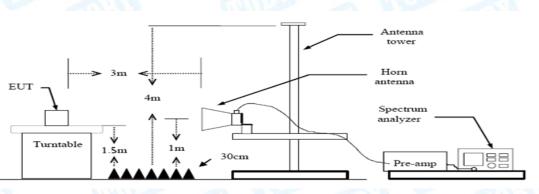
Note:


(1) The tighter limit applies at the band edges.


(2) Emission Level (dBuV/m)=20log Emission Level (uV/m)

Report No.: TB-FCC162453 Page: 15 of 47

5.2 Test Setup



Spectrum Analyzer / Receiver

Below 1000MHz Test Setup

0.0

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

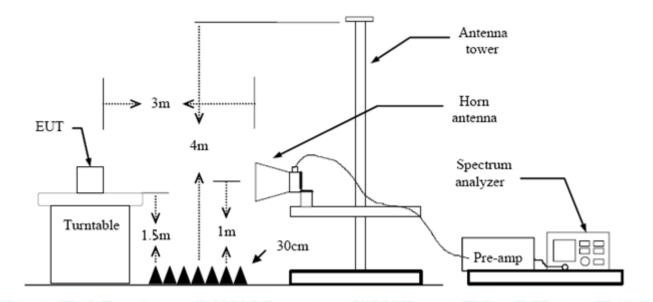
5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power in TX mode.

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.



6. Restricted Bands Requirement

- 6.1 Test Standard and Limit
 - 6.1.1 Test Standard FCC Part 15.209 FCC Part 15.205
 - 6.1.2 Test Limit

Restricted Frequency	Distance of	3m (dBuV/m)
Band (MHz)	Peak	Average
2310 ~2390	74	54
2483.5 ~2500	74	54

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with AVG Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

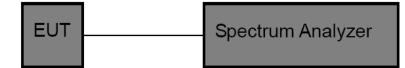
6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

All restriction bands have been tested, only the worst case is reported. Please refer to the Attachment C.



7. Number of Hopping Channel

- 7.1 Test Standard and Limit
 - 6.1.1 Test Standard
 - FCC Part 15.247 (a)(1)
 - 6.1.2 Test Limit

Section	Test Item	Limit	
15.247	Number of Hopping Channel	>15	

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=100 KHz, VBW=100 KHz, Sweep time= Auto.

7.4 EUT Operating Condition

The EUT was set to the Hopping Mode by the Customer.

7.5 Test Data

Please refer to the Attachment D.

8. Average Time of Occupancy

- 8.1 Test Standard and Limit
 - 8.1.1 Test Standard
 - FCC Part 15.247 (a)(1)
 - 8.1.2 Test Limit

Section	Test Item	Limit
15.247(a)(1)	Average Time of Occupancy	0.4 sec

8.2 Test Setup

8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=1MHz, VBW=1MHz.
- (3) Use video trigger with the trigger level set to enable triggering only on full pulses.
- (4) Sweep Time is more than once pulse time.
- (5) Set the center frequency on any frequency would be measure and set the frequency span to zero.
- (6) Measure the maximum time duration of one single pulse.
- (7) Set the EUT for packet transmitting.
- (8) Measure the maximum time duration of one single pulse.

8.4 EUT Operating Condition

The average time of occupancy on any channel within the Period can be calculated with formulas:

{Total of Dwell} = {Pulse Time} * (1600 / X) / {Number of Hopping Frequency} * {Period} {Period} = 0.4s * {Number of Hopping Frequency}

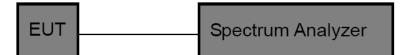
Note: X=2 or 4 or 6 (1DH1=2, 1DH3=4, 1DH5=6. 2DH1=2, 2DH3=4, 2DH5=6. 3DH1=2, 3DH3=4, 3DH5=6)

The lowest, middle and highest channels are selected to perform testing to record the dwell time of each occupation measured in this channel, which is called Pulse Time here.

The EUT was set to the Hopping Mode by the Customer.

8.5 Test Data

Please refer to the Attachment E.



9. Channel Separation and Bandwidth Test

- 9.1 Test Standard and Limit
 - 9.1.1 Test Standard
 - FCC Part 15.247
 - 9.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Bandwidth	<=500kHz (20dB bandwidth)	902~928
Channel Separation	>25KHz or >two-thirds of the 20 dB bandwidth Which is greater	902~928

9.2 Test Setup

9.3 Test Procedure

(1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

(2) Spectrum Setting: Channel Separation: RBW=100 kHz, VBW=100 kHz. Bandwidth: RBW=30 kHz, VBW=100 kHz.

