

Partial FCC Test Report

Report No.: RFBHDI-WTW-P21120081-6

FCC ID: 2ARXKVHE09-4GL

Test Model: VHE09-4GL, VHH09-4GL

Series Model: VHE09XXXXX (X=A-Z, 0-9, blank or "-")

Received Date: Dec. 24, 2021

Test Date: Jan. 22 ~ Mar. 28, 2022

Issued Date: Apr. 22, 2022

Applicant: Veea Inc

Address: 164 E 83rd Street, New York NY, 10028, USA

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

Test Location: No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, Taiwan

FCC Registration / 788550 / TW0003 Designation Number:

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

Release Control Record	3
1 Certificate of Conformity	4
2 Summary of Test Results	5
2.1 Measurement Uncertainty 2.2 Modification Record	
3 General Information	6
3.1General Description of EUT63.2Description of Test Modes83.2.1Test Mode Applicability and Tested Channel Detail63.3Duty Cycle of Test Signal103.4Description of Support Units113.4.1Configuration of System under Test113.5General Description of Applied Standards and references12	8 9 0 1
4 Test Types and Results	3
4.1Radiated Emission and Bandedge Measurement134.1.1Limits of Radiated Emission and Bandedge Measurement134.1.2Test Instruments144.1.3Test Procedures154.1.4Deviation from Test Standard154.1.5Test Setup164.1.6EUT Operating Conditions174.1.7Test Results164.2Conducted Emission Measurement254.2.1Limits of Conducted Emission Measurement264.2.2Test Instruments264.2.3Test Procedures264.2.4Deviation from Test Standard264.2.5Test Setup264.2.6EUT Operating Condition264.2.7Test Standard264.2.6EUT Operating Condition264.2.7Test Standard264.2.6Fur Operating Condition264.2.7Test Results275Pictures of Test Arrangements37	345567855566667
Appendix – Information of the Testing Laboratories	

Release Control Record

Issue No.	Description	Date Issued
RFBHDI-WTW-P21120081-6	Original Release	Apr. 22, 2022

	veeaHub
Brand:	veea Hub
Test Model:	VHE09-4GL, VHH09-4GL
Series Model:	VHE09XXXXX (X=A-Z, 0-9, blank or "-")
Sample Status:	Engineering Sample
Applicant:	Veea Inc
Test Date:	Jan. 22 ~ Mar. 28, 2022
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247) ANSI C63.10:2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Lena Wan

Prepared by :

Lena Wang / Specialist

Approved by :

evem.

Date: Apr. 22, 2022

Apr. 22, 2022

Date:

Jeremy Lin / Project Engineer

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)							
FCC Clause	Test Item	Result	Remarks				
15.207	AC Power Conducted Emission	Pass	Meet the requirement of limit. Minimum passing margin is -1.80 dB at 0.57000 MHz.				
15.205 / 15.209 / 15.247(d)	Radiated Emissions and Band Edge Measurement	Pass	Meet the requirement of limit. Minimum passing margin is -2.88 dB at 403.43 MHz.				
15.247(d)	Antenna Port Emission	N/A	Refer to note 1				
15.247(a)(2)	6dB bandwidth	N/A	Refer to note 1				
15.247(b)	Conducted power	N/A	Refer to note 1				
15.247(e)	Power Spectral Density	N/A	Refer to note 1				
15.203	Antenna Requirement	Pass	Antenna connector is N type & SMA a standard connector.				

Note:

1. This report is a partial report. Therefore, only, AC Power Conducted Emission and Radiated Emissions were verified and recorded in this report. Other testing data please refer to the original BV CPS report no.: RF200424C06-4.

2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	2.79 dB
	9kHz ~ 30MHz	3.04 dB
Radiated Emissions up to 1 GHz	30MHz ~ 200MHz	3.86 dB
	200MHz ~1000MHz	3.87 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	2.29 dB
Radiated Emissions above 1 GHz	18GHz ~ 40GHz	2.29 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	veeaHub			
Brand	veea Hub			
Test Model	VHE09-4GL, VHH09-4GL			
Series Model	VHE09XXXXX (X=A-Z, 0-9, blank or "-")			
Model Difference	Marketing purposes			
Sample Status	Engineering Sample			
Power Supply Rating	48Vdc (Adapter and PoE)			
Modulation Type	CSS			
Modulation Technology	DTS			
Transfer Rate	DR0~DR4 & DR8~ DR13(500kHz): 980 ~ 219000 bps/s			
	Tx (BW:500kHz) : 923.3 MHz – 927.5 MHz			
Operating Frequency	Rx (BW:125kHz) : 902.3 MHz – 914.9 MHz			
	Rx (BW:500kHz) : 923.3 MHz – 927.5 MHz			
	Tx (BW:500kHz) : 8 channels			
Number of Channel	Rx (BW:125kHz) : 64 channels			
	Rx (BW:500kHz) : 8 channels			
Antenna Type	Refer to Note			
Antenna Connector	Refer to Note			
Accessory Device	Adapter			
Cable Supplied	NA			

