

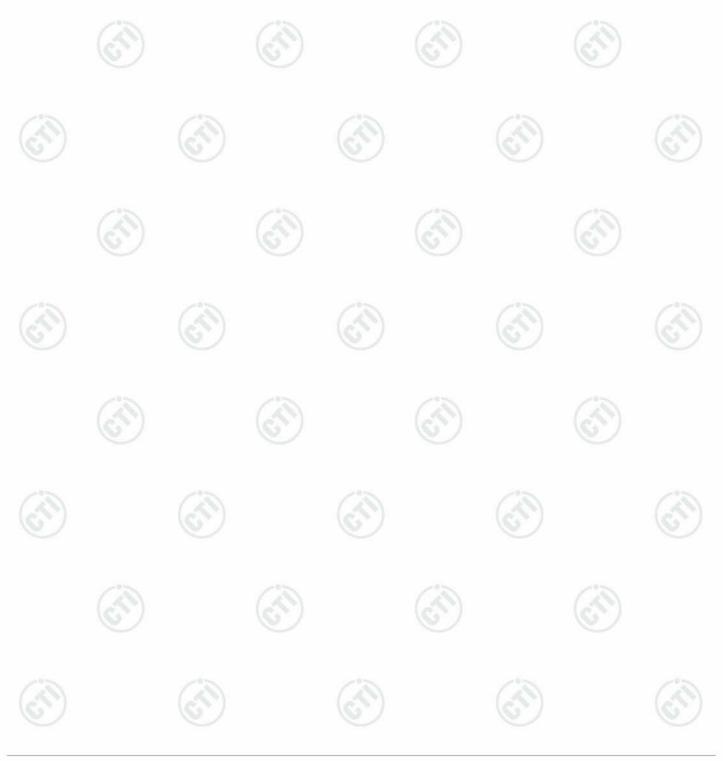
Product Trade mark Model/Type reference Serial Number Report Number FCC ID Date of Issue Test Standards Test result


- : Bluetooth Controller
- : JULY
- : BLU-SEN-C, BLU-SEN-CXX('XX' can be 0-9 or A-Z)
- : N/A
- : EED32K00316701
- : 2ARWE01BLUSE01
- : Dec. 24, 2018
- : 47 CFR Part 15Subpart C
- : PASS

Prepared for:

Shanghai July Electronic Co., Ltd.

Room 310, building C, 255 MEG Road, Minhang District, Shanghai


Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

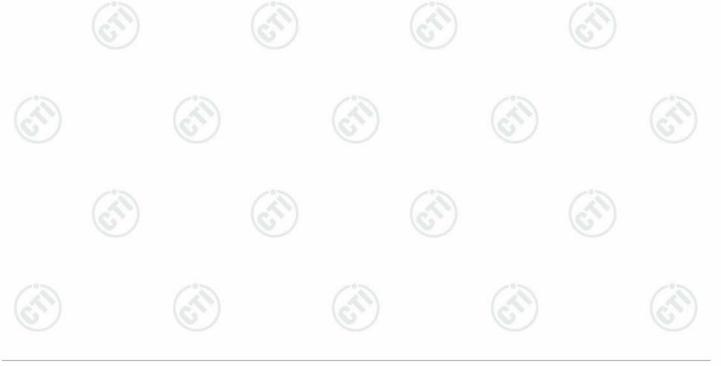
2 Version

Version No.	Date	<u> </u>	Description	
00	Dec. 24, 2018		Original	
	12	12	23	1
		(25)		

3 Test Summary

Page 3 of 48

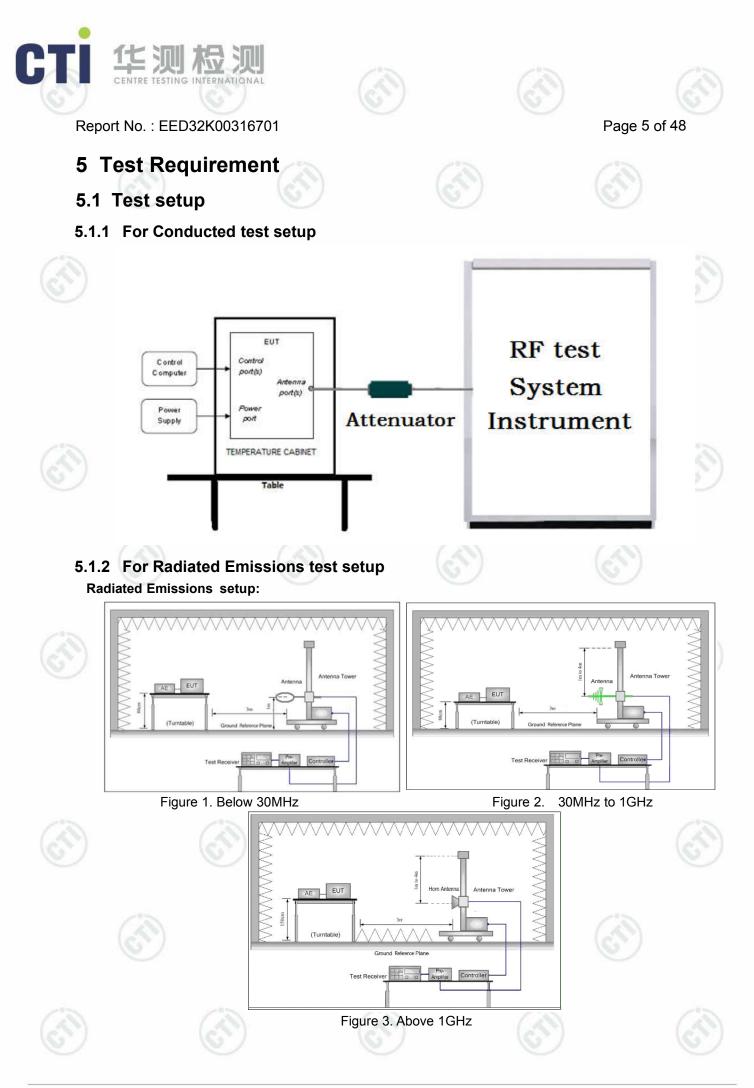
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS	
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	


Remark:

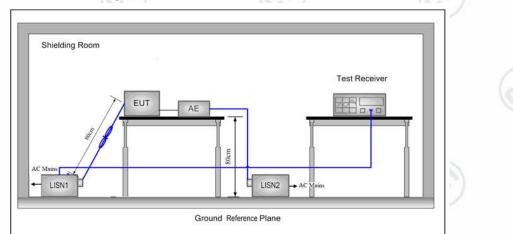
Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

Model No.: BLU-SEN-C, BLU-SEN-CXX('XX' can be 0-9 or A-Z)

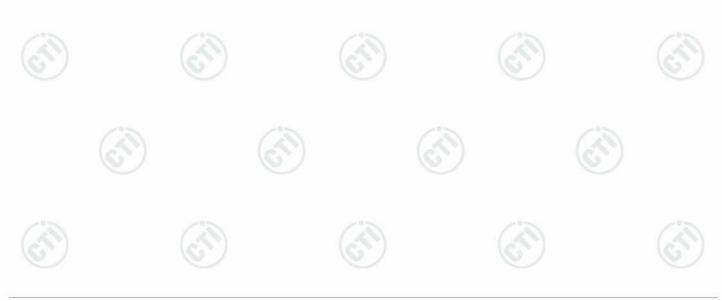

Only the model BLU-SEN-C was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference outer decoration.

				•••••
2 VERSION	\sim	~	\sim	•••••
3 TEST SUMMARY				
4 CONTENT	<u></u>		<u></u>	
5 TEST REQUIREMENT				
5.1 TEST SETUP 5.1.1 For Conducted test se 5.1.2 For Radiated Emission 5.1.3 For Conducted Emiss 5.2 TEST ENVIRONMENT 5.3 TEST CONDITION	etup ns test setup ions test setup			
6 GENERAL INFORMATION				
 6.2 GENERAL DESCRIPTION OF I 6.3 PRODUCT SPECIFICATION SU 6.4 DESCRIPTION OF SUPPORT I 6.5 TEST LOCATION 6.6 DEVIATION FROM STANDARE 6.7 ABNORMALITIES FROM STAN 6.8 OTHER INFORMATION REQUI 6.9 MEASUREMENT UNCERTAINT 	JBJECTIVE TO THIS STAND JNITS DS DARD CONDITIONS ESTED BY THE CUSTOMER	ARD		
7 EQUIPMENT LIST				•••••
8 RADIO TECHNICAL REQUIRE				
Appendix A): 6dB Occupied Appendix B): Conducted Pe Appendix C): Band-edge for	eak Output Power RF Conducted Emissio Spurious Emissions	ins	22	
Appendix D): RF Conducted Appendix E): Power Spectra Appendix F): Antenna Requ Appendix G): AC Power Lin Appendix H): Restricted bar Appendix I): Radiated Spuri	irement e Conducted Emission nds around fundamental	frequency (Radiated)	



Page 6 of 48

5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

	-			
Operating Environment:		U	S	()
Temperature:	26 °C			
Humidity:	54% RH			
Atmospheric Pressure:	1010mbar	0	0	
6.2	1017	C.		C.C.


5.3 Test Condition

Test channel:

-	Test Mede	Ty/Dy	RF Channel			
$\langle \rangle$	Test Mode	Tx/Rx	Low(L)	Middle(M)	High(H)	
2	GFSK	2402MHz ~2480 MHz	Channel 1	Channel 20	Channel 40	
			2402MHz	2440MHz	2480MHz	
	Transmitting mode:	The EUT transmitted the continuo	ous signal at the s	pecific channel(s	;).	