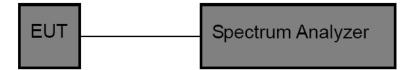
- (3) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
 - (4) Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:30 kHz, and Video Bandwidth:100 kHz. Sweep Time set auto.

9.4 EUT Operating Condition

The EUT was set to the Hopping Mode for Channel Separation Test and continuously transmitting for the Bandwidth Test.

9.5 Test Data

Please refer to the Attachment F.


10. Peak Output Power Test

10.1 Test Standard and Limit

- 10.1.1 Test Standard FCC Part 15.247 (b) (1)
- 10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Peak Output Power	Hopping Channels>75 Power<1W(30dBm)	902~928
6000	Other <125 mW(21dBm)	

10.2 Test Setup

10.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Peak Detector: RBW=1 MHz, VBW=3 MHz for bandwidth less than 1MHz. RBW=3 MHz, VBW \geq RBW for bandwidth more than 1MHz.

10.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

10.5 Test Data

Please refer to the Attachment G.

11. Antenna Requirement

11.1 Standard Requirement

11.1.1 Standard

FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Antenna Connected Construction

The gains of the antenna used for transmitting is 8dBi, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

11.3 Result

The EUT antenna is a Detachable Antenna. It complies with the standard requirement.

	Antenna Type
□Pe	ermanent attached antenna
⊠Uı	ique connector antenna
Pr	ofessional installation antenna

Attachment A-- Conducted Emission Test Data

Temperature:	25 ℃		Relative	Humidity:	55%	%
Fest Voltage:	AC 120V/60 H	z				
Ferminal:	Line	1170	100		9	-
Fest Mode:	TX Mode		(m)	. 66		AUR
Remark:	Only worse cas	se is reported		-	132	
90.0 dBuV	ANNIN MARYN		Man mark		QF AV	
	0.5 Reading eq. Level	(MHz) Correct Factor	Measure- ment	Limit	Over	30.000
	Hz dBuV	dB	dBuV	dBuV	dB	Detector
1 * 0.1	539 42.21	9.58	51.79	65.78 -	-13.99	QP
2 0.1	539 25.16	9.58	34.74	55.78 -	21.04	AVG
3 0.1	700 37.17	9.58	46.75	64.96	-18.21	QP
4 0.1	700 15.67	9.58	25.25	54.96	29.71	AVG
5 0.2	779 31.40	9.59	40.99	60.88	-19.89	QP
6 0.2	779 24.98	9.59	34.57	50.88	16.31	AVG
7 1.18	820 25.10		34.70			
	320 14.83		24.43			
	260 24.61			56.00		
	260 24.01					
	980 24.34					
12 2.79	980 12.41	9.64	22.05	46.00 -	23.95	AVG

Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60 Hz	60039	A RUE
Terminal:	Neutral		
Test Mode:	TX Mode		
Remark:	Only worse case is re	ported	- AUL
90.0 dBvV 30 -30			QP:

				-				
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1500	37.72	9.64	47.36	65.99	-18.63	QP
2		0.1500	17.17	9.64	26.81	55.99	-29.18	AVG
3	*	0.1700	37.61	9.64	47.25	64.96	-17.71	QP
4		0.1700	13.41	9.64	23.05	54.96	-31.91	AVG
5		0.2740	28.81	9.59	38.40	60.99	-22.59	QP
6		0.2740	15.46	9.59	25.05	50.99	-25.94	AVG
7		0.9260	25.40	9.59	34.99	56.00	-21.01	QP
8		0.9260	14.88	9.59	24.47	46.00	-21.53	AVG
9		1.5260	24.56	9.60	34.16	56.00	-21.84	QP
10		1.5260	8.63	9.60	18.23	46.00	-27.77	AVG
11		2.6460	24.29	9.65	33.94	56.00	-22.06	QP
12		2.6460	12.88	9.65	22.53	46.00	-23.47	AVG