Note:

 This report is issued as a supplementary report to BV CPS report no. RF200424C06-4. The difference compared with original report is adding model name (VHH09-4GL), updating mainboard and changing WWAN Module (EG25-G MINIPCIE). Therefore, only AC Power Conducted Emission and Radiated Emissions were verified and recorded in this report. AC Power Conducted Emission and Radiated Emission tests according to original report radiated emission worst channel.

2. Model difference as below

Model	Туре	LoRa	LTE	LED	Power	USB	Console	SD	Power	PCB Design
		Module	Module	for	Button	3.0		Slot		
				LTE						
				Status						
VHE09-	Indoor	RG-1008M	EC25A	Y	Y	Y	Y(RS-	Y	65W	Same design
4GL		(915MHz)					232)		DC-48V	(VHE09/VHE10/VHH10)
									desktop	
									power	
									adapter	
VHH09-	Outdoor	RG-1008M	EG25G	N	Ν	Ν	Y(M.12)	Ν	Power	
4GL		(915MHz)							adapter	
									or PoE	

3. The EUT uses following adapter and PoE.

Adapter	
Brand	EDAC Power Electronics Co., Ltd.
Model	EA1062SGR-480
Input Power	100-240Vac ~2.5A, 50-60Hz
Output Power	48Vdc / 1.35A
Power Line	1.2m DC cable with one core

PoE (Support unit)	
Model	APOE02-WM
Output Power	48Vdc

4. WLAN, zigbee, Bluetooth and LoRa technology can transmit at same time.

5. The LoRa uses following antenna.

Antenna Type	Model Connector		Gain(dBi)
Dipole	Dipole MFB9155NF N type		5
Dipole	MFB9153	N type	3
Dipole	ET915NPMR	N type	2.7
Dipole	MPAMB700MSMA	SMA	2

* The maximum antenna gain is chosen for final test.

6. The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

7. The EUT contains certified WWAN module with FCC ID: 2ATM8EG25G.

3.2 Description of Test Modes

Tx (BW:500kHz): 8 channels

Channel	Freq. (MHz)						
1	923.3	3	924.5	5	925.7	7	926.9
2	923.9	4	925.1	6	926.3	8	927.5

Note: The channels which were indicated in bold type of the above channel list were selected as representative test channel. Therefore only the data of the test channels were recorded in this report.

Rx (BW:125kHz): 64 channels

Channel	Freq. (MHz)						
1	902.3	17	905.5	33	908.7	49	911.9
2	902.5	18	905.7	34	908.9	50	912.1
3	902.7	19	905.9	35	909.1	51	912.3
4	902.9	20	906.1	36	909.3	52	912.5
5	903.1	21	906.3	37	909.5	53	912.7
6	903.3	22	906.5	38	909.7	54	912.9
7	903.5	23	906.7	39	909.9	55	913.1
8	903.7	24	906.9	40	910.1	56	913.3
9	903.9	25	907.1	41	910.3	57	913.5
10	904.1	26	907.3	42	910.5	58	913.7
11	904.3	27	907.5	43	910.7	59	913.9
12	904.5	28	907.7	44	910.9	60	914.1
13	904.7	29	907.9	45	911.1	61	914.3
14	904.9	30	908.1	46	911.3	62	914.5
15	905.1	31	908.3	47	911.5	63	914.7
16	905.3	32	908.5	48	911.7	64	914.9

RX (BW:500kHz): 8 channels

Channel	Freq. (MHz)						
1	903.3	3	906.2	5	909.4	7	912.6
2	904.6	4	907.8	6	911.0	8	914.2