General Information 6

6.1 Client Information

Applicant:	Shanghai July Electronic Co., Ltd.	
Address of Applicant:	Room 310, building C, 255 MEG Road, Minhang District, Shanghai	
Manufacturer:	Shanghai July Electronic Co., Ltd.	100
Address of Manufacturer:	Room 310, building C, 255 MEG Road, Minhang District, Shanghai	6
Factory:	Wuxi Toyo Electric Co., Ltd	
Address of Factory:	No. 18 Xiaguang Road, Mashan, Binhu District, Wuxi City, Jiangsu Province, P. R. China	

6.2 General Description of EUT

Product Name:	Bluetooth Controller	U	V	
Model No.:	BLU-SEN-C, BLU-SEN-CX			
Test Model No.:	BLU-SEN-C			205
Trade mark:	JULY	(4)		
EUT Supports Radios application:	BT: 4.2 BT Dual mode: 2402MHz to 2480MHz			
Power Supply:	DC 3.3V			
Firmware version:	v317(manufacturer declare)	1	13	
Hardware version:	V1.0(manufacturer declare)	(S)	(3)	
Sample Received Date:	Nov. 23, 2018	U	S	
Sample tested Date:	Nov. 29, 2018 to Dec. 24, 2	018		

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	6	(C)
Bluetooth Version:	4.2		
Modulation Technique:	DSSS		
Modulation Type:	GFSK		2
Number of Channel:	40	S) (6	57)
Sample Type:	Fixed production		/
Test Power Grade:	N/A		
Test Software of EUT:	N/A	20-	-0-
Antenna Type:	Monopole Antenna		(2)
Antenna Gain:	2dBi	()	e
Test Voltage:	AC 120V		
Operation Frequency eac	h of channel		

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz	
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz	
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz	
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz	
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz	

Page 8 of 48

Report No. : EED32K00316701

6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2		0.46dB (30MHz-1GHz)	
	RF power, conducted	0.55dB (1GHz-18GHz)	
3	Dedicted Cruzieus emission test	4.3dB (30MHz-1GHz)	
	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)	
4	Conduction emission	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	

Equipment List 7

RF test system

Page 10 of 48

Conducted disturbance Test								
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019			
Temperature/ Humidity Indicator	Defu	TH128	1	07-02-2018	07-01-2019			
Communication test set	Agilent	E5515C	GB47050 534	03-16-2018	03-15-2019			
Communication test set	R&S	CMW500	152394	03-16-2018	03-15-2019			
LISN	R&S	ENV216	100098	05-10-2018	05-10-2019			
LISN	schwarzbeck	NNLK8121	8121-529	05-10-2018	05-10-2019			
Voltage Probe	R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-11-2020			
Current Probe	R&S	EZ-17 816.2063.03	100106	05-30-2018	05-29-2019			
ISN	TESEQ	ISN T800	30297	02-06-2018	02-05-2019			

Page 11 of 48

		mi/full-anechoid	Serial	Cal. date	Cal. Due date
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	10-28-2018	10-27-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-21-2018	08-20-2019
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-19-2018	01-18-2019
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-23-2021
Horn Antenna	ETS-LINDGREN	3117	00057410	06-05-2018	06-03-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	6042	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041	06-05-2018	06-04-2021
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
Receiver	R&S	ESCI7	100938- 003	11-23-2018	11-22-2019
Multi device Controller	maturo	NCD/070/107 11112	1	01-10-2018	01-09-2019
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019
Signal Generator	Agilent	E4438C	MY45095 744	03-13-2018	03-12-2019
Signal Generator	Keysight	E8257D	MY53401 106	03-13-2018	03-12-2019
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019
Communication test set	Agilent	E5515C	GB47050 534	03-16-2018	03-15-2019
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018	01-09-2019
Communication test set	R&S	CMW500	104466	02-05-2018	02-04-2019
High-pass filter	Sinoscite	FL3CX03WG 18NM12- 0398-002		01-10-2018	01-09-2019
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002	<u> </u>	01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-10-2018	01-09-2019

Page 12 of 48

Report No. : EED32K00316701

8 Radio Technical Requirements Specification

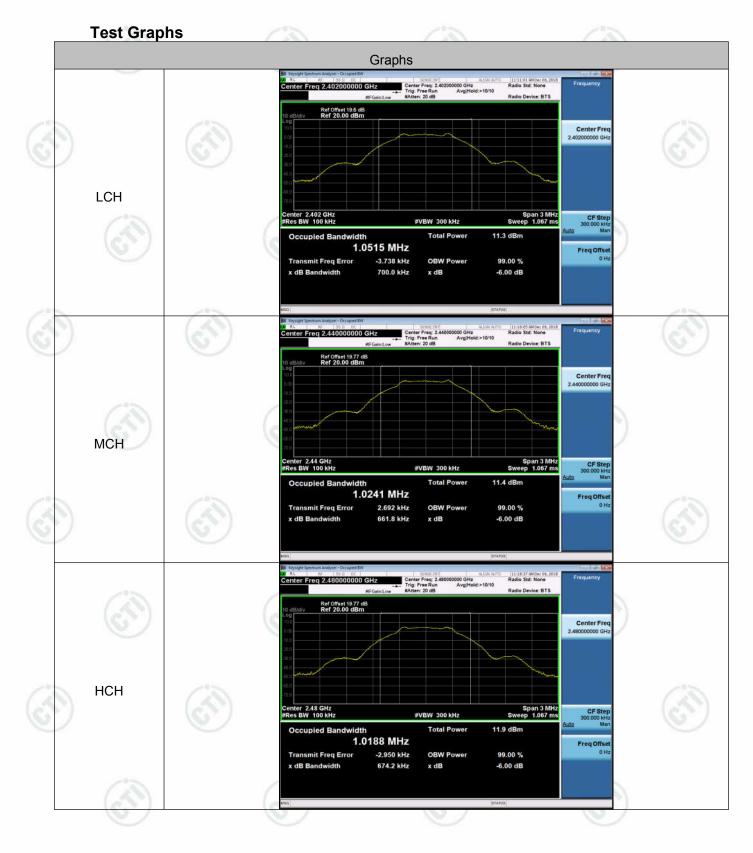
Reference documents for testing:

	No.	lde	entity		Document Title						
	1	FCC I	Part15C	Subpa	rt C-Int	entional Radiators					
0	2		3.10-2013		American National Standard for Testing Unlicesed Wireless Devices						
Te	est R	esults List:	y la		C.		1	C			
	Test F	Test Requirement Tes		thod		Test item	Verdict	Note			
		15C Section 247 (a)(2)	ANSI C6	3.10		6dB Occupied Bandwidth	PASS	Appendix A)			
0		15C Section 247 (b)(3)	ANSI C6	3.10	(II)	Conducted Peak Output Power	PASS	Appendix B)			
/		Part15C Section 15.247(d) ANSI C6		3.10	3.10 Band-edge for RF Conducted Emissions		PASS	Appendix C			
-		15C Section 5.247(d)	ANSI C6			RF Conducted Spurious Emissions	PASS	Appendix D			
		15C Section 5.247 (e)	ANSI C6	3.10	-	Power Spectral Density	PASS	Appendix E			
9		15C Section 03/15.247 (c)	ANSI C6	3.10	E	Antenna Requirement	PASS	Appendix F;			
		15C Section 15.207	ANSI C6	3.10		AC Power Line Conducted Emission	PASS	Appendix G			
		15C Section 205/15.209	ANSI C6	3.10		Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H			
		15C Section 205/15.209	ANSI C6	3.10	F	adiated Spurious Emissions	PASS	Appendix I)			