Temperature:	25 ℃		10	Relative Hu	midity:	55%	
Test Voltage:	AC 240	V/60 Hz	88	110	1	-	MUL
Terminal:	Line	- NEW	-		a		
Test Mode:	TX Mod	le	anu?	P			
Remark:	Only wo	orse case i	s reported	and a			N.S.
90.0 dBuV	W. K.	un Marina Marina	www.h	MMMMM	Mamm	QP: AVG:	
-30	0.5		(MHz)		www.www.	Mar	30.000
0.150) e e dire e					30.000
No. Mk. F	Freq.	≀eading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1 * 01							
I U.	1740	40.69	9.64	50.33	64.76	-14.43	QP
	1740 1740	40.69	9.64 9.64	50.33 34.92		-14.43 -19.84	QP AVG
2 0.1	1740	25.28	9.64	34.92	54.76	-19.84	AVG
2 0.1 3 0.2	1740 2620	25.28 34.83	9.64 9.60	34.92 44.43	54.76 61.36	-19.84 -16.93	AVG QP
2 0.1 3 0.2 4 0.2	1740 2620 2620	25.28 34.83 25.33	9.64 9.60 9.60	34.92 44.43 34.93	54.76 61.36 51.36	-19.84 -16.93 -16.43	AVG QP AVG
2 0.1 3 0.2 4 0.2 5 0.5	1740 2620 2620 5340	25.28 34.83 25.33 29.83	9.64 9.60 9.60 9.58	34.92 44.43 34.93 39.41	54.76 61.36 51.36 56.00	-19.84 -16.93 -16.43 -16.59	AVG QP AVG QP
2 0.1 3 0.2 4 0.2 5 0.5 6 0.5	1740 2620 2620 5340 5340	25.28 34.83 25.33 29.83 14.95	9.64 9.60 9.60 9.58 9.58	34.92 44.43 34.93 39.41 24.53	54.76 61.36 51.36 56.00 46.00	-19.84 -16.93 -16.43 -16.59 -21.47	AVG QP AVG QP AVG
2 0.1 3 0.2 4 0.2 5 0.5 6 0.5 7 0.8	1740 2620 2620 5340 5340 3380	25.28 34.83 25.33 29.83 14.95 26.96	9.64 9.60 9.60 9.58 9.58 9.59	34.92 44.43 34.93 39.41 24.53 36.55	54.76 61.36 51.36 56.00 46.00 56.00	-19.84 -16.93 -16.43 -16.59 -21.47 -19.45	AVG QP AVG QP AVG QP
2 0.1 3 0.2 4 0.2 5 0.5 6 0.5 7 0.8 8 0.8	1740 2620 2620 5340 5340 3380 3380	25.28 34.83 25.33 29.83 14.95 26.96 16.04	9.64 9.60 9.58 9.58 9.59 9.59	34.92 44.43 34.93 39.41 24.53 36.55 25.63	54.76 61.36 51.36 56.00 46.00 56.00	-19.84 -16.93 -16.43 -16.59 -21.47	AVG QP AVG QP AVG QP AVG
2 0.1 3 0.2 4 0.2 5 0.5 6 0.5 7 0.8 8 0.8	1740 2620 2620 5340 5340 3380 3380	25.28 34.83 25.33 29.83 14.95 26.96	9.64 9.60 9.58 9.58 9.59 9.59	34.92 44.43 34.93 39.41 24.53 36.55	54.76 61.36 51.36 56.00 46.00 46.00	-19.84 -16.93 -16.43 -16.59 -21.47 -19.45	AVG QP AVG QP AVG QP AVG
2 0.1 3 0.2 4 0.2 5 0.5 6 0.5 7 0.8 8 0.8 9 1.1	1740 2620 2620 5340 5340 3380 3380	25.28 34.83 25.33 29.83 14.95 26.96 16.04 27.43	9.64 9.60 9.58 9.58 9.59 9.59	34.92 44.43 34.93 39.41 24.53 36.55 25.63	54.76 61.36 51.36 56.00 46.00 56.00 56.00	-19.84 -16.93 -16.43 -16.59 -21.47 -19.45 -20.37	AVG QP AVG QP AVG QP AVG QP
2 0.1 3 0.2 4 0.2 5 0.5 6 0.5 7 0.8 8 0.8 9 1.1 10 1.1	1740 2620 2620 5340 5340 3380 3380 1940	25.28 34.83 25.33 29.83 14.95 26.96 16.04 27.43 14.49	9.64 9.60 9.58 9.58 9.59 9.59 9.59 9.59	34.92 44.43 34.93 39.41 24.53 36.55 25.63 37.02 24.08	54.76 61.36 51.36 56.00 46.00 46.00 56.00 46.00	-19.84 -16.93 -16.43 -16.59 -21.47 -19.45 -20.37 -18.98	AVG QP AVG QP AVG QP AVG QP AVG