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure		Applicable to		_	Description
Mode	RE≥1G	RE<1G	PLC		_ 5000 p = 0/1
А	√	√	√	Power from adapter	
В	-			Power from PoE	
Mea	1G: Radiated Emis surement : Power Line Condu	sion above 1GHz & Band	edge RE<	G: Radiated Emission I	below 1GHz
lote: . The EUT h on Z-plane . "-"means n		on the positioned of each	3 axis and mod	ulation type. The worst c	case was found when positioned
adiated Emi	<u>ssion Test (Abo</u>	<u>ve 1GHz):</u>			
between architect	available modu ure). g channel(s) wa	ducted to determine the lations, data rates and s (were) selected for	id antenna p	orts (if EUT with an	tenna diversity
EUI Cor	figure Mode	Available Channel			
					Modulation Type
Radiated Emi ☑ Pre-Scar between	available modu	1 to 8		1 e mode from all po	ccs ssible combinations
adiated Emi ☐ Pre-Scar between architect ☐ Following	ssion Test (Belo n has been conc available modu ure). g channel(s) wa	<u>1 to 8</u> <u>w 1GHz):</u> ducted to determine th lations, data rates an s (were) selected for	id antenna p	1 e mode from all po orts (if EUT with an as listed below.	CCS ssible combinations tenna diversity
adiated Emi ☐ Pre-Scar between architecti ☐ Following EUT Cor	ssion Test (Belo has been conc available modu ure).	<u>1 to 8</u> w 1GHz): ducted to determine the lations, data rates an	id antenna p	1 e mode from all po orts (if EUT with an	ccs ssible combinations
Radiated Emi Sadiated Emi Pre-Scar between architectr Following EUT Cor Power Line C Pre-Scar between architectr Pre-Scar between architectr Following EUT Cor	ssion Test (Belo has been conc available modu ure). g channel(s) wa figure Mode A, B onducted Emiss n has been conc available modu ure). g channel(s) wa figure Mode	<u>1 to 8</u> <u>aw 1GHz):</u> ducted to determine the lations, data rates an s (were) selected for <u>Available Channel</u> 1 to 8	the final test	1 e mode from all po- orts (if EUT with an as listed below. <u>Tested Channel</u> 1 e mode from all po- orts (if EUT with an	CCS ssible combinations tenna diversity Modulation Type CCS ssible combinations tenna diversity Modulation Type
Cower Line C Cower Line C	ssion Test (Belo has been conc available modu ure). channel(s) wa figure Mode A, B onducted Emiss has been conc available modu ure). channel(s) wa	<u>1 to 8</u> <u>w 1GHz):</u> ducted to determine the lations, data rates an s (were) selected for <u>Available Channel</u> <u>1 to 8</u> sion Test: ducted to determine the lations, data rates an s (were) selected for	the final test	1 e mode from all po- orts (if EUT with an as listed below. <u>Tested Channel</u> 1 e mode from all po- orts (if EUT with an as listed below.	CCS ssible combinations tenna diversity Modulation Type CCS ssible combinations tenna diversity
adiated Emi Pre-Scar between architect Following <u>EUT Cor</u> Power Line C Pre-Scar between architecti Following EUT Cor est Conditior	ssion Test (Belo has been cond available modu ure). g channel(s) wa figure Mode A, B onducted Emiss has been cond available modu ure). g channel(s) wa figure Mode A, B	<u>1 to 8</u> <u>ow 1GHz):</u> ducted to determine the lations, data rates and s (were) selected for <u>Available Channel</u> <u>1 to 8</u> ducted to determine the lations, data rates and s (were) selected for <u>Available Channel</u> <u>1 to 8</u>	the final test	1 e mode from all po- orts (if EUT with an as listed below. <u>Tested Channel</u> 1 e mode from all po- orts (if EUT with an as listed below. <u>Tested Channel</u> 1	CCS ssible combinations tenna diversity Modulation Type CCS ssible combinations tenna diversity Modulation Type CCS Modulation Type CCS
adiated Emi Pre-Scar between architect Following EUT Cor ower Line C Pre-Scar between architect Following EUT Cor est Condition	ssion Test (Belo has been cond available modu ure). g channel(s) wa figure Mode A, B onducted Emiss n has been cond available modu ure). g channel(s) wa figure Mode A, B	<u>1 to 8</u> <u>w 1GHz):</u> ducted to determine the lations, data rates and <u>s (were) selected for</u> <u>Available Channel</u> <u>1 to 8</u> <u>sion Test:</u> ducted to determine the lations, data rates and <u>s (were) selected for</u> <u>Available Channel</u> <u>1 to 8</u> <u>Environmental Conditions</u>	the final test	1 e mode from all po- orts (if EUT with an as listed below. <u>Tested Channel</u> 1 e mode from all po- orts (if EUT with an as listed below. <u>Tested Channel</u> 1 ut Power (system)	CCS ssible combinations tenna diversity Modulation Type CCS ssible combinations tenna diversity Modulation Type CCS ssible combinations tenna diversity Modulation Type CCS
Cadiated Emi Cadiated Emi between architect Following EUT Cor Power Line C Pre-Scar between architecti Following EUT Cor Cor EUT Cor Cor Cor Cor Cor Cor Cor Cor	ssion Test (Belo has been conc available modu ure). g channel(s) wa figure Mode A, B onducted Emiss has been conc available modu ure). g channel(s) wa figure Mode A, B has to been conc available modu ure). g channel(s) wa figure Mode A, B	<u>1 to 8</u> <u>ow 1GHz):</u> ducted to determine the lations, data rates and s (were) selected for <u>Available Channel</u> <u>1 to 8</u> ducted to determine the lations, data rates and s (were) selected for <u>Available Channel</u> <u>1 to 8</u>	the final test	1 e mode from all po- orts (if EUT with an as listed below. <u>Tested Channel</u> 1 e mode from all po- orts (if EUT with an as listed below. <u>Tested Channel</u> 1	CCS ssible combinations tenna diversity Modulation Type CCS ssible combinations tenna diversity Modulation Type CCS Modulation Type CCS

