Certificate of Test

NCT Co., Ltd.

211-71, Geumgok-ro, Hwaseong-si, Gyeonggi-do, 18511, Korea (Tel: +82-31-323-6070 / Fax: +82-31-323-6071) Report No.: NW2112-F009

Page (1) / (22)

1. Client

• Name : SMARTCORE Inc.

 Address : #801, KRANZ TECHNO, 388, Dunchon-daero, Jungwon-gu, Seongnam-si, South Korea

- o Date of Receipt : 2021-10-19
- 2. Use of Report : FCC Approval

3. Test Sample

o Description / Model Name : Multi-functional passport reader / FASTpass P1F

- FCC ID : 2ARUNFASTPASSP1
- 4. Date of Test : 2021-12-16 ~ 2021-12-20
- 5. Test method used : FCC Part 15 Subpart C 15.225

6. Testing Environment :

- \circ Temperature: (25 ± 5) °C, Humidity: Less than 75 % R.H.
- * Unless specified otherwise in the individual methods, the tests were conducted on ambient conditions.

7. Test Results : Refer to the test results

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This Test Report cannot be reproduced, except in full This test report is prepared according to the requirements of ISO / IEC 17025.

Affirmation	Tested by Jong-Myoung, Shin	(signaty ⊜)	Technical Mar Changmin Kim		Z
				Dec 22, 2021	1
			NCT CO		
NTP-015-F06(Rev.03)				NCT.CO., LTD	1

Table of contents

1. General Information	3
2. Information's about Test Item	3
3. Test Report	5
3.1 Test Summary	5
3.2 Test Report Version	6
3.3 Transmitter Requirements	
3.3.1 Antenna Requirement	7
3.3.2 20 dB Bandwidth	8
3.3.3 In-Band Emissions	10
3.3.4 Out-of-Band Emissions	12
3.3.5 Frequency Stability	15
3.3.6 Conducted Emission	16

APPENDIX

APPENDIX I TEST SETUP	19
APPENDIX II TEST EQUIPMENT USED FOR TESTS	21

1. General Information's <u>1.1 Test Performed</u>

Laboratory	:	NCT Co., Ltd.
Address	:	211-71, Geumgok-ro, Hwaseong-si, Gyeonggi-do, 18511, Korea
Telephone	:	+82-31-323-6070
Facsimile	:	+82-31-323-6071
FCC Designation No.	:	KR0166
FCC Registration Number	:	409631

2. Information's about Test Item

2.1 Applicant Information

Company name	:	SMARTCORE Inc.
Address	:	#801, KRANZ TECHNO, 388, Dunchon-daero, Jungwon-gu, Seongnam-
		si, South Korea
Telephone / Facsimile	:	+82-31-752-6200 / +82-31-752-6208

2.2 Equipment Under Test (EUT) description

Test item particulars	:	Multi-functional passport reader
Model and/or type reference	:	FASTPASS P1F
Additional model name	:	-
Serial number	:	Prototype
Antenna type and gain	:	PCB Loop Antenna
Date (s) of performance of tests:	:	2021-12-16 ~ 2021-12-20
Date of receipt of test item	:	2021-10-19
EUT condition	:	Pre-production, not damaged
Number of channel	:	1
EUT Power Source	:	DC 12.0 V
Type of Modulation	:	ASK
Firmware version	:	1.0
Hardware version	:	1.0
Test software name(version)	:	FASTpass™P1

2.3 Tested Frequency

Test Mode	Test frequency (Mb)			
Test Mode	Low frequency	Middle frequency	High frequency	
RFID	-	13.56	-	

3. Test Report

3.1 Test Summary

Applied	Test Items	Clause	Test Condition	Result
\boxtimes	Antenna Requirement	15.203	-	С
\square	20 dB Bandwidth	2.1049		С
\boxtimes	In-Band Emissions (13.553 – 13.567 Mtz)	15.225(a)		С
\boxtimes	In-Band Emissions (13.410 – 13.553 MHz, 13.567 – 13.710 MHz)	15.225(b)	Radiated	С
\boxtimes	In-Band Emissions (13.110 – 13.410 MHz, 13.710 – 14.010 MHz)	15.225(c)		С
\boxtimes	Out-of-Band Emissions	15.225(d) 15.209		С
\square	Frequency Stability	15.225(e)	Temp & Humid Test Chamber	С
	Conducted Emissions	15.207	AC Line Conducted	С

Note 1: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable

Note 2: This test item was performed in each axis and the worst case data was reported.

