Eambricon 寒 武 纪

MLU270-X Series Intelligent Processing Card User Manual V0.9

Revision History

Document Name		MLU270-X Series Intelligent Processing Card User Manual		
Revision		V0.9		
Created Date		2020.01.10		
Revision Hi	istory			
No.	Date	Version Notes		
0	2020.01.10	V0.9	First Release	
1				
2				
3				
4				
5				

Technical supports contact: service@cambricon.com

www.cambricon.com

Content

1. Product Brief	4
2. Product specifications	5
2.1 Performance specifications	5
2.2 Software specifications	5
2.3 Operating Environment	7
2.4 Mechanical Specifications	7
2.5 Package Size and Weight	8
2.6 Thermal Specifications	8
2.7 Power Supplies Specifications	9
3. Cambricon NeuWare Development Environment	12
4. Compliance	12

1. Product Brief

Figure.1 MLU270-X Series Intelligent Processing Card appearance

Specially designed MLU270-X series dedicated to AI inferences and data center accelerations with high EER (Energy Efficiency Rate)

The SIYUAN 270 ASIC has been designed based on several innovative technologies in the architecture of processors owned by Cambricon. Along with it, many up-to-date features have been integrated into a standard FHFL PCIe card, which can be inserted into a modern AI PC/server so as to provide a huge extension of calculation power of AI inferences. MLU270-X series has a moderate TDP of 150W and it can provide a calculation power as high as 4 times of the previous generation. It can be widely used in applications such as vision, voice, natural language processing, legacy machine learning, and many other AI scenarios, and it can be used in an AI inferences platform to make it work with even higher EER.

Brand-new Cambricon MLUv02 Architecture

The MLUv02 architecture is not just a simple update from previous generation, but a brand new design based on NOC (Network on Chip), which will guarantee the parallel efficiency of execution of 16 NPU cluster within the SIYUN 270 ASIC. The dataflow will be compressed within the chip by dedicated hardware engine and this will increase the volume and bandwidth effectively. The new architecture can fully support all the AI accuracies such as INT16, INT8, INT4, FP32, FP16, and provide necessary calculation power to many kinds of Neural Network. In a word, the new architecture can provide both good universality and best performances to customers at the same time.

One more step on the performances of inferences

When using INT8 accuracy for AI inference calculations, the performance of non-sparse networks is improved up to 4 times as much as that of the previous generation. MLU270-X Cambricon Technologies, MLU270-X Series Intelligent Processing Card User Manual

series can provide a great EER as high as 40 times of a normal CPU. There are embedded newly designed code/decode hardware for videos and pictures, so when the system have to handle this kind of tasks, MLU270-X series will decrease the load of CPU and the occupation for PCIe bandwidth, so as to increase the performances even more.

Calculating flexibility and programmability

SIYUAN 270 ASIC can provide supports to many kinds of Neural Networks. Cambricon NeuWare software stack can easily deploy inference environment.BANG Lang.CHENG environment can be directly customized for computing resources , meeting all kinds of Al customization requirements, professional but not specialized.

2. **Product specifications**

2.1 Performance specifications

Card Type	MLU270-X5/X5K/XV5K		
Processor Architecture	Cambricon MLUv02		
Cara Clask	MLU270-X5:1 GHz,		
	MLU270-X5K/XV5K:1.25 GHz		
	MLU270-X5:128 TOPS (Dense),		
	MLU270-X5K/XV5K:160 TOPS (Dense)		
Calculation accuracy	INT16, INT8, INT4, FP32, FP16		
Video Decoding Support	Yes		
Total Memory Size	32GB		
Memory Bus Width	256-bit		
Memory Bandwidth	102.4 GB/s		
System Interfaces	PCI Express Gen3, x16, Supporting Lane Reversal		
	PCIe Vendor ID 0xCABC		
	PCIe Device ID 0x0270		
	PCIe Sub-Vendor ID 0xCABC		
	PCle Sub-System ID 0x0014/0x0015/0x0016		
Outline	111.15mm*167.5mm, Double slots		
TDP	150W		
ECC Supporting	Yes		
Heat Dissipation	Passive		