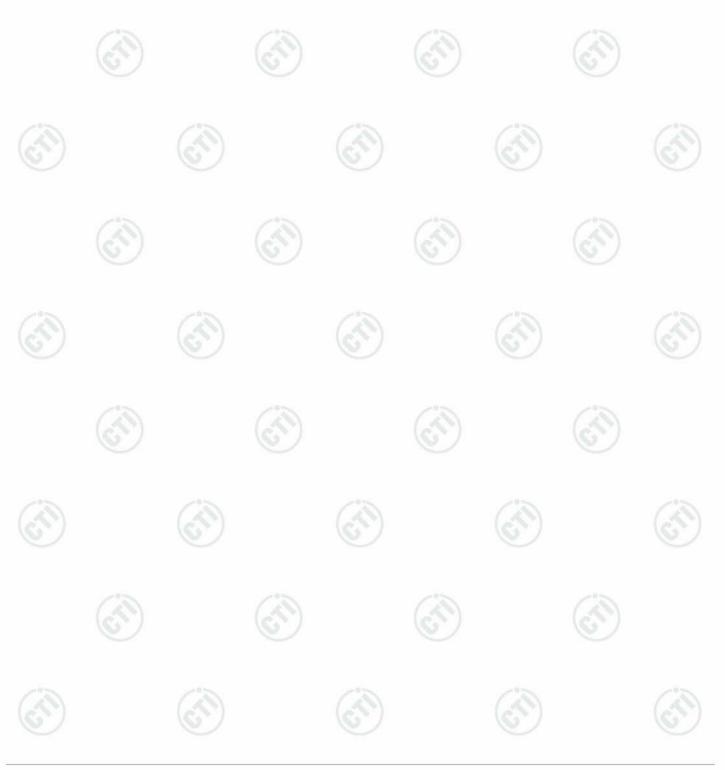
Page 13 of 48

Appendix A): 6dB Occupied Bandwidth

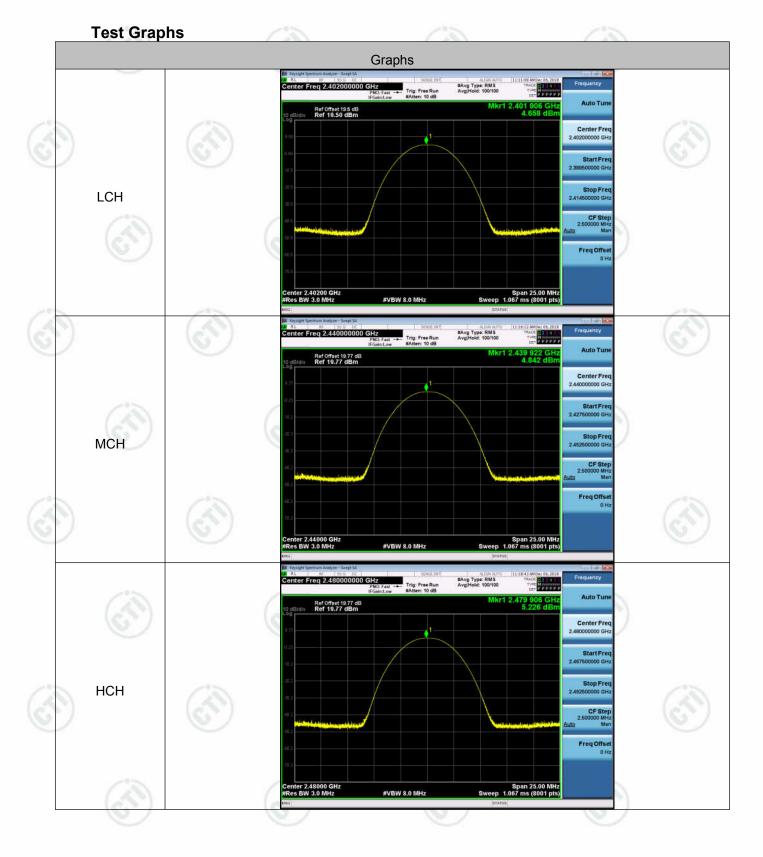
Test Resu	ilt	(S)					
Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark		
BLE	LCH	0.7000	1.0515	PASS			
BLE	MCH	0.6618	1.0241	PASS	Peak		
BLE	НСН	0.6742	1.0188	PASS	detector		



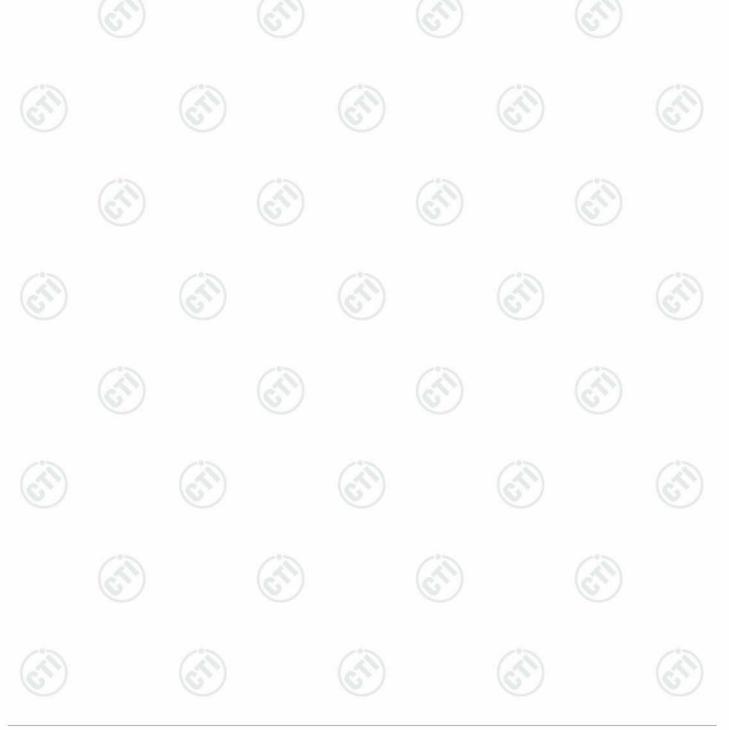
Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



Appendix B): Conducted Peak Output Power


_	Test Result		(C) (C	N)
	Mode	Channel	Conduct Peak Power[dBm]	Verdict
	BLE	LCH	4.658	PASS
2	BLE	МСН	4.842	PASS
57)	BLE	НСН	5.226	PASS

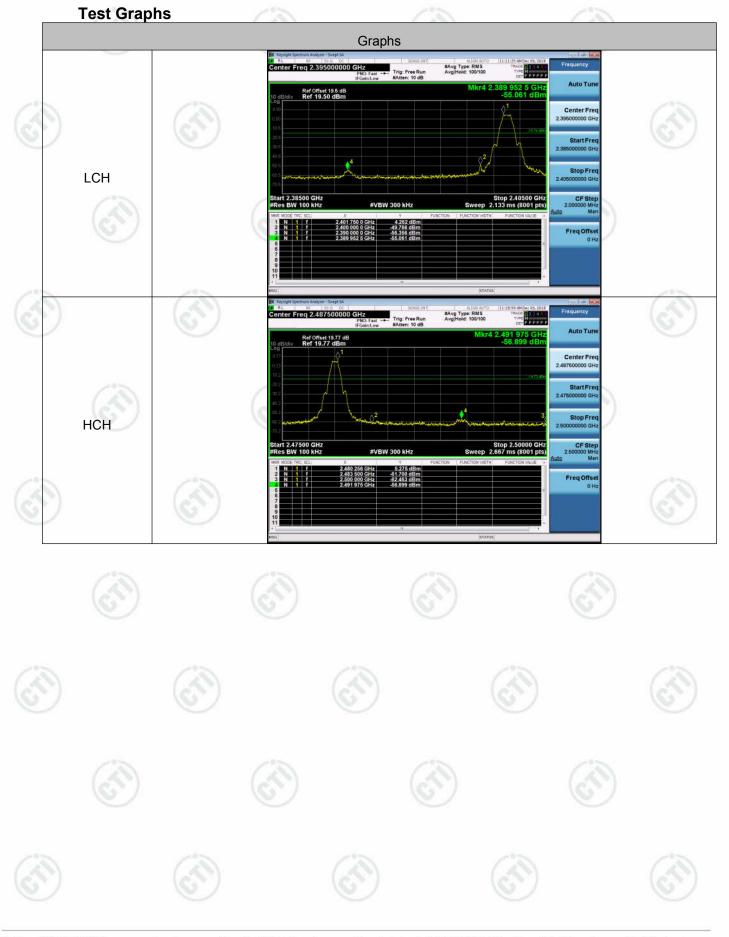
Page 16 of 48



Page 17 of 48

Report No. : EED32K00316701

Appendix C): Band-edge for RF Conducted Emissions


	Result Table Mode Channel		Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict	
	BLE	LCH	4.262	-55.061	-15.74	PASS	
5	BLE	нсн	5.275	-56.899	-14.73	PASS	

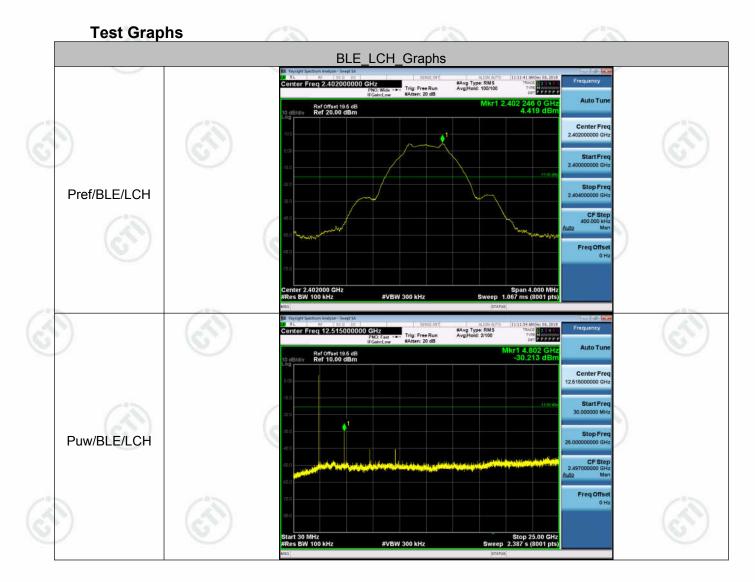
Page 18 of 48

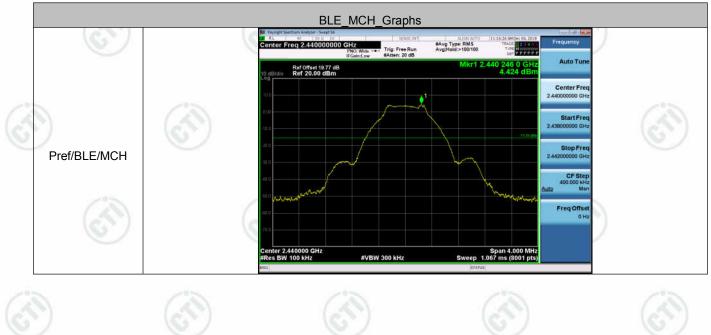
Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 19 of 48

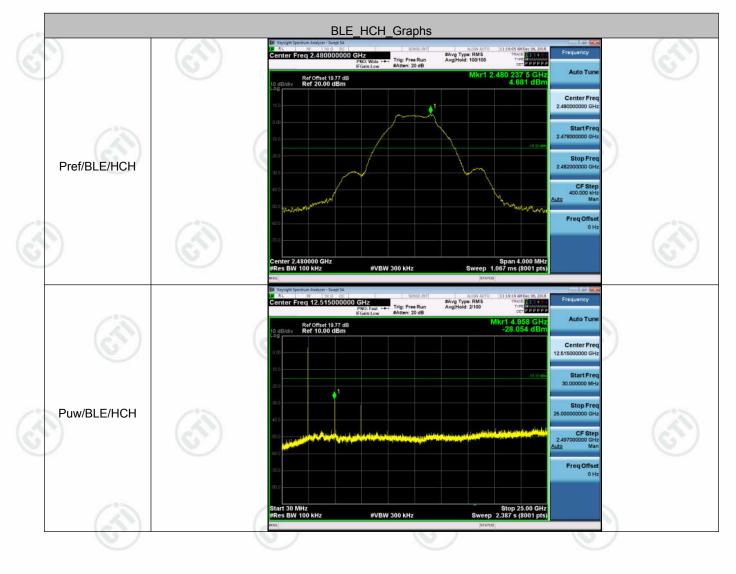
Report No. : EED32K00316701

Appendix D): RF Conducted Spurious Emissions


Result	Table) (강)	(G))	
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	4.419	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	4.424	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	НСН	4.681	<limit< td=""><td>PASS</td></limit<>	PASS