The sample was tested according to the following specification: ANSI C63.10:2013

Compliance was determined by specification limits of the applicable standard according to customer requirements.

3.2 Test Report Version

Test Report No.	Date	Description
NW2112-F009	2021-12-22	Initial issue

3.3 Transmitter Requirements

3.3.1 Antenna Requirement

Accoding to §15.203 An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Accoding to \$15.247(b)(4) e conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.3.1.1 Result

Complies (The transmitter has a PCB Loop Antenna.)

3.3.2 20 dB Bandwidth

3.3.2.1 Test Setup

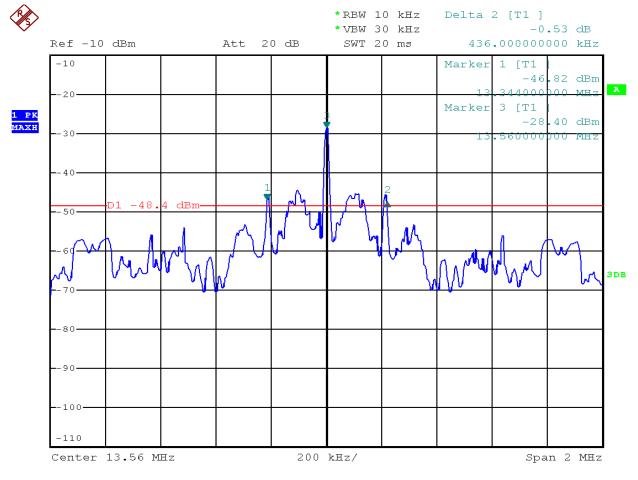
Refer to the APPENDIX I.

3.3.2.2 Limit

N/A

3.3.2.3 Test Procedure

- 1. The 20 dB Bandwidth is measured with a spectrum analyzer connected via a receive antenna placed near the EUT while the EUT is operating in transmission mode.
- 2. Spectrum analyzer setting use following test procedure


 $RBW = 1 \% \sim 5 \% OBW$ $VBW \ge 3 \times RBW$ $Span = Span = 2 \sim 5$ times the OBW Sweep = Auto Detector = PeakTrace = Max hold

- 3. The trace was allowed to stabilize
- 4. Determine the reference value = Set the spectrum analyzer marker to the highest level of the displayed trace
- 5. Using the marker-delta function of the instrument, determine the "-xx dB down amplitude" using [(reference value) -xx].
- 6. Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth.

3.3.2.4 Test Result

- Measurement Data: Complies

3.3.3 In-Band Emissions

3.3.3.1 Test Setup

Refer to the APPENDIX I.

3.3.3.2 Limit

Frequency Band	Limit at 30 m measurement distance			
(MHz)	(µV/m)	(dB <i>µ</i> V/ m)		
13.553-13.567	15,848	84.00		
13.410-13.553	334	50.47		
13.567-13.710	354	50.47		
13.110-13.410	106	40.51		
13.710-14.010	100	40.01		

3.3.3.3 Test Procedure

The radiated emission was tested according to the section 6.4 of the ANSI C63.10-2013.

The EUT was placed on a 0.8 m high non-conductive table and it was placed at 3m distance from the antenna.

Measurements were performed for each of the three antenna orientations. (ie. parallel, perpendicular, and ground-parallel)

Also, measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

 $\begin{array}{ll} \mathsf{RBW} = \mathsf{As} \ \mathsf{specified} \ \mathsf{in} \ \mathsf{below} \ \mathsf{table} \\ \mathsf{VBW} \ \geq \ 3 \ \mathsf{x} \ \mathsf{RBW} \\ \mathsf{Sweep} = \mathsf{Auto} \\ \mathsf{Detector} = \mathsf{Peak} \\ \mathsf{Trace} \ \mathsf{mode} = \mathsf{Max} \ \mathsf{Hold} \ \mathsf{until} \ \mathsf{the} \ \mathsf{trace} \ \mathsf{stabilizes}. \end{array}$

Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz
>1 000 MHz	1 MHz

3.3.3.4 Test Result

- Test Frequency: 13.56 MHz

- Measurement Distance: 3 m

Test Frequency Band (Mz)	Freq. (\\triangle)	Ant	Reading Value (এটে ক্রে)	Т.F (dB/m)	Field Strength @3m (dB,J//m)	Field Strength @30m (dB,W/m)	Limit (dBµ//m)	Margin (ੴ)
13.110-13.410	13.349	Р	47.02	20.79	67.81	27.81	40.51	12.70
13.410-13.553	13.553	Р	60.19	20.79	80.98	40.98	50.47	9.49
13.553-13.567	13.560	Р	65.23	20.79	86.02	46.02	84.00	37.98
13.567-13.710	13.567	Р	60.06	20.79	80.85	40.85	50.47	9.62
13.710-14.010	13.771	Р	45.94	20.79	66.73	26.73	40.51	13.78