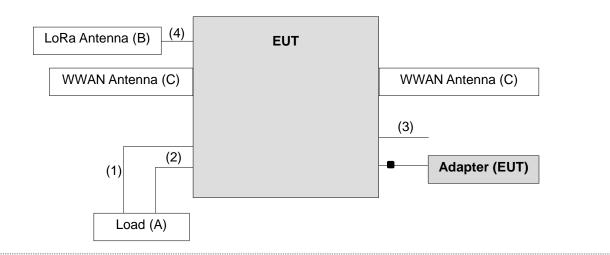
3.3 Duty Cycle of Test Signal

Duty cycle of test signal is 100 %, duty factor is not required.

Sweep	RF 50 R DC		SENSE: JNT	#Avg Type: RMS	05:32:35 AM Mar 05, 2022 TRACE 2 3 4 5 0	Sweep/Control
		PNO: Fast +++ IFGain:High	#Atten: 0 dB		TYPE WWWWWWWW DET P P N N N N	Sweep Time 7.533 m
0 dB/div	Ref 86.99 dBµV				Mkr1 6.675 ms 78.01 dBµV	7.553 m
77.0					ê 👘	
67.0						
57.0						
47.0						
37.0						
27.0						
17.0						
6.99						Gate [Off,LO]
3.01						[01,20]
						Point 100
	23.3000000 GHz (-6dB) 8.07 MHz	#VBW	8.0 MHz	Sween 7	Span 0 Hz 533 ms (1001 pts)	100

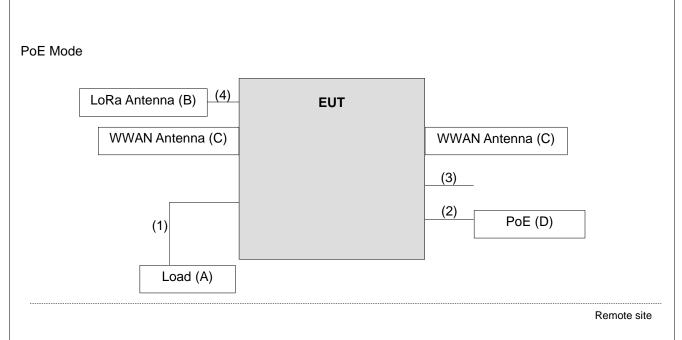
3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Load	NA	NA	NA	NA	-
В.	LoRa Antenna	PCTEL	MFB9155NF	NA	NA	Provided by manufacturer
C.	WWAN Antenna	2J	2J2124W -C315N	NA	NA	Provided by manufacturer
D.	PoE	NA	TL-POE16S	4215031002252	NA	-

Note: All power cords of the above support units are non-shielded (1.8m).

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	LAN cable	1	0.4	N	0	RJ45, Cat5e
2.	LAN cable	1	0.4	N	0	RJ45, Cat5e
3.	RS232 cable	1	0.4	Y	0	-
4.	Coaxial cable	1	1.5	Y	0	-


3.4.1 Configuration of System under Test

Adapter Mode

Remote site

3.5 General Description of Applied Standards and references

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

FCC Part 15, Subpart C (15.247)

ANSI C63.10:2013

All test items have been performed and recorded as per the above standards.