Page 20 of 48

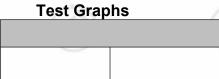


Page 21 of 48

Page 22 of 48

Appendix E): Power Spectral Density

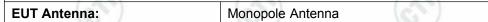
Result	Result Table										
Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict							
BLE	LCH	-9.330	8	PASS							
BLE	МСН	-7.995	8	PASS							
BLE	НСН	-7.551	8	PASS							



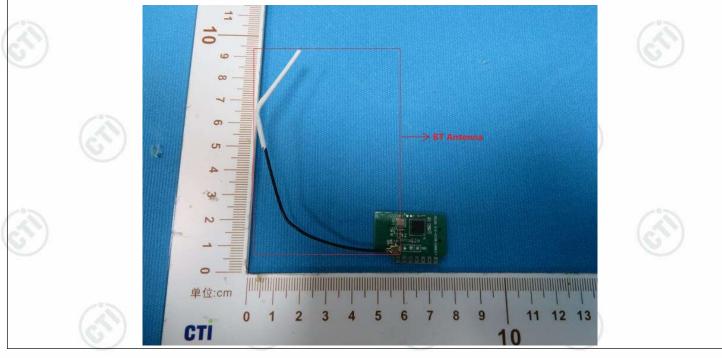
Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

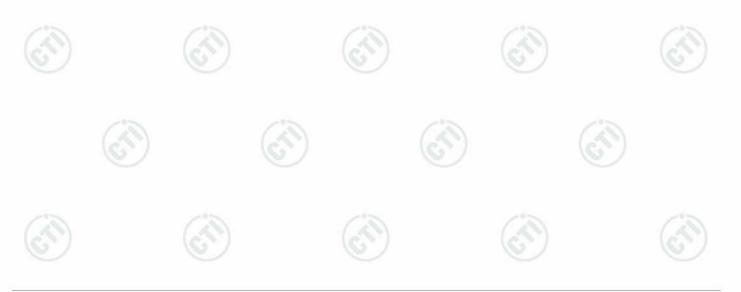
Page 23 of 48

Page 24 of 48


Appendix F): Antenna Requirement

15.203 requirement:

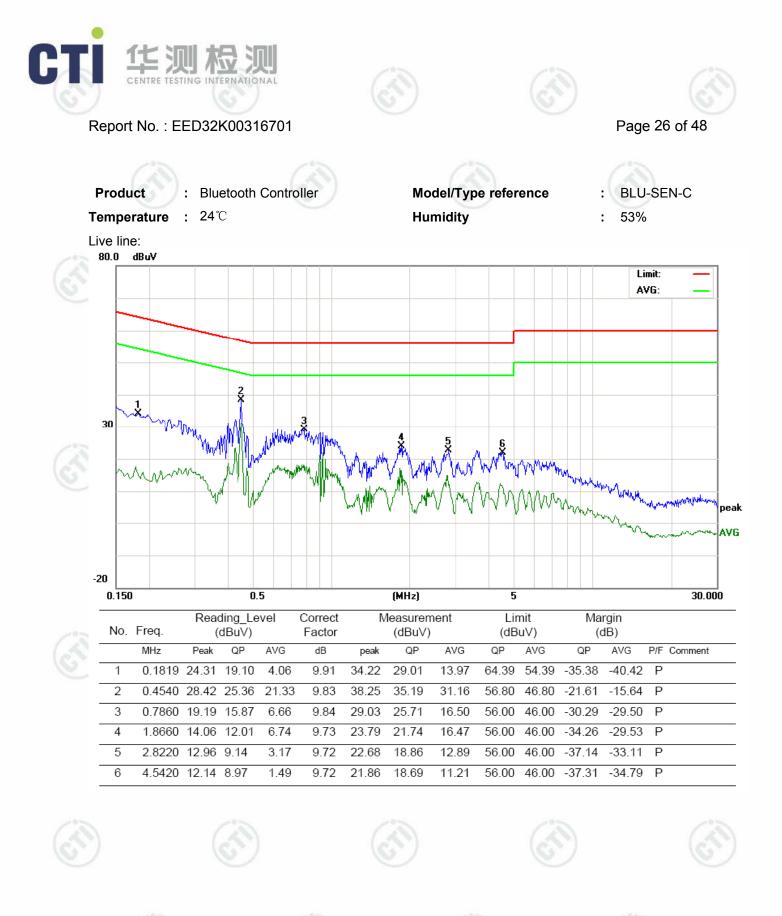

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2dBi.

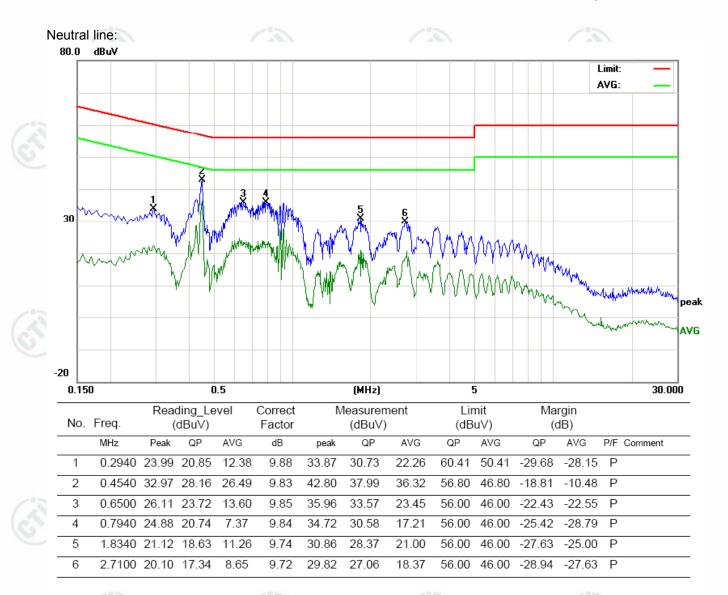
Page 25 of 48


Appendix G): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz		(37)						
	1)The mains terminal disturbance voltage test was conducted in a shielded room.								
	 The EUT was connected to Stabilization Network) whic power cables of all other un which was bonded to the gr for the unit being measured multiple power cables to a s exceeded. 	h provides a 50Ω/50µ nits of the EUT were ound reference plane d. A multiple socket of	$\mu H + 5\Omega$ linear imper- connected to a sec- in the same way as butlet strip was used	edance. The ond LISN the LISN to conne					
	3)The tabletop EUT was place reference plane. And for flo horizontal ground reference	or-standing arrangem		•					
	4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.								
	5) In order to find the maximum of the interface cables r conducted measurement.		• • • •						
Limit:				7					
	Frequency range (MHz)	Limit (c	BμV)						
		Quasi-peak	Average						
1	0.15-0.5	66 to 56*	56 to 46*	12					
) (a)	0.5-5	56	46	6					
	5-30	60	50						
	* The limit decreases linearly MHz to 0.50 MHz. NOTE : The lower limit is applied	-		range 0.					

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

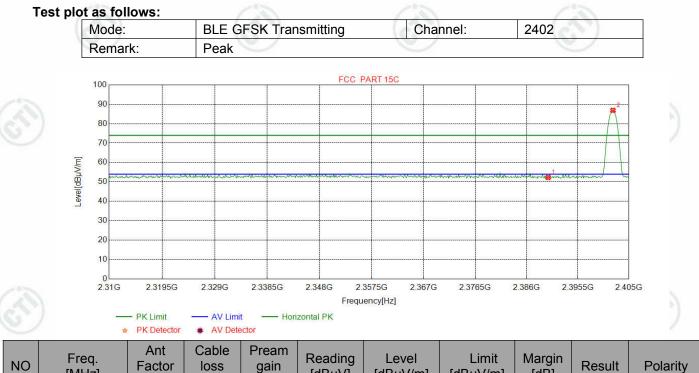


Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

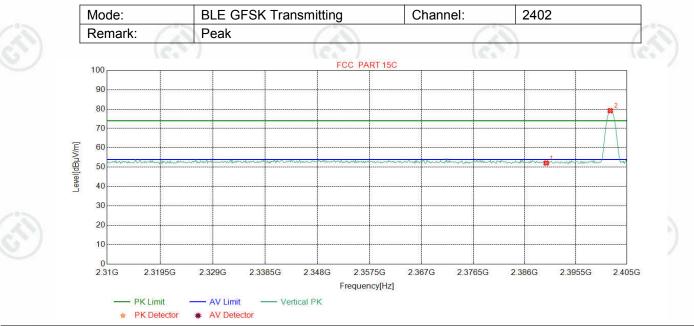
Page 27 of 48

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.