Note 1: Loop antenna orientation

"P": Parallel, "V": Perpendicular, "G": Ground-parallel

Note 2: This test item was performed at 3 m and the data were extrapolated to the specified measurement distance of 30 m using the square of an inverse linear distance extrapolation factor (40 dB/decade) as specified in §15.31(f)2.

• Extrapolation Factor = $20 \log_{10}(30/3)^2 = 40 \text{ dB}$

Note 3: All data were recorded using a spectrum analyzer employing a peak detector.

If PK results were meet Quasi-peak limit, Quasi-peak measurements were omitted.

Note 4: Sample Calculation.

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss

3.3.4 Out-of-Band Emissions

3.3.4.1 Test Setup

Refer to the APPENDIX I.

3.3.4.2 Limit

Part 15.209, 225(d)

FCC Part 15.209(a):

Frequency (MHz)	Limit (uV/m)	Measurement Distance (meter)		
0.009 ~ 0.490	2400/F (kHz)	300		
0.490 ~ 1705	24000/F (kHz)	30		
1705 ~ 30.0	30	30		
30 ~ 88	100 **	3		
88 ~ 216	150 **	3		
216 ~ 960	200 **	3		
Above 960	500	3		

** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 - 72 Mb, 76 - 88 Mb, 174 - 216 Mb or 470 - 806 Mb. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

FCC Part 15.209(b): In the emission table above, the tighter limit applies at the band edges.

3.3.4.3 Test Procedure

The radiated emission was tested according to the section 6.4 of the ANSI C63.10-2013.

The EUT was tested from 9 kHz up to the 1 GHz excluding the band 13.110-14.010 MHz.

The EUT was placed on a 0.8 m high non-conductive table and it was placed at 3m distance from the antenna.

For measurements below 30MHz were performed for each of the three antenna orientations.(ie. parallel, perpendicular, and ground-parallel)

For measurements above 30MHz were performed for each of the both horizontal and vertical polarizations. Also, measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

 $\begin{array}{ll} \mathsf{RBW} = \mathsf{As} \ \mathsf{specified} \ \mathsf{in} \ \mathsf{below} \ \mathsf{table} \\ \mathsf{VBW} \ \geq \ 3 \ \mathsf{x} \ \mathsf{RBW} \\ \mathsf{Sweep} = \mathsf{Auto} \\ \mathsf{Detector} = \mathsf{Peak} \\ \mathsf{Trace} \ \mathsf{mode} = \mathsf{Max} \ \mathsf{Hold} \ \mathsf{until} \ \mathsf{the} \ \mathsf{trace} \ \mathsf{stabilizes}. \end{array}$

Frequency	RBW		
9-150 kHz	200-300 Hz		
0.15-30 MHz	9-10 kHz		
30-1000 M比	100-120 kHz		
>1 000 M⊞z	1 MHz		

3.3.4.4 Test Result

- Test Frequency: 13.56 MHz
- Measurement Distance: 3 m

Frequency (Mz)	Ant	Reading Value (ੴ∦)	T.F (dB/m)	Distance Factor (⊮∦/m)	Field Strength (個᠕/m)	Limit (dB⊉//m)	Margin (dB)
0.016896	V	47.30	20.65	40.00	27.95	43.05	15.10
12.92856	Р	35.69	20.79	40.00	16.48	29.54	13.06
14.20188	Р	38.49	20.79	40.00	19.28	29.54	10.26
32.910	V	15.24	13.20	0.00	28.44	40.00	11.56
40.670	V	21.33	14.00	0.00	35.33	40.00	4.67
54.250	V	17.90	14.50	0.00	32.40	40.00	7.60
67.733	V	17.28	13.30	0.00	30.58	40.00	9.42
81.313	V	24.63	10.10	0.00	34.73	40.00	5.27
90.431	V	15.56	9.50	0.00	25.06	43.52	18.46
162.696	V	17.70	15.10	0.00	32.80	43.52	10.72
176.276	н	15.92	14.20	0.00	30.12	43.52	13.40
189.856	V	19.38	13.20	0.00	32.58	43.52	10.94
203.339	V	15.15	12.60	0.00	27.75	43.52	15.77
216.919	V	15.28	13.20	0.00	28.48	46.02	17.54
290.930	Н	16.06	15.90	0.00	31.96	46.02	14.06
689.115	V	2.13	25.40	0.00	27.53	46.02	18.49
709.000	V	2.35	25.80	0.00	28.15	46.02	17.87
845.479	н	2.15	28.10	0.00	30.25	46.02	15.77

Note 1: The radiated emissions were inverstigated 9 klz to 1 Glz. And no other spurious and harmonic emissions were found above listed frequencies.