Гem	peratur	e: 25°	C		Relative H	lumidity:	55%	
Test	t Voltage	AC	240V/60 Hz		100	199	-	M.
Terr	ninal:	Neu	ıtral			-	200	-
Test	Mode:	TX	Mode		2			A.
Rem	nark:	Only	y worse case	is reported		19	- 5	ULS
90.0	dBuV							
30 -	Mw AN	man	Maria Maria	Mu Mu Mu	Xu Mun	Marin Marin	QP: AVG:	
-30	50		1,5	(MHz)	5		Man and the second s	30.000
			Reading	Correct	Measure			
۷o.	Mk.	Freq.	Level	Factor	ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.1740	39.42	9.64	49.06	64.76	-15.70	QP
2		0.1740	21.64	9.64	31.28	54.76	-23.48	AVG
3		0.5340	29.72	9.58	39.30	56.00	-16.70	QP
4		0.5340	13.54	9.58	23.12	46.00	-22.88	AVG
5		0.8460	30.11	9.59	39.70		-16.30	QP
6		0.8460		9.59	27.36		-18.64	
7		1.2059					-18.31	
8		1.2059	15.80	9.59	25.39		-20.61	
9		1.5140	28.97		38.57		-17.43	QP
10		1.5140	13.90	9.60	23.50	46.00	-22.50	AVG
		2.5820	28.50	9.64	38.14	56.00	-17.86	QP
11								

Attachment B-- Radiated Emission Test Data

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

30MHz~1GHz

IHz~1GHz			GV		2				
Temperature	e:	25 ℃	2	-		Relative	Humidity:	55%	A 18
Test Voltage):	AC	120V/6	30 Hz	Mar -			-	13
Ant. Pol.		Hor	izontal	33		COM DE		100	
Test Mode:		TX /	AFSK	Mode	902.5MHz				117
Remark:		Only	y wors	e case	e is reported				
90.0 dBuV/m									
		+-+							
			- +				(RF)FCC 1	5C 3M Radiation	
						_		Margin -6	1 11 - 1
40						+	-	5 ¥	
	<u> </u>					+	2 X X 3	6 ×	
		+				1 X	1 Au	whather	ann/ "
hourse			$\left - \right + \left - \right $. Mundhalm	mar .		
m vv	man	mark	mm	manym	men the comment	Mw.~~			
-10									
30.000 40	50	60 7	70 80		(MHz)	300	0 400 5	500 600 700	1000.000
				ding	Correct	Measure-			
No. Mk.	Fre	q.	Lev	vel	Factor	ment	Limit	Over	
	MH	z	dB	luV	dB/m	dBuV/m	dBuV/m	dB I	Detector
1 2	240.83	304	41.	.43	-17.69	23.74	46.00	-22.26	QP
2 3	361.71	139	46.	.69	-14.04	32.65	46.00	-13.35	QP
3 4	440.19	963	40.	.69	-12.04	28.65	46.00	-17.35	QP
4 4	472.17	760	47.	.78	-11.38	36.40	46.00	-9.60	QP
5 * 5	543.27	742	50.	.15	-9.32	40.83	46.00	-5.17	QP
6 6	665.80	035	41.	.44	-7.71	33.73	46.00	-12.27	QP

*:Maximum data x:Over limit !:over margin

Temperature:	25 ℃			Relative H	umidity:	55%	
Fest Voltage:	AC 12	0V/60 Hz		110			CO S
Ant. Pol.	Vertica						-
Fest Mode:	TX AF	SK Mode 90	2.5MHz		A REP		5
Remark:	Only w	orse case is	s reported	Can B			1125
90.0 dBuV/m							
40			······	1 X W		C 3M Radiation Margin -6	
30.000 40 5	0 60 70	80	(MHz)	300	400 50	0 600 700	1000.00
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detect
1 240).8304	43.83	-17.69	26.14	46.00	-19.86	QP
2 361	.7139	52.00	-14.04	37.96	46.00	-8.04	QP
3 482	2.2156	47.79	-11.10	36.69	46.00	-9.31	QP
4 * 543	3.2742	51.26	-9.32	41.94	46.00	-4.06	QP
		40.47	0.06	37.51	46.00	-8.49	QP
5 562	2.6624	46.47	-8.96	57.51	40.00	-0.49	9

*:Maximum data x:Over limit !:over margin

Above 1GHz(Only worse case is reported)

Tem	perature:	25 ℃		Relative Humidit	:y: 55%		
Tes	t Voltage:	DC 9V		60000			
Ant	. Pol.	Horizont	al				
Tes	t Mode:	TX AFS	K Mode 902.5M	Hz			
Ren	nark:	No repo prescrib		on which more than 10 d	B below the		
100.0 I	dBuV/m						
				(RF) F	CC PART 15C (PEAK)		
	1 X			(RF)	(RF) FCC PART 15C (AVG)		
50	2 X						
0.0							