Table 1 MLU270-X Series Intelligent Processing Card Hardware Specifications

2.2 Software specifications

Table 2 MILLINTO V Carles	Intelligent D	ragaging Card	Coffinara C	manifi anti ama
19016 / 1011 0770-X 26065	INTERIOENT PI	IOCESSING CALC	SOUWARE S	Decincations
	meaniganteri	loocooling oura	001111010	poontoationo

		-		-	•	
PCIe Base address	PF	(1,	64bit) :			

	BAR0: 256MB prefetchable		
	BAR2: 64MB prefetchable		
	BAR4: 64MB prefetchable		
	VF (4, 64bit):		
	BAR0: 256MB prefetchable		
	BAR2: 64MB prefetchable		
	BAR4: 64MB prefetchable		
SMBus (8bit Address)	0x8E(write) 0x8F (read)		

SMBUS Register is 32-bit wide, and below describes how to read a register (S:Slave, M:Master): Table 3 SMBUS Registers Reading

	3	
Direction	Bits	Content
M→S	1	START
M→S	8	SLAVE ADDRESS (Write)
S → M	1	АСК
M→S	8	REGISTER ADDRESS
S → M	1	ACK
M→S	1	RE START
M→S	8	SLAVE ADDRESS (Read)
S → M	1	ACK
S → M	8	DATA[7:0]
M→S	1	АСК
S → M	8	DATA[15:8]
M→S	1	АСК
S → M	8	DATA[23:16]
M→S	1	АСК
S → M	8	DATA[31:24]
M→S	1	NACK
M→S	1	STOP

Table 4 SMBUS Registers Description

Registers	Address	ACCESS	Description
Total Card Power	0x01	RO	Card Power consumption, Float Data, Unit W
Card Temperature	0x02	RO	Card Temperature, Float Data, Unit ℃
Chip Temperature	0x03	RO	Chip Temperature, Float Data, Unit ℃
power brake	0x05	WO	The main frequency is reduced to 25% of current
			frequency when write 0x04,and restore to
			pre-frequency when write 0x01
PCIE Vendor ID	0xA0	RO	[15:0] Vendor ID: 0xCABC
and Device ID			[31:16] Device ID: 0x0270
PCIE Sub-Vendor	0xA1	RO	[15:0] Sub-Vendor ID: 0xCABC

ID and Sub-System			[31:16] Sub-System ID: for example 0x0014
Device Name	0xF0	RO	Display device type, e.g 0X14 means device type is XV5K
Vendor Name	0xF1	RO	Display vendor name
Hardware vision	0xF2	RO	Display hardware vision
Firmware Revision	0xF3	RO	Display Firmware Revision, e.g 0x02140016 means the main chip version is 0x02,device type is 0x14,main version is 0x00,subversion is 0x1,patch number is 0x6
Manufacturing Time	0xF4	RO	Dispaly manufacturing time,e.g 0x1811 means manufactured in 2018.11
Device ID	0xF5	RO	Display Device ID, e.g 0x20023 means device id is 20023

2.3 Operating Environment

Table 5 MLU270-X Series Intelligent Processing Card Working Environment

Operating Temperature	0°C ~ 45°C
Storage Temperature	-40℃ ~ 75℃
Operating Humidity	5%—95% Relative Humidity
Storage Humidity	5%—95% Relative Humidity

2.4 Mechanical Specifications

Figure. 2 MLU270-X Series Intelligent Processing Card Dimensions

2.5 Package Size and Weight

Туре	Weight	Size	Notes
Single Card	480g	267mm*111.15mm*37.10mm	NA
Gift package	920g	385mm*230mm*97mm	Including gift
with single			package,MLU270-X series
card			card,expand stent,8-pin
			dongle cable,PE bag,desiccant
Gift Box	10.3kg	600mm*400mm*253mm	6 gift packages each box