References Test Guidance: KDB 558074 D01 15.247 Meas Guidance v05r02

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Spectrum Analyzer Agilent	N9010A	MY52220207	Jan. 06, 2022	Jan. 05, 2023
Test Receiver Agilent	N9038A	MY51210203	Sep. 22, 2021	Sep. 21, 2022
Spectrum Analyzer ROHDE & SCHWARZ	FSU43	101261	Apr. 12, 2021	Apr. 11, 2022
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170243	Nov. 14, 2021	Nov. 13, 2022
HORN Antenna SCHWARZBECK	BBHA 9120D	9120D-969	Nov. 14, 2021	Nov. 13, 2022
BILOG Antenna SCHWARZBECK	VULB 9168	9168-472	Oct. 28, 2021	Oct. 27, 2022
Fixed Attenuator WOKEN	MDCS18N-10	MDCS18N-10-01	Apr. 13, 2021	Apr. 12, 2022
Preamplifier EMCI	EMC 012645	980115	Oct. 05, 2021	Oct. 04, 2022
Preamplifier EMCI	EMC 330H	980112	Oct. 05, 2021	Oct. 04, 2022
RF Coaxial Cable EMCI	EMC104-SM-SM- 8000	171005	Oct. 05, 2021	Oct. 04, 2022
RF Coaxial Cable HUBER+SUHNNER	SUCOFLEX 104	EMC104-SM-SM- 1000(140807)	Oct. 05, 2021	Oct. 04, 2022
RF Coaxial Cable WOKEN	8D-FB	Cable-Ch10-01	Oct. 05, 2021	Oct. 04, 2022
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA
Software BV ADT	E3 6.120103	NA	NA	NA
Antenna Tower MF	MFA-440H	NA	NA	NA
Turn Table MF	MFT-201SS	NA	NA	NA
Antenna Tower &Turn Table Controller MF	MF-7802	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Chamber 10.

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

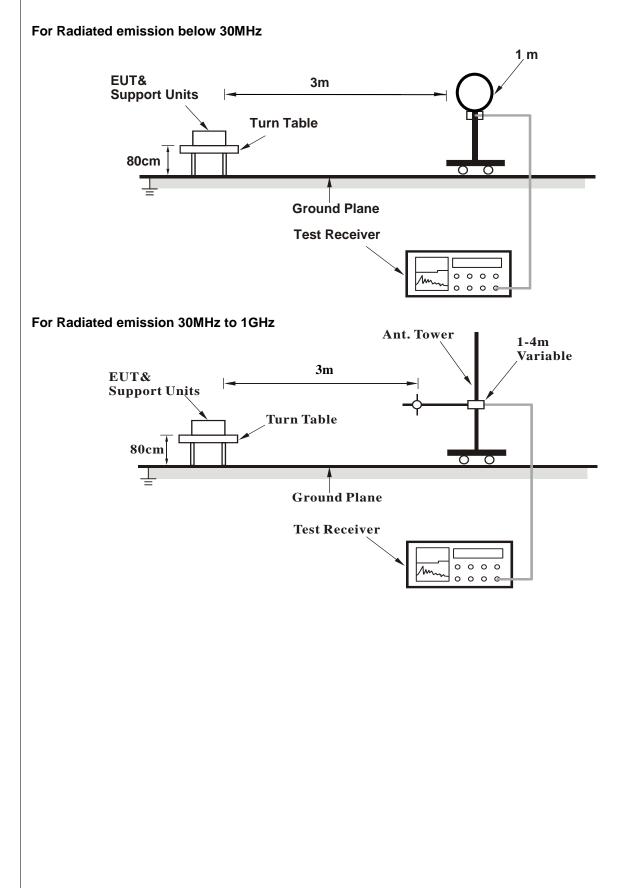
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

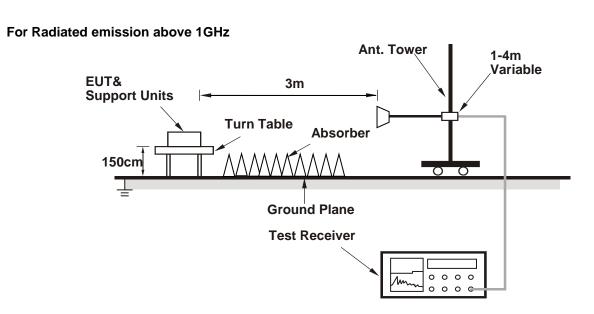
Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasipeak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.