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		1805.478	56.82	14.43	55.45	74.00	-18.55	peak
2	*	1805.574	46.62	14.43	45.25	54.00	-8.75	AVG

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 9V		
Ant. Pol.	Vertical		and "
Test Mode:	TX AFSK Mode 9	02.5MHz	
Remark:	No report for the prescribed limit.	emission which more than 10 dE	3 below the
100.0 dBu¥/m			
		(RF) FC	C PART 15C (PEAK)
2 X		(BE) E	CC PART 15C (AVG)
50 1		(11)	
×			
0.0			
1000.000 2175.00	3350.00 4525.00 5700	.00 6875.00 8050.00 9225.00 104	400.00 12

No	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	1805.036	46.63	14.43	45.21	54.00	-8.79	AVG
2		1805.125	61.57	14.43	60.15	74.00	-13.85	peak

perature:	25 ℃		Relative Humic	dity:	55%			
t Voltage:	DC 9V	100	(In the second s	2				
. Pol.	Horizontal	Horizontal						
t Mode:	TX AFSK M	ode 902.5M	Hz	11				
n ark :	No report for the emission which more than 10 dB below the prescribed limit.							
dBu¥/m								
				(RF) FCC	C PART 15C (PEAK)			
2 X				(05)5(C PART 15C (AVG)			
_				(RF) FU	L PART ISC (AVG)			
X								
	2 X	t Voltage: DC 9V . Pol. Horizontal t Mode: TX AFSK M nark: No report for prescribed I dBuV/m	t Voltage: DC 9V . Pol. Horizontal t Mode: TX AFSK Mode 902.5M nark: No report for the emission prescribed limit. dBuV/m	t Voltage: DC 9V Pol. Horizontal t Mode: TX AFSK Mode 902.5MHz nark: No report for the emission which more than prescribed limit. dBuV/m	t Voltage: DC 9V Pol. Horizontal t Mode: TX AFSK Mode 902.5MHz nark: No report for the emission which more than 10 dE prescribed limit. dBuV/m (NF) FCC 2 X (RF) FC			

No. Mk.		Freq.		Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	1830.456	46.62	14.43	45.47	54.00	-8.53	AVG
2		1830.562	59.86	14.43	58.71	74.00	-15.29	peak

Tempera	ature:	25 ℃	Relative Humidity:	55%				
Test Vol	tage:	DC 9V	6002					
Ant. Pol	•	Vertical		10 -				
Test Mo	de:	TX AFSK Mode 915	5MHz					
Remark	:	No report for the emission which more than 10 dB below the prescribed limit.						
100.0 dBu	//m							
			(RF) FCC PAF	IT 15C (PEAK)				
	1 X		(RF) FCC PA	.RT 15C (AVG)				
50	2 X							
0.0								

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		1830.144	59.70	14.43	58.47	74.00	-15.53	peak
2	*	1830.414	47.48	14.43	46.25	54.00	-7.75	AVG

Temperature:	25 ℃	Relative Humidity: 55%						
Test Voltage:	DC 9V							
Ant. Pol.	Horizontal							
Test Mode:	TX AFSK Mode 927	MHz						
Remark:	No report for the emprescribed limit.	No report for the emission which more than 10 dB below the prescribed limit.						
100.0 dBuV/m								
		(RF) FCC PART 15C (PEAK)						
1 X		(RF) FCC PART 15C (AVG						
50 2								
×								
0.0	3350.00 4525.00 5700.00	6875.00 8050.00 9225.00 10400.00 12						

No	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		1854.354	59.20	14.43	58.52	74.00	-15.48	peak
2	*	1854.356	46.04	14.43	45.36	54.00	-8.64	AVG

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 9V	6000	
Ant. Pol.	Vertical		<u> </u>
Test Mode:	TX AFSK Mode 92	7MHz	
Remark:	No report for the enprescribed limit.	mission which more than 10 dB l	below the
100.0 dBuV/m			
		(RF) FCC F	PART 15C (PEAK)
1			
×		(RF) FCC	PART 15C (AVG)
50 2 X			
0.0	3350.00 4525.00 5700.00	0 6875.00 8050.00 9225.00 10400).00 12750.