Note 2: Loop antenna orientation (below 30 MHz)

"P": Parallel, "V": Perpendicular, "G": Ground-parallel

Bilog antenna polarization (above 30 MHz)

"H": Horizontal, "V": Vertical

Note 3: All data were recorded using a spectrum analyzer employing a peak detector.

If PK results were meet Quasi-peak limit, Quasi-peak measurements were omitted.

Note 4: Sample Calculation.

Margin = Limit – Field Strength Field Strength = Reading + T.F – Distance factor

Distance factor = $20\log(\text{Measurement distance} / \text{The measured distance})^2 = <math>20\log(30/3)^2 = 40 \text{ dB}$ T.F = AF + CL -AG

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain

3.3.5 Frequency Stability

3.3.5.1 Limit

The frequency tolerance of the carrier signal shall be maintained within ± 0.01 % of the operating frequency.

3.3.5.2 Test Procedure

Part 15.225 requires that devices operating in the 13.553 - 13.567 MHz shall maintain the carrier frequency within 0.01 % of the operating frequency over the temperature variation of -20 degrees to + 50 degrees C at normal supply voltage.

3.3.5.3 Test Result

Volt	Voltage		Frequency	De	eviation
(%)	(Vdc)	((Hz)	(Hz)	(%)
100		-20	13 560 068	68	0.000 5
100		-10	13 560 038	38	0.000 3
100	- 12.00	0	13 560 003	3	0.000 0
100		10	13 559 964	36	0.000 3
100		20	13 559 910	90	0.000 7
100		30	13 559 901	99	0.000 7
100		40	13 559 946	54	0.000 4
100		50	13 559 961	39	0.000 3
115	13.80	20	13 559 910	90	0.000 7
85	10.20	20	13 559 909	91	0.000 7

3.3.6 Conducted Emission

3.3.6.1 Test Setup

See test photographs for the actual connections between EUT and support equipment.

3.3.6.2 Limit

According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 k to 30 M, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

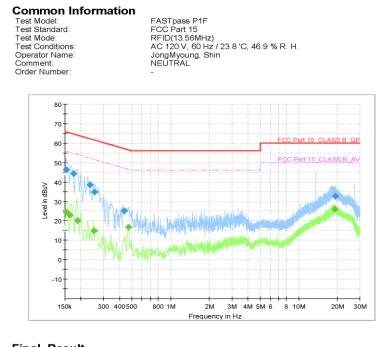
	Conducted Limit (dBuV)				
Frequency Range (Mz)	Quasi-Peak	Average			
0.15 ~ 0.5	66 to 56 *	56 to 46 *			
0.5 ~ 5	56	46			
5 ~ 30	60	50			

* Decreases with the logarithm of the frequency


3.3.6.3 Test Procedure

Conducted emissions from the EUT were measured according to the ANSI C63.10.

- 1. The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.


3.3.6.4 Test Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Line	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)	(ms)	(kHz)		(dB)
0.155000		29.16	55.73	26.57	1000.0	9.000	L1	10.
0.161000	49.92		65.41	15.50	1000.0	9.000	L1	10.
0.172000		24.46	54.86	30.41	1000.0	9.000	L1	10.
0.208000	41.21		63.29	22.08	1000.0	9.000	L1	10.
0.216000		22.18	52.97	30.80	1000.0	9.000	L1	10.
0.228000	39.19		62.52	23.33	1000.0	9.000	L1	10.
0.252000	38.68		61.69	23.01	1000.0	9.000	L1	10.
0.300000		12.83	50.24	37.41	1000.0	9.000	L1	10.
0.462000	30.38		56.66	26.28	1000.0	9.000	L1	10.
0.472000		22.45	46.48	24.03	1000.0	9.000	L1	10.
18.710000	32.28		60.00	27.72	1000.0	9.000	L1	11.
19.100000		26.00	50.00	24.00	1000.0	9.000	L1	11.