Page 28 of 48

Appendix H): Restricted bands around fundamental frequency (Radiated)


Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peal
	Above 1GHz	Peak	1MHz	3MHz	Peak
	Above IGHZ	Peak	1MHz	10Hz	Average
Test Procedure:	 Below 1GHz test proced a. The EUT was placed at a 3 meter semi-ane determine the position b. The EUT was set 3 m was mounted on the t c. The antenna height is determine the maximu polarizations of the an d. For each suspected e the antenna was tune was turned from 0 deg e. The test-receiver syste Bandwidth with Maxim 	ure as below: on the top of a re- choic camber. The of the highest ra- eters away from op of a variable- varied from one um value of the fil tenna are set to mission, the EUT d to heights from grees to 360 deg em was set to Pen- num Hold Mode.	tating table table wa adiation. the interfer meter to fo eld strength make the n was arran 1 meter to rees to find eak Detect	e 0.8 meter is rotated 3 ence-recei nna tower. ur meters n. Both hor neasureme ged to its 4 meters a the maxin Function a	rs above the 360 degrees aving antenna above the gr rizontal and ent. worst case a and the rotat num reading nd Specified
	f. Place a marker at the frequency to show cor	mpliance. Also m	easure any	emission:	s in the restr
		mpliance. Also m trum analyzer pla channel lure as below: ove is the test site mber change form s 1 meter and tab owest channel,	easure any ot. Repeat f e, change fr n table 0.8 le is 1.5 me the Highest	or emissions for each po rom Semi- meter to 1 ter). t channel	s in the restr ower and mo Anechoic Cl .5 meter(Ab
	frequency to show con bands. Save the spec for lowest and highest Above 1GHz test proced g. Different between abor to fully Anechoic Char 18GHz the distance is h Test the EUT in the I i. The radiation measure Transmitting mode, ar	mpliance. Also m trum analyzer plo channel lure as below: ove is the test site mber change form a 1 meter and tab lowest channel , ements are perforn of found the X as	easure any ot. Repeat f e, change fr n table 0.8 le is 1.5 me the Highest rmed in X, kis positioni	emission for each po rom Semi- meter to 1 ter). channel Y, Z axis p ng which i	s in the restr ower and mo Anechoic Cl .5 meter(Ab positioning fo t is worse ca
Limit:	frequency to show con bands. Save the spec for lowest and highest Above 1GHz test proced g. Different between abor to fully Anechoic Char 18GHz the distance is h Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced	mpliance. Also m trum analyzer plo channel lure as below: ove is the test site mber change form a 1 meter and tab owest channel , ements are perfor and found the X as ures until all freq	easure any ot. Repeat f e, change fr n table 0.8 le is 1.5 me the Highest rmed in X, kis positioni uencies me	emissions for each po rom Semi- meter to 1 ter). channel Y, Z axis p ng which i easured wa	s in the restrower and mo Anechoic Cl .5 meter(Ab positioning fo t is worse ca as complete.
Limit:	frequency to show con bands. Save the spec for lowest and highest Above 1GHz test proced g. Different between abor to fully Anechoic Char 18GHz the distance is h Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced	mpliance. Also m trum analyzer plo channel ure as below: ove is the test site mber change form a 1 meter and tab owest channel , ements are perfor and found the X as ures until all freq Limit (dBµV	easure any ot. Repeat f e, change fr n table 0.8 le is 1.5 me the Highest rmed in X, kis positioni uencies me /m @3m)	rom Semi- meter to 1 ter). channel Y, Z axis p ng which i easured wa	s in the restrower and mo Anechoic Cl .5 meter(Ab positioning fo t is worse ca as complete. mark
Limit:	frequency to show con bands. Save the spec for lowest and highest Above 1GHz test proced g. Different between abor to fully Anechoic Char 18GHz the distance is h Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced Frequency 30MHz-88MHz	mpliance. Also m trum analyzer plo channel lure as below: we is the test site mber change form a 1 meter and tab owest channel , ements are perforn d found the X as ures until all freq Limit (dBµV 40.	easure any ot. Repeat f e, change fr n table 0.8 le is 1.5 me the Highest rmed in X, kis positioni uencies me /m @3m)	rom Semi- meter to 1 ter). channel Y, Z axis p ng which i easured wa Rei Quasi-pe	s in the restrower and mo Anechoic Cl .5 meter(Ab positioning fo t is worse ca as complete. mark eak Value
Limit:	frequency to show con bands. Save the spec for lowest and highest Above 1GHz test proced g. Different between abore to fully Anechoic Char 18GHz the distance is h Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz	mpliance. Also m trum analyzer plo channel lure as below: ove is the test site mber change form a 1 meter and tab owest channel , ements are perforn d found the X as ures until all freq Limit (dBµV 40. 43.	easure any ot. Repeat f e, change fr n table 0.8 le is 1.5 me the Highest rmed in X, kis positioni uencies me /m @3m) D	rom Semi- meter to 1 cor ach po meter to 1 ter). channel Y, Z axis p ng which i casured wa Rei Quasi-po	s in the restrower and mo Anechoic Cl .5 meter(Ab oositioning fo t is worse ca as complete. mark eak Value eak Value
Limit:	frequency to show con- bands. Save the spec for lowest and highest Above 1GHz test proced g. Different between abore to fully Anechoic Chara 18GHz the distance is h Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	mpliance. Also m trum analyzer plo channel lure as below: we is the test site mber change form of 1 meter and tab owest channel , ements are perforn d found the X as ures until all freq Limit (dBµV 40.1 43.1 46.1	easure any ot. Repeat f e, change fr n table 0.8 le is 1.5 me the Highest rmed in X, kis positioni uencies me /m @3m)	rom Semi- meter to 1 ter). channel Y, Z axis p ng which i easured wa Rei Quasi-pe Quasi-pe	s in the restrower and mo Anechoic Cl .5 meter(Ab oositioning fo t is worse ca as complete. mark eak Value eak Value eak Value
Limit:	frequency to show con bands. Save the spec for lowest and highest Above 1GHz test proced g. Different between abore to fully Anechoic Char 18GHz the distance is h Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz	mpliance. Also m trum analyzer plo channel lure as below: ove is the test site mber change form a 1 meter and tab owest channel , ements are perforn d found the X as ures until all freq Limit (dBµV 40. 43.	easure any ot. Repeat f e, change fr n table 0.8 le is 1.5 me the Highest rmed in X, kis positioni uencies me /m @3m)	rom Semi- meter to 1 cor each po meter to 1 ter). channel Y, Z axis p ng which i easured wa Rei Quasi-po Quasi-po Quasi-po	s in the restrower and mo Anechoic Cl .5 meter(Ab oositioning fo t is worse ca as complete. mark eak Value eak Value

NO	[MHz]	[dB]	[dB]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.09	52.27	74.00	21.73	Pass	Horizontal
2	2402.0275	32.26	13.31	-42.43	83.75	86.89	74.00	-12.89	Pass	Horizontal

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	48.94	52.12	74.00	21.88	Pass	Vertical
2	2401.9086	32.26	13.31	-42.43	76.06	79.20	74.00	-5.20	Pass	Vertical
S.).	G	9		6	1.	6)		(

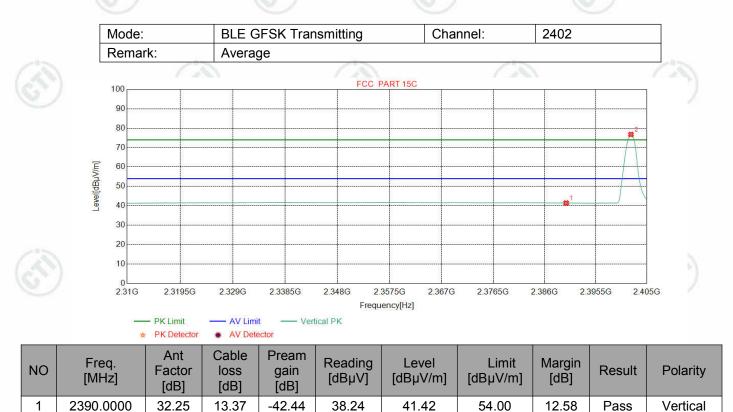
2

2402.0275

32.26

13.31

-42.43



Report No. : EED32K00316701

Page 30 of 48

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.34	41.52	54.00	12.48	Pass	Horizontal
2	2402.0275	32.26	13.31	-42.43	80.55	83.69	54.00	-29.69	Pass	Horizontal
	16.5.7								6 T	

73.64

76.78

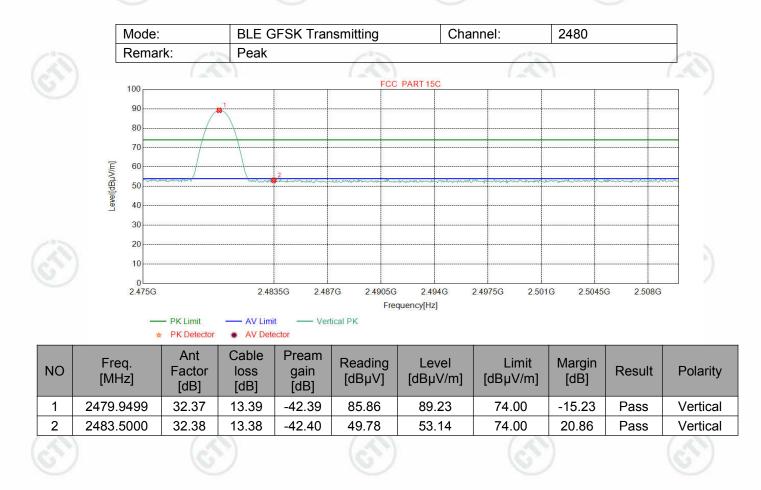
54.00

-22.78

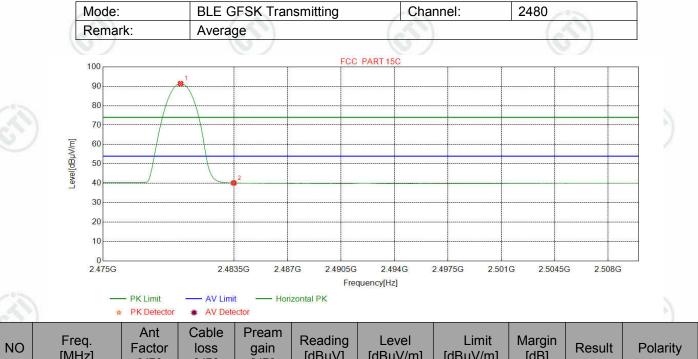
Pass

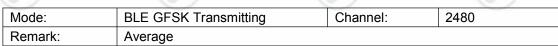
Vertical

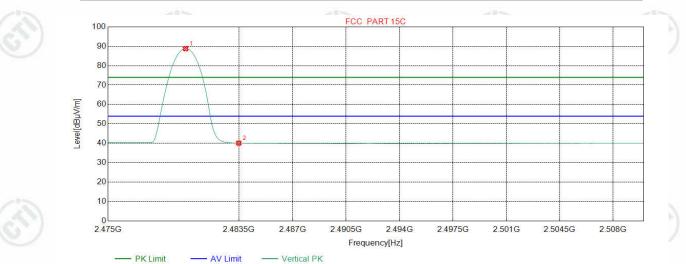




Page 31 of 48







Page 32 of 48

NO	[MHz]	Factor [dB]	loss [dB]	gain [dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polarity
1	2480.0375	32.37	13.39	-42.39	88.03	91.40	54.00	-37.40	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	36.79	40.15	54.00	13.85	Pass	Horizontal