(RBW = 1 MHz, VBW = 10 Hz)


4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

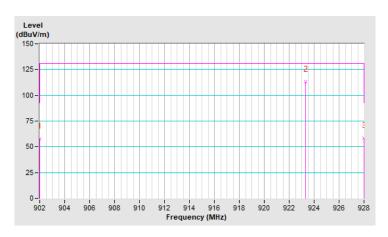
a. Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

CHANNEL	TX Channel 1	DETECTOR	Ouesi Bask (OD)
FREQUENCY RANGE	902MHz ~ 928MHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	902.00	58.06 QP	93.05	-34.99	2.04 H	292	25.04	33.02	
2	*923.30	113.05 QP			2.04 H	292	79.37	33.68	
3	928.00	58.72 QP	93.05	-34.33	2.04 H	292	24.99	33.73	

Remarks:


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB).

3. The other emission levels were very low against the limit.

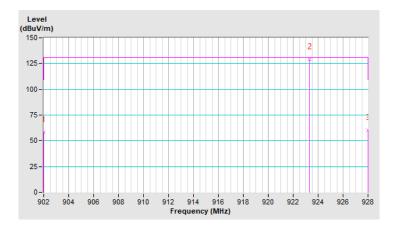
4. Margin value = Emission Level – Limit value.

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 1	DETECTOR	Ouesi Bask (OD)
FREQUENCY RANGE	902MHz ~ 928MHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	902.00	58.17 QP	109.28	-51.11	1.52 V	165	25.15	33.02	
2	*923.30	129.28 QP			1.52 V	165	95.60	33.68	
3	928.00	60.11 QP	109.28	-49.17	1.52 V	165	26.38	33.73	

Remarks:


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value.

5. " * ": Fundamental frequency.

Above 1GHz Data:

CHANNEL	TX Channel 1	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~10GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	2769.90	47.64 PK	74.00	-26.36	2.29 H	334	68.08	-20.44		
2	2769.90	46.29 AV	54.00	-7.71	2.29 H	334	66.73	-20.44		
		ANTEN	NA POLARIT	Y & TEST DI	STANCE: VE	RTICAL AT	3 M			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	2769.90	49.07 PK	74.00	-24.93	1.59 V	99	69.51	-20.44		
2	2769.90	47.41 AV	54.00	-6.59	1.59 V	99	67.85	-20.44		

Remarks:

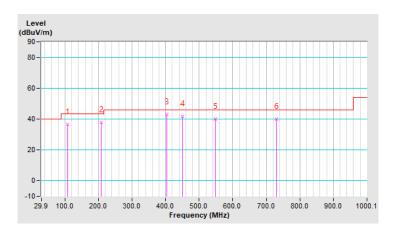
1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " # ": The radiated frequency is out of the restricted band.

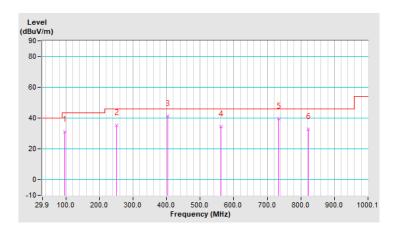

Below 1GHz Data:

Mode A

CHANNEL	TX Channel 1	DETECTOR FUNCTION	Quasi-Peak (QP)
FREQUENCY RANGE	9kHz ~ 1GHz		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	108.49	36.57 QP	43.50	-6.93	1.23 H	254	51.84	-15.27		
2	208.42	37.70 QP	43.50	-5.80	3.26 H	254	53.92	-16.22		
3	403.43	43.12 QP	46.00	-2.88	2.41 H	33	52.34	-9.22		
4	450.00	41.78 QP	46.00	-4.22	1.57 H	232	49.17	-7.39		
5	548.96	39.82 QP	46.00	-6.18	1.11 H	207	45.06	-5.24		
6	729.41	40.00 QP	46.00	-6.00	1.36 H	120	41.24	-1.24		

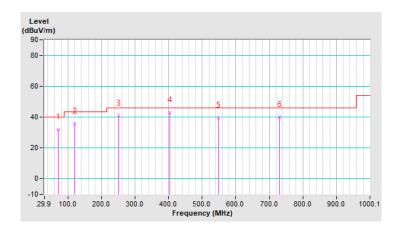
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value.
- 5. The emission levels were very low against the limit of frequency range 9kHz ~ 30MHz :the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



CHANNEL	IIX Channel 1	DETECTOR FUNCTION	Quasi-Peak (QP)
FREQUENCY RANGE	9kHz ~ 1GHz		