No.	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		1854.247	59.40	14.43	58.39	74.00	-15.61	peak
2	*	1854.748	46.36	14.43	45.35	54.00	-8.65	AVG

Attachment C-- Restricted Bands Requirement Test Data

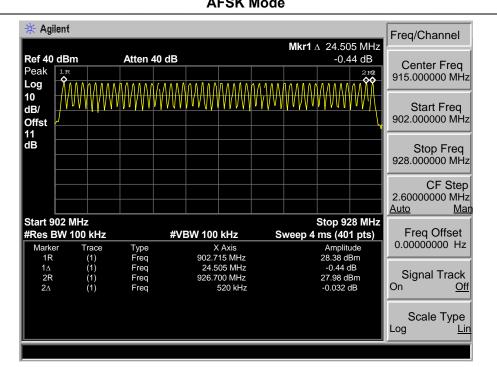
Test Vo Ant. Po	oltage:	DC 9V						
Ant. Po		DC 9V						1
	ol.	Horizo	ontal		and a			
Test M	ode:	TX AF	SK Mode	902.5MHz				
Remar	k:	Only v	vorse case	e is reported		AUS		3
100.0 df	BuV/m						3	
							××	
						(BF) FCC PA	IRT 15C (PÈA)	0
					1	and the second s		
			mm		month	(RF) FCC P	ART 15C (AVC	G)
50					2 X			
0.0								
900.000	0 900.30	900.60 9	900.90 901	1.20 901.50	901.80 90	02.10 902.40		903.00
No.	Mk. F	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Det
1		2.0000	64.94	-3.60	61.34	74.00	-12.66	р
			53.71	-3.60	50.11			-
0	000		53/1	-3.60	50.11	54.00	-3.89	A
2		2.0000	101.46	-3.60	97.86			р

Temperature:	25 ℃		Relative Humidity:	55%
Test Voltage:	DC 9V	COLD I	THUR A	
Ant. Pol.	Vertical	1		199
Test Mode:	TX AFS	K Mode 902.5MH	2	
Remark:	Only wor	rse case is report	ed	2 19
100.0 dBu¥/m				4
				× ×
				$\overline{\mathbf{x}}$
			(RF) FCC	PART 15C (PEAK)
			1	
			(RE) ECT	" CPART 15C (AVG)
50		www.me	× (m)/c	
0.0		.90 901.20 901.5		

NO.	. MK	. Freq.	Level	Factor	ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		902.0000	64.37	-3.60	60.77	74.00	-13.23	peak
2		902.0000	54.63	-3.60	51.03	54.00	-2.97	AVG
3	Х	902.4779	95.48	-3.60	91.88	Fundamental	Frequency	AVG
4	*	902.4840	100.73	-3.60	97.13	Fundamental	Frequency	peak

Temperature:	25℃		Relativ	e Humidity:	55%	
Test Voltage:	DC 9V	Clim,	5			1
Ant. Pol.	Horizontal	2	EX L	1100	100	8
Test Mode:	TX AFSK M	lode 927 MHz			61	
Remark:	Only worse	case is report	ed			
100.0 dBuV/m 🖁						
X						
	- <u>L</u>			(BE) ECC P/	ART 15C (PEAK)	
	- m			()		
		many 3				
		mul-x		(RF) FCC I	PART 15C (AVG)	
50		×				~
0.0						
	927.11 927.41	927.71 928.	928.31	928.61 928.91	929.51	M⊦

N	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Х	926.9780	99.36	-3.59	95.77	Fundamental Frequency		peak
2	*	926.9780	94.87	-3.59	91.28	Fundamental F	requency	AVG
3		928.0000	61.06	-3.60	57.46	74.00	-16.54	peak
4		928.0000	52.82	-3.60	49.22	54.00	-4.78	AVG



Temperatur	'e: 25°C	C		Relative	Humidity:	55%					
Test Voltage	e: DC	9V		100	195		NUP				
Ant. Pol.	Vert	Vertical									
Test Mode:	TX	TX AFSK Mode 927 MHz									
Remark:	Only	Only worse case is reported									
100.0 dBu¥/m	1 X X										
	\	home			(RF) FCC PA	RT 15C (PEAK]				
· ·		- Mu	3		(RF) FCC P	VART 15C (AVG	1				
50			×								
0.0											
926.510 926.8	927.11	927.41 927	.71 928.01	928.31 9	28.61 928.91	9	29.51 MH:				
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over					
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detecto				
1 X	926.9778	103.86	-3.59	100.27	Fundamental Fr	requency	peak				
2 *	926.9778	100.03	-3.59	96.44	Fundamental Fi	requency	AVG				
0	020 0000	63.06	-3.60	59.46	74.00	-14.54	peak				
3	928.0000	05.00	-0.00	00.40	1 1.00		poun				