✿ PK Detector ★ AV Detector

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0375	32.37	13.39	-42.39	85.38	88.75	54.00	-34.75	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	36.70	40.06	54.00	13.94	Pass	Vertical

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

Page 33 of 48

Report No. : EED32K00316701

Appendix I): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
		Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Limit:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
 f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
 h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

and the second sec			and the second s			
	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)]
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300]
	0.490MHz-1.705MHz	24000/F(kHz)	-	205	30	~ ~ ~
	1.705MHz-30MHz	30	-		30	
	30MHz-88MHz	100	40.0	Quasi-peak	3	
	88MHz-216MHz	150	43.5	Quasi-peak	3	1
	216MHz-960MHz	200	46.0	Quasi-peak	3	1
	960MHz-1GHz	500	54.0	Quasi-peak	3	1
	Above 1GHz	500	54.0	Average	3	1
	applicable to the	otherwise specifie B above the maxir equipment under vel radiated by the	num perm test. This p	itted average	emission limit	

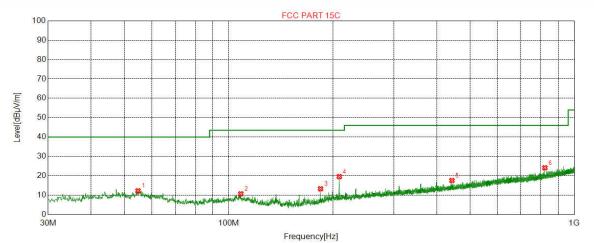
Page 34 c

Page 34 of 48

Report No. : EED32K00316701

Radiated Spurious Emissions test Data:

Product : Bluetooth Controller

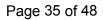

Temperature : 22℃

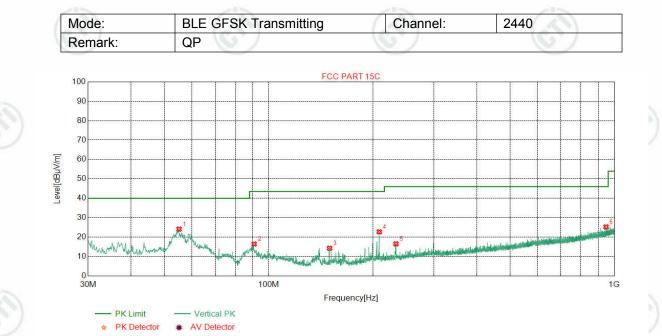
Model/Type reference Humidity

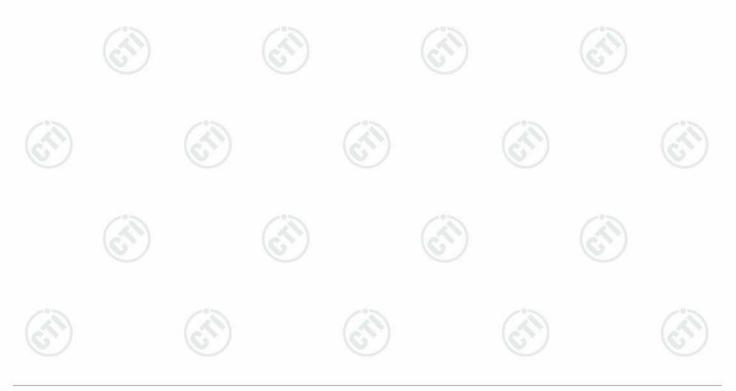
: BLU-SEN-C : 55%

Radiated Emission below 1GHz

→ PK Limit → Horizontal PK ★ PK Detector ★ AV Detector


1	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
6	1	54.6405	12.46	0.84	-32.09	31.01	12.22	40.00	27.78	Pass	Horizontal
	2	108.3838	10.92	1.23	-32.07	30.59	10.67	43.50	32.83	Pass	Horizontal
	3	184.3424	9.41	1.59	-31.98	34.23	13.25	43.50	30.25	Pass	Horizontal
	4	208.8859	11.13	1.71	-31.94	38.65	19.55	43.50	23.95	Pass	Horizontal
	5	442.2912	16.08	2.49	-31.89	30.85	17.53	46.00	28.47	Pass	Horizontal
	6	821.8902	21.16	3.45	-31.94	31.41	24.08	46.00	21.92	Pass	Horizontal
		~								/ · · · · ·	





	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
	1	55.0285	12.40	0.84	-32.08	42.94	24.10	40.00	15.90	Pass	Vertical
	2	90.7281	9.52	1.10	-32.09	37.87	16.40	43.50	27.10	Pass	Vertical
	3	150.0010	7.55	1.45	-32.01	37.20	14.19	43.50	29.31	Pass	Vertical
	4	208.8859	11.13	1.71	-31.94	41.80	22.70	43.50	20.80	Pass	Vertical
2	5	233.4293	11.77	1.81	-31.90	34.81	16.49	46.00	29.51	Pass	Vertical
	6	946.1596	22.38	3.70	-31.18	30.30	25.20	46.00	20.80	Pass	Vertical
0			0								

Page 36 of 48

Transmitter Emission above 1GHz

Mode	e:	BLE GFSK Transmitting			Channel:				2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1544.0544	28.69	3.03	-42.78	51.59	40.53	74.00	33.47	Pass	Н	Peak
2	3484.2823	33.39	4.47	-41.82	49.64	45.68	74.00	28.32	Pass	Н	Peak
3	4804.0000	34.50	4.55	-40.66	53.16	51.55	74.00	22.45	Pass	Н	Peak
4	4804.0000	34.50	4.55	-40.66	49.65	48.04	54.00	5.96	Pass	Н	AV
5	6161.1607	35.83	5.24	-41.12	48.18	48.13	74.00	25.87	Pass	Н	Peak
6	7206.0000	36.31	5.81	-41.02	51.59	52.69	74.00	21.31	Pass	Н	Peak
7	7206.0000	36.31	5.82	-41.02	45.64	46.75	54.00	7.25	Pass	Н	AV
8	9608.0000	37.64	6.63	-40.76	46.56	50.07	74.00	23.93	Pass	Н	Peak
9	1501.2501	28.41	2.99	-42.67	51.50	40.23	74.00	33.77	Pass	V	Peak
10	3518.7346	33.41	4.47	-41.77	49.65	45.76	74.00	28.24	Pass	V	Peak
11	4804.0000	34.50	4.55	-40.66	49.81	48.20	74.00	25.80	Pass	V	Peak
12	6234.6156	35.85	5.31	-41.14	48.01	48.03	74.00	25.97	Pass	V	Peak
13	7206.0000	36.31	5.81	-41.02	48.06	49.16	74.00	24.84	Pass	V	Peak
14	9608.0000	37.64	6.63	-40.76	48.81	52.32	74.00	21.68	Pass	V	Peak
15	9608.0000	37.64	6.63	-40.76	38.30	41.81	54.00	12.19	Pass	V	AV

Mode	e:	BLE GFSK Transmitting			Channel:				2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1208.4208	28.11	2.66	-42.88	51.76	39.65	74.00	34.35	Pass	Н	Peak
2	2083.7084	31.82	3.57	-42.57	52.33	45.15	74.00	28.85	Pass	Н	Peak
3	3543.4362	33.43	4.45	-41.73	49.72	45.87	74.00	28.13	Pass	Н	Peak
4	4880.0000	34.50	4.80	-40.60	52.87	51.57	74.00	22.43	Pass	Н	Peak
5	4880.0000	34.50	4.80	-40.60	49.37	48.07	54.00	5.93	Pass	Н	AV
6	7320.0000	36.42	5.85	-40.92	48.59	49.94	74.00	24.06	Pass	Н	Peak
7	9760.0000	37.70	6.73	-40.62	50.49	54.30	74.00	19.70	Pass	Н	Peak
8	9760.0000	37.70	6.73	-40.62	42.79	46.60	54.00	7.40	Pass	Н	AV
9	1749.0749	30.04	3.23	-42.68	51.89	42.48	74.00	31.52	Pass	V	Peak
10	4056.3204	33.88	4.33	-40.80	48.77	46.18	74.00	27.82	Pass	V	Peak
11	4880.0000	34.50	4.80	-40.60	52.64	51.34	74.00	22.66	Pass	V	Peak
12	4880.0000	34.50	4.80	-40.60	49.19	47.89	54.00	6.11	Pass	V	AV
13	6523.8849	35.91	5.41	-41.19	48.29	48.42	74.00	25.58	Pass	V	Peak
14	7320.0000	36.42	5.85	-40.92	49.82	51.17	74.00	22.83	Pass	V	Peak
15	7320.0000	36.42	5.85	-40.92	44.03	45.38	54.00	8.62	Pass	V	AV
16	9760.0000	37.70	6.73	-40.62	48.21	52.02	74.00	21.98	Pass	V	Peak
17	9760.0000	37.70	6.73	-40.62	39.36	43.17	54.00	10.83	Pass	V	AV