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	95.87	31.29 QP	43.50	-12.21	2.23 V	145	49.07	-17.78		
2	250.14	35.31 QP	46.00	-10.69	1.36 V	230	49.74	-14.43		
3	403.43	41.46 QP	46.00	-4.54	2.53 V	274	50.68	-9.22		
4	562.54	34.57 QP	46.00	-11.43	1.20 V	333	39.47	-4.90		
5	734.27	39.68 QP	46.00	-6.32	1.47 V	196	40.72	-1.04		
6	821.58	32.87 QP	46.00	-13.13	2.04 V	178	32.03	0.84		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value.
- 5. The emission levels were very low against the limit of frequency range 9kHz ~ 30MHz :the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

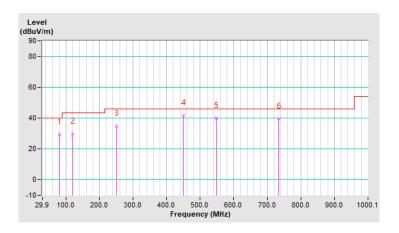


Mode B

CHANNEL	TX Channel 1	DETECTOR FUNCTION	Quasi-Peak (QP)
FREQUENCY RANGE	9kHz ~ 1GHz		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	71.62	32.05 QP	40.00	-7.95	1.83 H	195	47.31	-15.26		
2	120.13	35.81 QP	43.50	-7.69	2.27 H	170	50.16	-14.35		
3	250.14	40.96 QP	46.00	-5.04	2.44 H	304	55.39	-14.43		
4	403.43	42.84 QP	46.00	-3.16	2.19 H	182	52.06	-9.22		
5	548.96	39.76 QP	46.00	-6.24	2.64 H	292	45.00	-5.24		
6	729.41	39.87 QP	46.00	-6.13	2.94 H	202	41.11	-1.24		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value.
- 5. The emission levels were very low against the limit of frequency range 9kHz ~ 30MHz :the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



CHANNEL	IIX Channel 1	DETECTOR FUNCTION	Quasi-Peak (QP)
FREQUENCY RANGE	9kHz ~ 1GHz		

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	81.32	29.54 QP	40.00	-10.46	2.43 V	46	47.45	-17.91		
2	120.13	29.94 QP	43.50	-13.56	3.26 V	262	44.29	-14.35		
3	250.14	34.85 QP	46.00	-11.15	1.39 V	207	49.28	-14.43		
4	450.00	41.66 QP	46.00	-4.34	2.68 V	137	49.05	-7.39		
5	548.96	40.00 QP	46.00	-6.00	1.42 V	130	45.24	-5.24		
6	734.27	39.68 QP	46.00	-6.32	2.01 V	270	40.72	-1.04		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value.
- 5. The emission levels were very low against the limit of frequency range 9kHz ~ 30MHz :the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

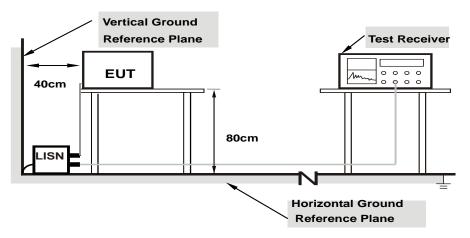
4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver ROHDE & SCHWARZ	ESR3	102783	Dec. 20, 2021	Dec. 19, 2022
RF signal cable (with 10dB PAD) Woken	5D-FB	Cable-cond2-01	Sep. 04, 2021	Sep. 03, 2022
LISN/AMN ROHDE & SCHWARZ (EUT)	ESH2-Z5	100100	Feb. 17, 2022	Feb. 16, 2023
LISN/AMN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100312	Sep. 17, 2021	Sep. 16, 2022
Software ADT	BV ADT_Cond_ V7.3.7.4	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Shielded Room 2 (Conduction 2).

3. The VCCI Site Registration No. is C-12047.


4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

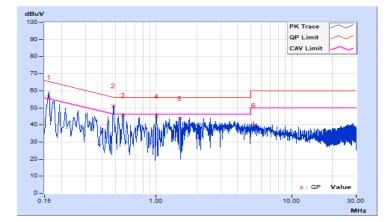
4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Condition

Same as 4.1.6.

