

RF Exposure Report

Report No.: SA200424C06

FCC ID: 2ARXKVHE09-4GL

Contains module FCC ID: 2ATM8EC25A

Test Model: VHE09-4GL

Series Model: VHE09XXXXX (X=A-Z, 0-9, blank or "-")

Received Date: Apr. 24, 2020

Test Date: Jun. 02 ~ Jun. 11, 2020

Issued Date: Jun. 17, 2020

Applicant: Veea Inc

Address: 164 E 83rd Street, New York NY, 10028, USA

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

Test Location: No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City

33383, Taiwan

FCC Registration / 788550 / TW0003

Designation Number:

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Release Control Record

Issue No.	Description	Date Issued
SA200424C06	Original release.	Jun. 17, 2020

Certificate of Conformity 1

Product: veeaHub

Brand: veeaHub.

Test Model: VHE09-4GL

Series Model: VHE09XXXXX (X=A-Z, 0-9, blank or "-")

Sample Status: Engineering sample

Applicant: Veea Inc

Test Date: Jun. 02 ~ Jun. 11, 2020

Standards: FCC Part 2 (Section 2.1091)

References Test KDB 447498 D01 General RF Exposure Guidance v06

Guidance:

IEEE C95.3 -2002

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Polly Chien / Specialist Jun. 17, 2020

Approved by :

Bruce Chen / Senior Project Engineer

2 RF Exposure

2.1 Limits for Maximum Permissible Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Average Time (minutes)		
Limits For General Population / Uncontrolled Exposure						
0.3-1.34	614	1.63	(100)*	30		
1.34-30	824/f	2.19/f	(180/f ²)*	30		
30-300	27.5	0.073	0.2	30		
300-1500			f/1500	30		
1500-100,000			1.0	30		

f = Frequency in MHz; *Plane-wave equivalent power density

2.2 MPE Calculation Formula

 $Pd = (Pout*G) / (4*pi*r^2)$

where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

pi = 3.1416

r = distance between observation point and center of the radiator in cm

2.3 Classification

The antenna of this product, under normal use condition, is at least 29cm away from the body of the user. So, this device is classified as Mobile Device.

Report No.: SA200424C06 Page No. 5 / 7 Report Format Version: 6.1.1

3 Calculation Result of Maximum Conducted Power

Frequency Band (MHz)	Max AV Power (dBm)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm²)	Limit (mW/cm²)
WLAN 2412~2462	27.13	6.21	29	0.204	1
WLAN 5180~5240	28.94	8.12	29	0.481	1
WLAN 5260~5320	23.36	8.12	29	0.133	1
WLAN 5500~5720	23.63	8.12	29	0.142	1
WLAN 5745~5825	29.65	8.12	29	0.566	1
Zigbee 2405~2475	16.76	3.2	29	0.009	1
BT LE 2402~2480	-5.33	6.0	29	0.0001	1
BT EDR 2402~2480	0.03	6.0	29	0.0004	1
LoRa 923.3 MHz – 927.5 MHz	24.71	5.0	29	0.089	0.616

For WLAN 2.4GHz Band: Directional gain = 3.2dBi + 10log(2) = 6.21dBi For WLAN 5.0GHz Band: Directional gain = 2.1dBi + 10log(4) = 8.12dBi

For Zigbee: antenna gain = 3.2dBi For BT: max. antenna gain = 6.0dBi For LoRa: antenna gain = 5.0dBi

Frequency Band (MHz)	Max Power (dBm)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm²)	Limit (mW/cm²)
WWAN (module model: EC25-A)					
WCDMA Band 2 1850.2-1909.8MHz	23.50	1.50	29	0.030	1
WCDMA Band 4 1712.4-1752.6MHz	23.50	1.50	29	0.030	1
WCDMA Band 5 826.4-846.6MHz	23.50	-1.60	29	0.015	0.549
LTE Band 2 1850.7-1909.3MHz	24.00	1.50	29	0.034	1
LTE Band 4 1710.7-1754.3MHz	24.00	1.50	29	0.034	1
LTE Band 12 699.7-715.3MHz	24.00	-1.60	29	0.016	0.466

Note:

- 1. WLAN, WWAN, zigbee, Bluetooth and LoRa technology can transmit at same time.
- 2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
- 3. The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

	VERITAS
Canalysian	
Conclusion:	
The formula of calculated the MPE is:	
CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1	
CPD = Calculation power density	
LPD = Limit of power density	
WLAN 2.4G + WLAN 5G + Zigbee + Bluetooth + LoRa + WWAN (module model: EC25-A) =	
0.204/1+0.566/1+0.009/1+0.0004/1+0.089/0.616+0.016/0.466=0.9574	
Therefore the maximum calculations of above situations are less than the "1" limit.	
END	