Page 37 of 48

	1000		-01			1000			200		
Mode:		BLE GFSK Transmitting			Channel:			2480			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1627.2627	29.24	3.11	-42.84	51.91	41.42	74.00	32.58	Pass	Н	Peak
2	3013.6509	33.21	4.90	-42.11	50.14	46.14	74.00	27.86	Pass	Н	Peak
3	3489.4826	33.40	4.48	-41.83	50.14	46.19	74.00	27.81	Pass	Н	Peak
4	4960.0000	34.50	4.82	-40.53	56.12	54.91	74.00	19.09	Pass	Н	Peak
5	4960.0000	34.50	4.82	-40.53	53.03	51.82	54.00	2.18	Pass	Н	AV
6	7440.0000	36.54	5.85	-40.82	47.11	48.68	74.00	25.32	Pass	Н	Peak
7	9920.0000	37.77	6.79	-40.48	52.11	56.19	74.00	17.81	Pass	Н	Peak
8	9920.0000	37.77	6.79	-40.47	43.78	47.87	54.00	6.13	Pass	Н	AV
9	1741.4741	29.99	3.22	-42.67	50.80	41.34	74.00	32.66	Pass	V	Peak
10	3147.5598	33.26	4.58	-42.04	50.22	46.02	74.00	27.98	Pass	V	Peak
11	4960.0000	34.50	4.82	-40.53	54.29	53.08	74.00	20.92	Pass	V	Peak
12	4960.0000	34.50	4.82	-40.53	51.19	49.98	54.00	4.02	Pass	V	AV
13	5945.9964	35.71	5.30	-41.04	48.13	48.10	74.00	25.90	Pass	V	Peak
14	7440.0000	36.54	5.85	-40.82	47.41	48.98	74.00	25.02	Pass	V	Peak
15	9920.0000	37.77	6.79	-40.48	47.87	51.95	74.00	22.05	Pass	V	Peak
16	9920.0000	37.77	6.79	-40.47	38.93	43.02	54.00	10.98	Pass	V	AV
1	Note:										

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Page 38 of 48

PHOTOGRAPHS OF TEST SETUP

Test model No.: BLU-SEN-C

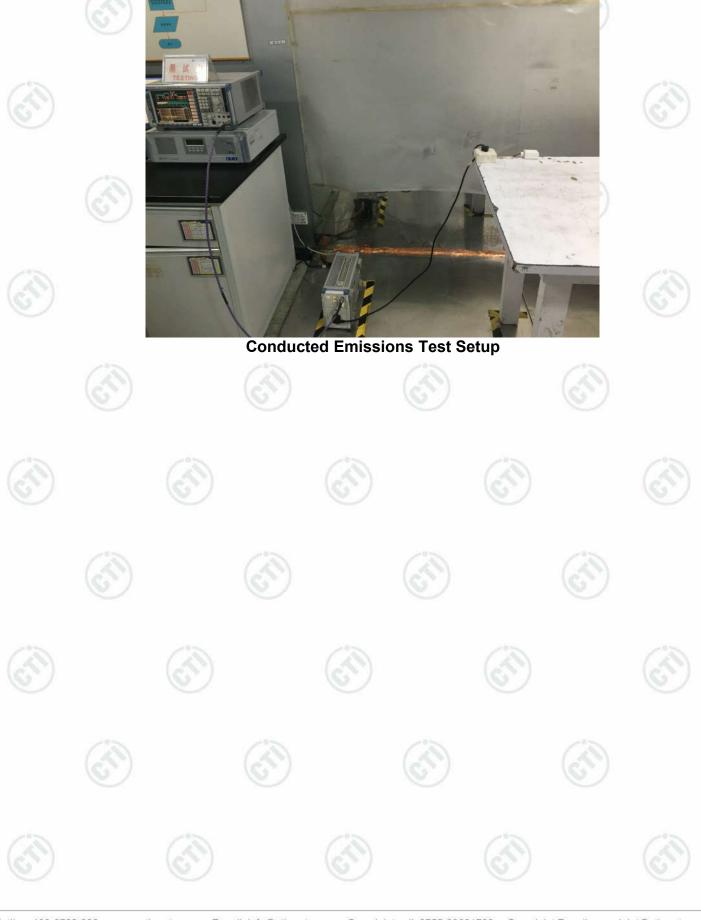
Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(Below 1GHz)

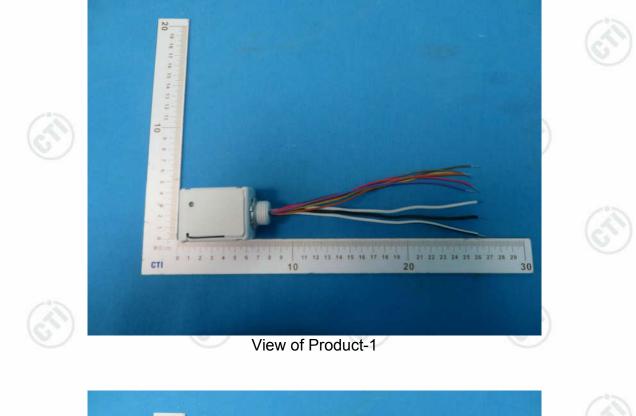
Page 39 of 48

Radiated spurious emission Test Setup-3(Above 1GHz)

Radiated spurious emission Test Setup-4(Close-up)



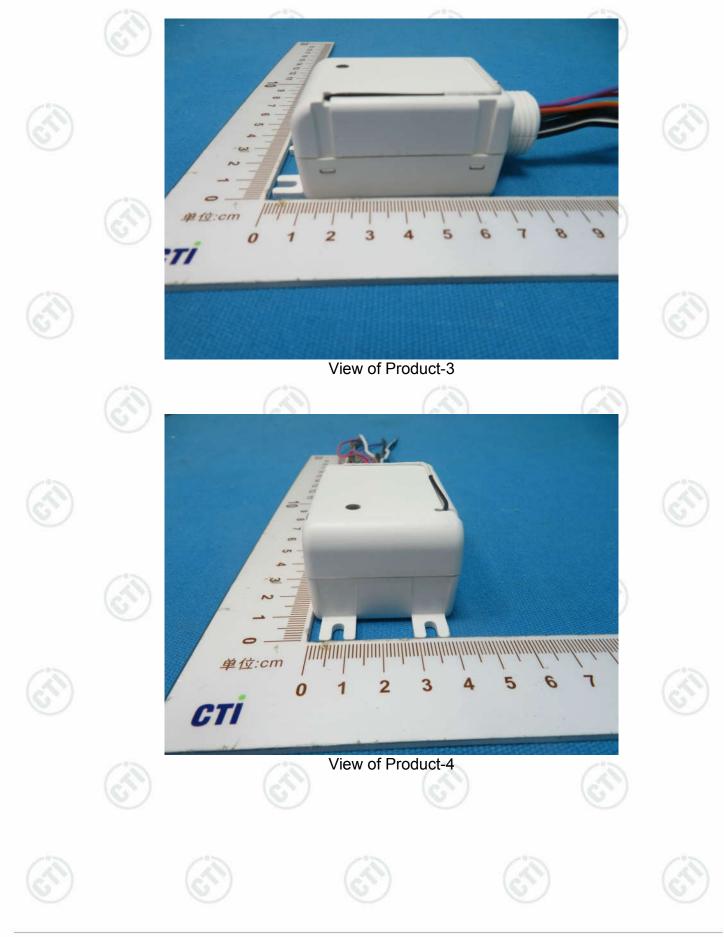
Page 40 of 48



Page 41 of 48

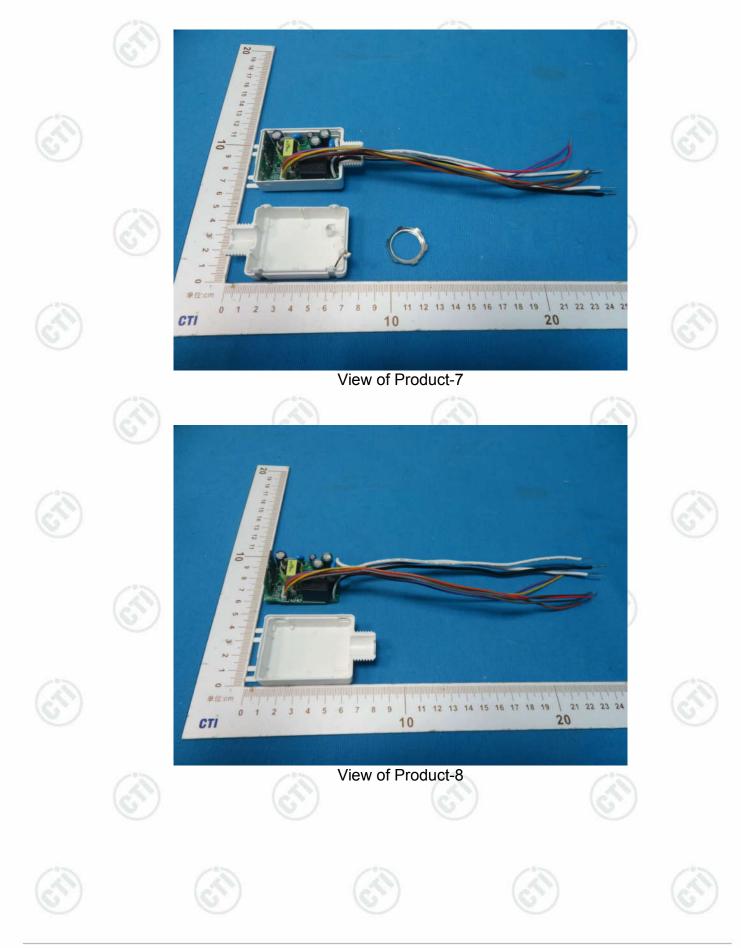
PHOTOGRAPHS OF EUT Constructional Details