Attachment D-- Number of Hopping Channel Test Data

Temperature:	25°	C	Relative Humidity:	55%
Test Voltage:	DC	9V	132	
Test Mode:	Нор	oping Mode	NUM A U	1 CON
Frequency Range		Test Mode	Quantity of Hopping Channel	Limit
902.5MHz~927M	Hz	AFSK	50	>15
			AFSK Mode	1

Attachment E-- Average Time of Occupancy Test Data

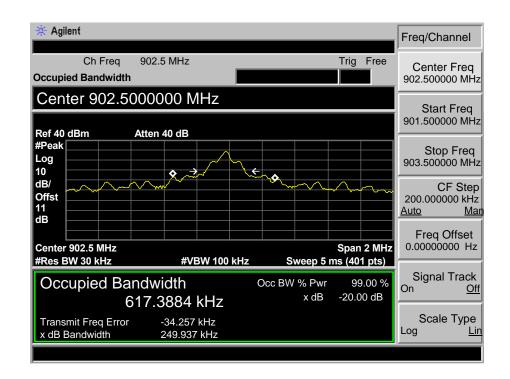
	Temperatu	ire:	25 ℃		Relative Humidity	r: 55%	6				
	Test Voltag	100									
	Test Mode	:	Hopping I	Mode (AFSK)							
	Test		nterval	Pulse Time	Total of Dwell (ms)	Limit	Result				
	Mode	Ti	ime(ms)	(ms)	Total of Dwell (IIIS)	(ms)	Result				
)	Hopping		580.5	7.413	247.1	400	PASS				
	Dwell time=Ton*Ton times in 1s*0 4s*Channel numbers=7 413*(5/3)*0 4*50										

Dwell time=Ton*Ton times in 1s*0.4s*Channel numbers=7.413*(5/3)*0.4*50

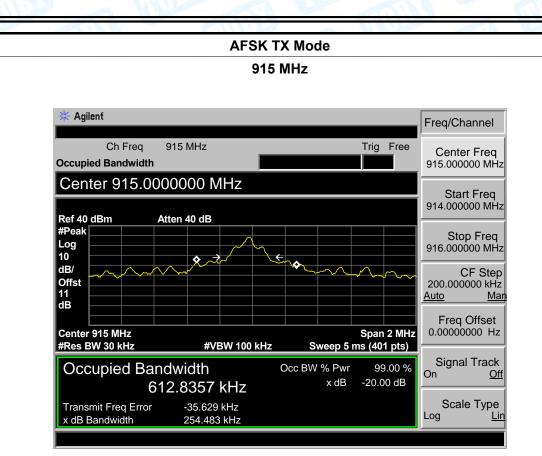
AFSK Hopping Mode 1DH1

915 MHz

RL	RF	75 Ω	AC	CORREC			SENSE:INT		AL	IGN AUTO				23 PM No	
					PNO: Fast IFGain:Lov	,	Trig: Free Atten: 30			Avg Type Avg Hold:	: Log-P 1/1	wr		TYPE T DET N	2345 WWWW NNNN
0 dB/div	Ref Of Ref 2	fset 1.62 1.62 d	2 dB Bm										ΔMkr1	580. -0.00	
					, I.,	,			1∆2						
1.6						. <u>2</u>									
.62															
.38															
8.4															
8.4															
8.4															
8.4	har di di da di	and the first of the start of the	a filmialad		adhana dala	a Nisian	an an <mark>ta kata Apilitin ya</mark>	n dibartan	ullionu	bash Marmal a ^{ba}	(III) en 1941	u, fan Karnij ^e	denere Hidybreed	hadalatet	nantheat
8.4															
8.4															
enter 90	2.5000	00 MH	z											Spa	n 0 Hz
es BW 1	.0 MHz					#VB	W 1.0 MHz	z				Swee	ep 3.000 s	s (300	01 pts