Table 6 MLU270-X Series Package Size and Weigh
--

Notes: The weight is a measured value with a tolerance of +-10%

2.6 Thermal Specifications

2.6.1 MLU270-X Series Power and Temperature specifications

rs
V
С

Slowdown Tj	92°C
Slowdown Rate	50%
Shutdown Tj	95°C

2.6.2 MLU270-X Series Airflow Directions Requirement

MLU270-X Series use a blower to cool the card, the airflow direction is shown below:

Figure.3 MLU270-X Series Airflow direction

2.7 Power Supplies Specifications

MLU270-X Series Intelligent Processing Card provides a 8-Pin Power Connector as below:

Figure.4 8-Pin Power supply Connector

Table8 Supported Auxiliary Power Connections

Board Connector	Cable used
CPU 8-Pin	1× CPU 8-pin cable
	2× PCle 8-pin cable
CPU to PCIe 8-Pin Dongle Cable	2× PCle 6-pin cable
	1× PCle 8-pin cable and 1× PCle 6-pin cable

Users can use the CPU 8-Pin Power Socket within a Server directly, or use two 8-pin PCle Power Sockets, along with a One-To-Two Adapter Cable.

Table9 Adapter Cable Connections

	8-Pin	CPU	Power	PCle 8-Pin Socket 1	PCle 8-Pin Socket 2	Colour
	connec	tor				
12V	5			3		Yellow
12V	6			1,2		Yellow
12V	7				3	Yellow
12V	8				1,2	Yellow
GND	1			7,8		Black
GND	2			5,6		Black
GND	3				7,8	Black

Figure.5 Adapter Cable

Note: The first pin (Pin No.1) of every connector/socket should have obviously distinguishable mark at the side.

Table	10Input	Voltage	Requirement
-------	---------	---------	-------------

Power Supply	Min	Normal	Max
PCIe edge connector (12V)	11.04V	12V	12.96V
8pin connector (12V)	11.04V	12V	12.96V
PCIe edge connector (3V3)	3.0V	3.3V	3.63V

Table 11 Current Requirement

Power Supply	Peak Current	Moving Average
	20A	200us
8pin connector (12V)	17A	1ms
	13A	5ms

Table12 Power Capping		
Power Capping Threshold	150W	
Power Capping Response time (typical)	50ms	
Power Capping Response time (max)	100ms	
Table 13 Power Break		
PB# PCIe pin assignment	B30	
Power Brake response time (typical)	150us	
PB# input insertion low time (min)	250ms	
Power brake hardware slowdown factor	4x	

3. Cambricon NeuWare Development Environment

NeuWare can fully support all kinds of mainstream programming framework, such as TensorFlow, Caffe, PyTorch, MXNet and so on.With above mentioned Programming Frameworks, users can easily and conveniently develop and deploy their Deep Learning Applications on Cambricon MLU270-X Series Intelligent Processing Cards.At the same time, NeuWare provides complete runtime system and driver software to speed up the system integration procedure.

NeuWare also provides a full set of software tools such as Application Development, Function Debugging and Performance Optimization. The Application Development Tools include Machine Learning Library, Runtime Library, Compiler, Model retraining tools and Domain-Specific (for example Video Analysis) SDK; The Function Debugging Tools can fulfill all the requirements from different levels of Programming Framework and Function Library; The Performance Optimization Tools include tools for performances analysis and system monitoring.

Figure.6 Cambricon NeuWare

For more information,please visit <u>www.cambricon.com</u> Tel: 86-10-83030003 E-mail: business@cambricon.com Address: 11/F, Block D, Zhizhen Tower, No.7 Zhichun Road, Haidian District, Beijing, China

4. Compliance

The MLU270-X Series is compliant with the regulations listed in this section. Compliance marks, including the FCC ID numbers, can be found on the labels of each devices.

United States

Federal Communications Commission (FCC)

This device complies with Part 15 of the FCC Rules.

Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna
- Increase the separation between the equipment and receiver
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected
- Consult the dealer or an experienced radio/TV technician for help

Caution: Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.

Underwriters Laboratories (UL)

UL Listed Product Logo for MLU270-X Series Intelligent Processing Cards, model name

MLU270-X.