Test model No.: BLU-SEN-C

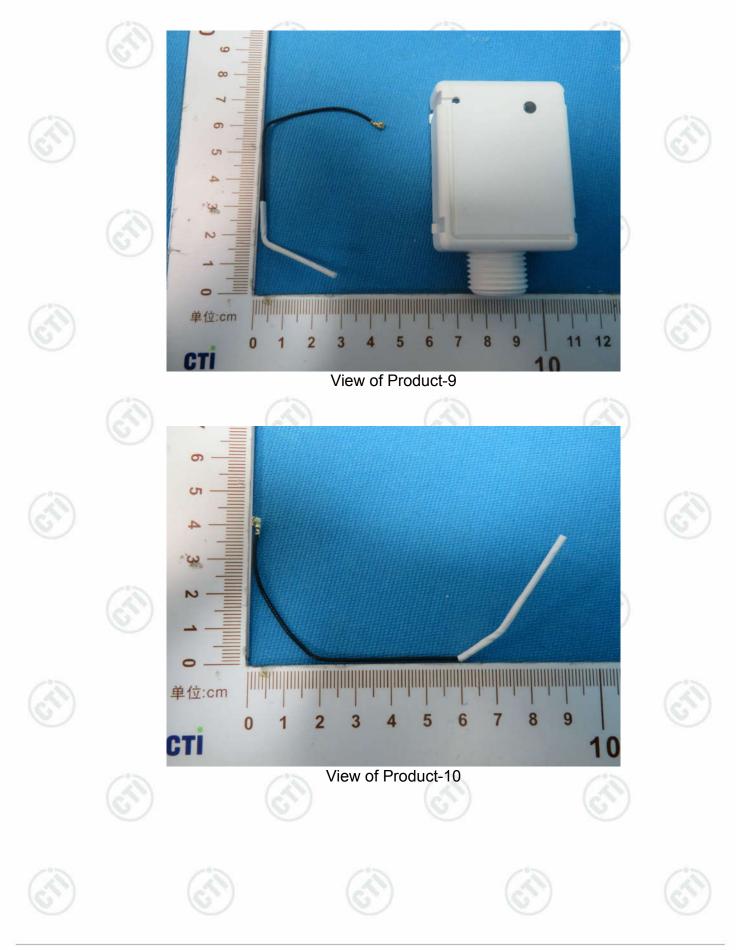


Page 42 of 48

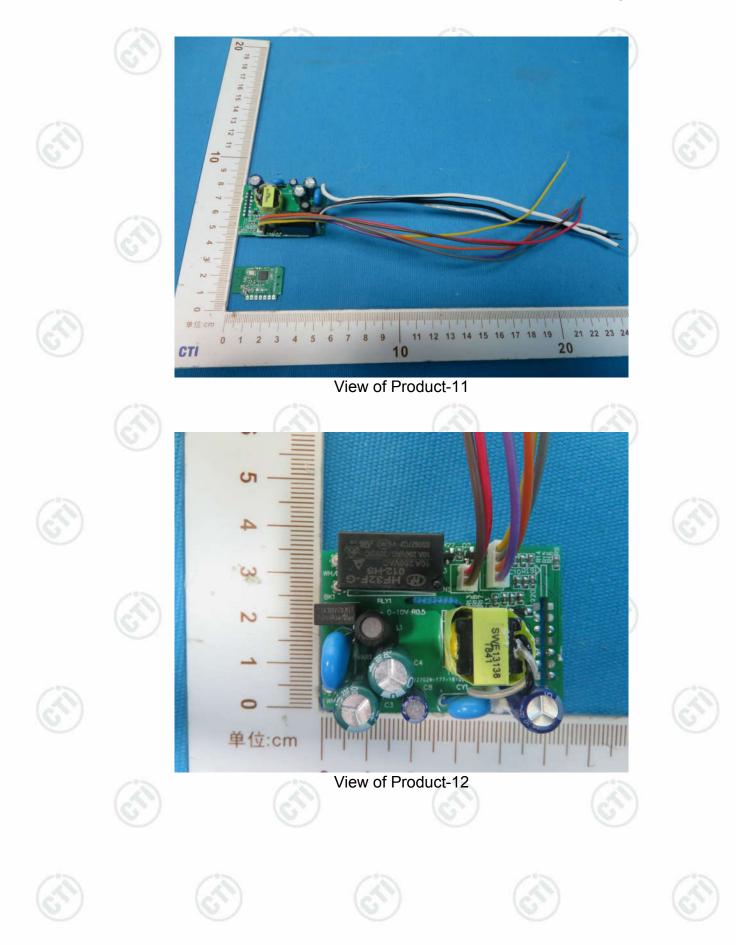
Page 43 of 48

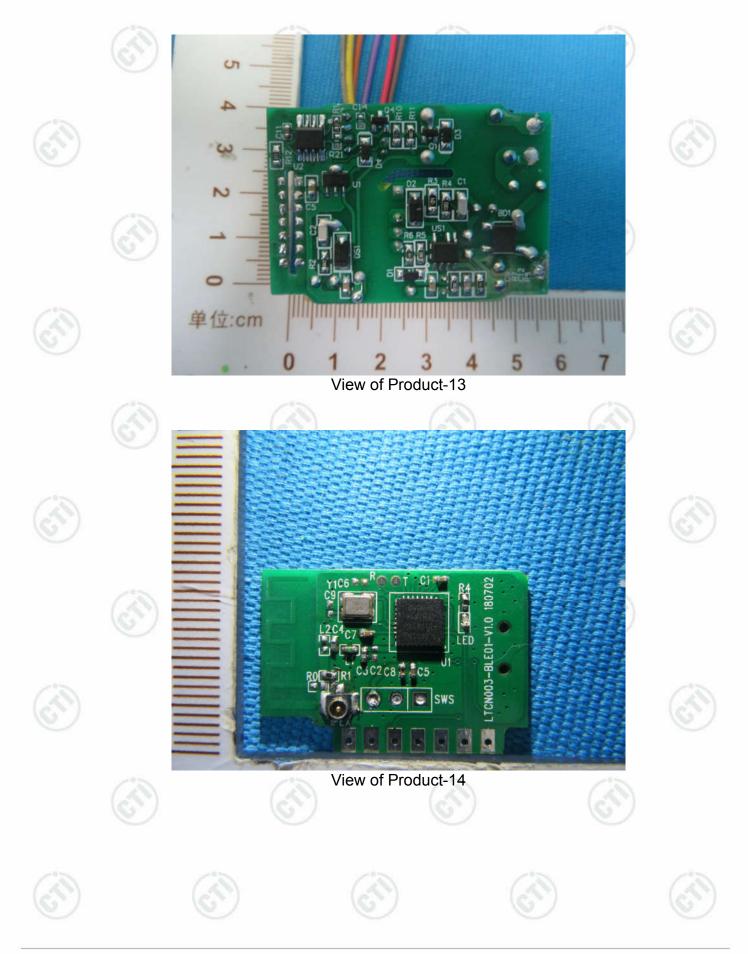


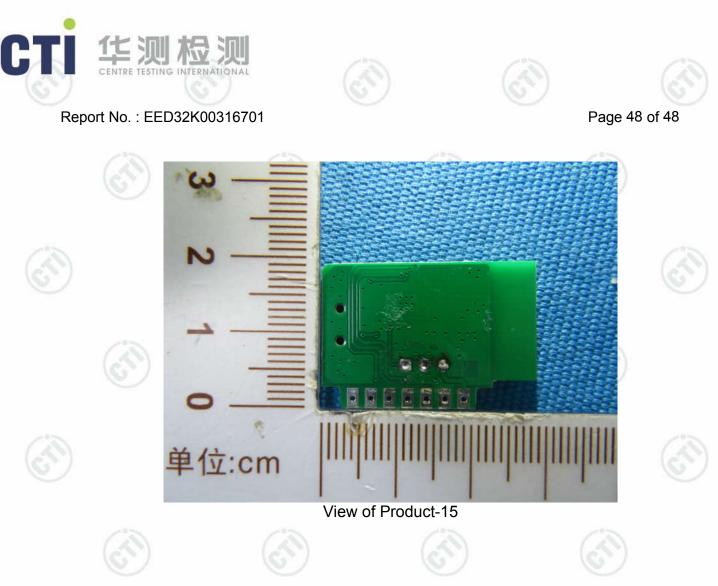
Page 44 of 48

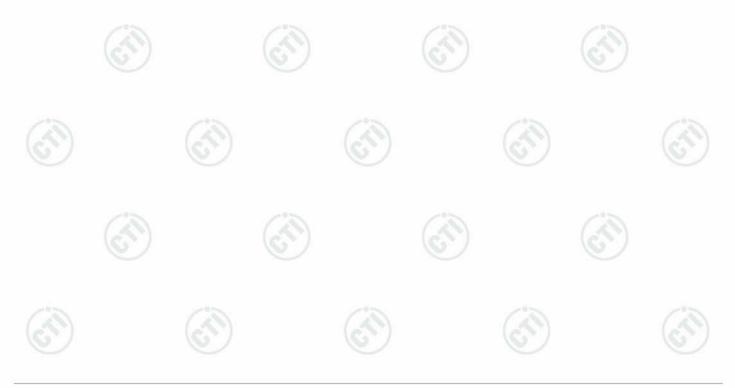


Page 45 of 48




Page 46 of 48





*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