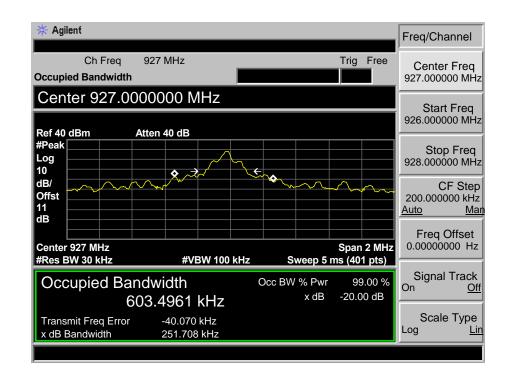


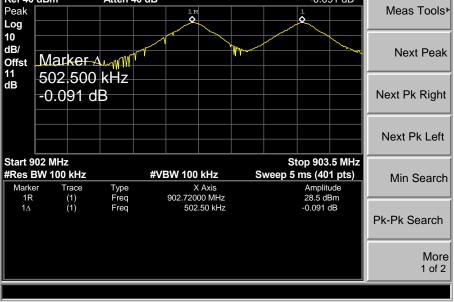
Attachment F-- Channel Separation and Bandwidth Test


Data

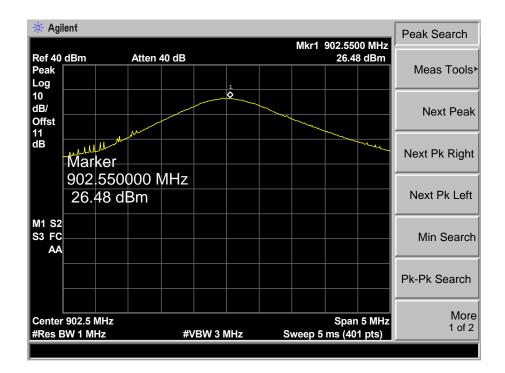
Temperature:	25°	C	Relative Humidity:	55%
Test Voltage:	DC	9V		and
Test Mode:	ТΧ	Mode (AFSK)		3 4
Channel frequency (MHz)		99% OBW (kHz)	20dB Bandwidth (kHz)	20dB Bandwidth *2/3 (kHz)
902.5		617.3884	249.937	
915		612.8357	254.483	
927 6		603.4961	251.708	
		AFSK T	TX Mode	

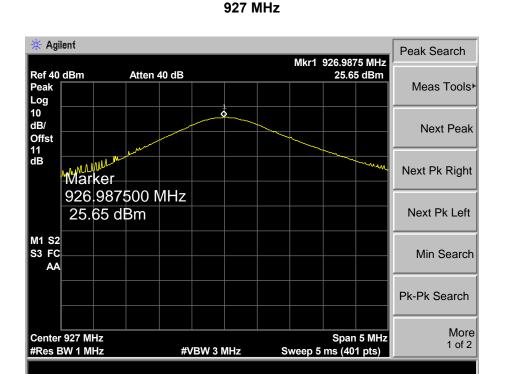
902.5 MHz



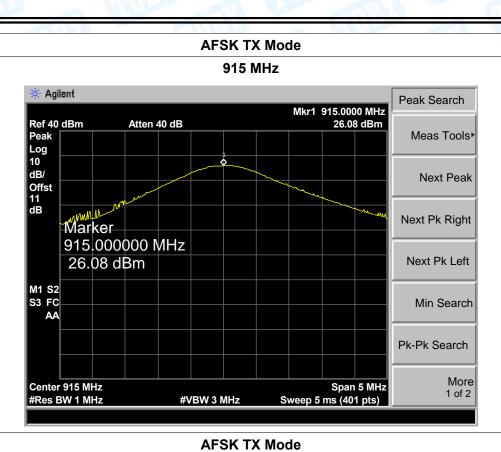

AFSK TX Mode

927 MHz


Temperature:	25 ℃		Relative Hu	55%			
Test Voltage:	DC 9V						
Test Mode:	Hopping I	Hopping Mode (AFSK)					
Channel frequency Separation Read Value Sepa				paration Limit			
(MHz))	(kH	z)	(kHz)			
902.5		502	.5	249.937			
		AFSK Hopp	ing Mode				
		902.5	MHz				
🔆 Agilent				P	eak Search		
Ref 40 dBm Peak Log	n Atten	40 dB	Mkr1 △ 502 -0.0	50 kHz 091 dB	Meas Tools►		


Attachment G-- Peak Output Power Test Data

Temperature:	25 ℃		Relative Humidity:	55%				
Test Voltage:	DC 9V	NUL I	3	100				
Test Mode:	TX Mode	(AFSK)						
Channel frequen	cy (MHz)	Test Result	(dBm) L	imit (dBm)				
902.5		26.48						
915		26.08		28				
927		25.65						
AFSK TX Mode								


902.5 MHz

-----END OF REPORT-----

Report No.: TB-FCC162453 Page: 47 of 47