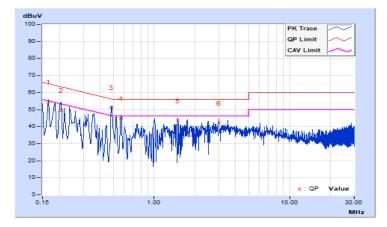

4.2.7 Test Results

Mode A

Frequency Range	150kHz ~ 30MHz	RASOUITION	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25 °C, 75% RH
Tested by	Vincent Chen	Test Date	2022/3/28

	Phase Of Power : Line (L)										
No	Frequency	Correction Factor	•			on Level uV)	Limit (dBuV)		Margin (dB)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.16190	10.14	46.25	33.69	56.39	43.83	65.37	55.37	-8.98	-11.54	
2	0.48444	10.25	41.04	34.05	51.29	44.30	56.26	46.26	-4.97	-1.96	
3	0.57000	10.26	35.56	33.94	45.82	44.20	56.00	46.00	-10.18	-1.80	
4	1.00600	10.30	34.74	30.24	45.04	40.54	56.00	46.00	-10.96	-5.46	
5	1.50200	10.34	33.44	28.67	43.78	39.01	56.00	46.00	-12.22	-6.99	
6	5.26600	10.41	29.17	24.17	39.58	34.58	60.00	50.00	-20.42	-15.42	

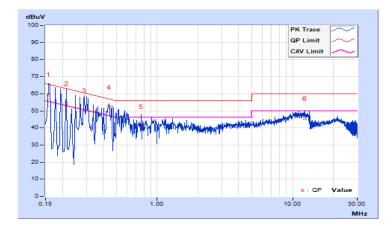
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25 °C, 75% RH
Tested by	Vincent Chen	Test Date	2022/3/28

	Phase Of Power : Neutral (N)										
No	Frequency	uency Correction Reading Value Factor (dBuV)		Emission Level Limit (dBuV) (dBuV)				Margin (dB)			
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.16600	10.16	44.41	32.64	54.57	42.80	65.16	55.16	-10.59	-12.36	
2	0.20600	10.19	39.47	26.83	49.66	37.02	63.37	53.37	-13.71	-16.35	
3	0.48317	10.27	40.95	34.18	51.22	44.45	56.28	46.28	-5.06	-1.83	
4	0.57000	10.27	34.60	32.51	44.87	42.78	56.00	46.00	-11.13	-3.22	
5	1.50200	10.34	33.07	28.51	43.41	38.85	56.00	46.00	-12.59	-7.15	
6	3.00600	10.38	31.55	26.10	41.93	36.48	56.00	46.00	-14.07	-9.52	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

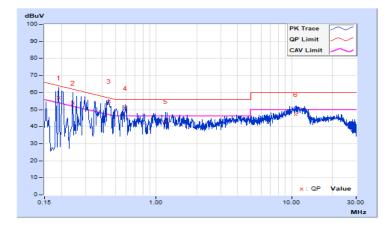


Mode B

Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	48Vdc	Environmental Conditions	25 °C, 75% RH
Tested by	Vincent Chen	Test Date	2022/3/28

	Phase Of Power : Line (L)										
No	Frequency	Correction Factor		Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		rgin B)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15800	10.13	49.52	26.08	59.65	36.21	65.57	55.57	-5.92	-19.36	
2	0.21400	10.14	43.94	18.49	54.08	28.63	63.05	53.05	-8.97	-24.42	
3	0.29000	10.15	39.90	25.69	50.05	35.84	60.52	50.52	-10.47	-14.68	
4	0.44200	10.16	42.10	32.25	52.26	42.41	57.02	47.02	-4.76	-4.61	
5	0.76200	10.18	30.66	20.82	40.84	31.00	56.00	46.00	-15.16	-15.00	
6	12.28200	10.31	35.31	29.02	45.62	39.33	60.00	50.00	-14.38	-10.67	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	48Vdc	Environmental Conditions	25 °C, 75% RH
Tested by	Vincent Chen	Test Date	2022/3/28

	Phase Of Power : Neutral (N)										
No	Frequency	Correction Factor	•		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.19000	10.15	46.81	21.40	56.96	31.55	64.04	54.04	-7.08	-22.49	
2	0.24200	10.15	43.63	19.04	53.78	29.19	62.03	52.03	-8.25	-22.84	
3	0.44600	10.17	44.63	34.97	54.80	45.14	56.95	46.95	-2.15	-1.81	
4	0.59000	10.18	40.59	28.41	50.77	38.59	56.00	46.00	-5.23	-7.41	
5	1.17800	10.21	32.95	21.79	43.16	32.00	56.00	46.00	-12.84	-14.00	
6	10.69800	10.36	36.73	29.49	47.09	39.85	60.00	50.00	-12.91	-10.15	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---