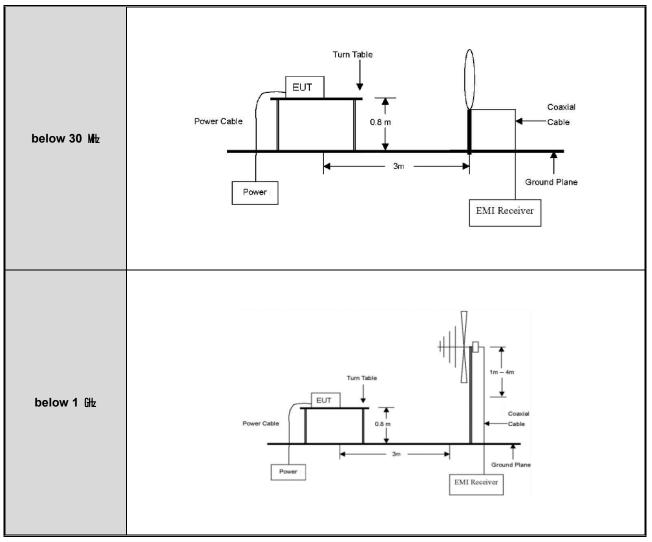
Test Report

Final Result										
Frequency	QuasiPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Line	Corr.		
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)	(ms)	(kHz)		(dB)		
0.153000	46.22		65.84	19.61	1000.0	9.000	N	10.5		
0.154000		24.54	55.78	31.24	1000.0	9.000	N	10.5		
0.164000		22.87	55.26	32.39	1000.0	9.000	N	10.5		
0.176000	44.25		64.67	20.42	1000.0	9.000	N	10.5		
0.188000		20.17	54.12	33.95	1000.0	9.000	N	10.4		
0.236000	38.38		62.24	23.85	1000.0	9.000	N	10.4		
0.252000		14.73	51.69	36.96	1000.0	9.000	N	10.4		
0.256000	34.78		61.56	26.78	1000.0	9.000	N	10.4		
0.434000	25.10		57.18	32.08	1000.0	9.000	N	10.5		
0.468000		16.66	46.55	29.89	1000.0	9.000	N	10.4		
19.126000		25.92	50.00	24.08	1000.0	9.000	N	11.7		
19.186000	32.72		60.00	27.28	1000.0	9.000	N	11.7		

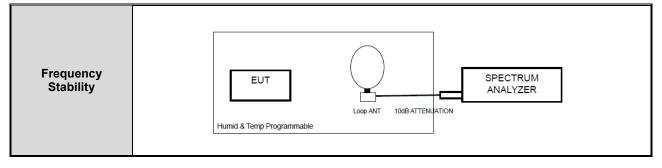
Test Repot No.: NW2112-F009

211-71, Geumgok-ro, Hwaseong-si, Gyeonggi-do, Korea 18511 www.nct.re.kr TEL: +82-31-323-6070 FAX: +82-31-323-6071

APPENDIX I


TEST SETUP

Test Repot No.: NW2112-F009


211-71, Geumgok-ro, Hwaseong-si, Gyeonggi-do, Korea 18511 www.nct.re.kr TEL: +82-31-323-6070 FAX: +82-31-323-6071

• Radiated Measurement

• Temp & Humid Chamber Measurement

Test Repot No.: NW2112-F009

211-71, Geumgok-ro, Hwaseong-si, Gyeonggi-do, Korea 18511 www.nct.re.kr TEL: +82-31-323-6070 FAX: +82-31-323-6071

APPENDIX II

TEST EQUIPMENT USED FOR TESTS

	Description	Manufacturer	Serial No.	Model No.	Cal. Date	Next Cal. Date
1	SPECTRUM ANALYZER	R&S	100617	FSP40	2021-03-09	2022-03-09
2	Power supply	GWInstek	EH120798	PST-3202	2021-03-09	2022-03-09
3	Humi./Baro/Temp. data recorder	Lutron	38420	MHB-382SD	2021-11-17	2022-11-17
4	Temperature & humidity cabinet	TERCHY	1060906	MHCB-64AZDA	2021-12-01	2022-12-01
5	LOOP-ANTENNA	Schwarzbeck	00124	FMZB1519 B	2021-06-01	2023-06-01
6	TRILOG Broadband Antenna	Schwarzbeck	01027	VULB 9168	2021-06-08	2023-06-08
7	LISN	Schwarzbeck	00984	NSLK 8127	2021-05-27	2022-05-27
8	EMI Test Receiver	R&S	102116	ESRP3	2021-05-27	2022-05-27