

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC165789

1 of 45 Page:

FCC Radio Test Report FCC ID: 2ARUI-7543

Original Grant

Report No. TB-FCC165789

American Exchange Time LLC **Applicant**

Equipment Under Test (EUT)

EUT Name Smart Band

7543 Model No.

Serial Model 7544, 7546, 7547, 7548, 7550, 7554, 7555, 7594, 7595, 7597, 8075,

No. 8076, 8077, 8078, 7754, 7755, 7756, 7757, 7758, 7759, 9027, 9028

Brand Name iTech Sport

2019-04-11 **Receipt Date**

2019-05-05 to 2019-05-14 **Test Date**

Issue Date 2019-05-18

Standards FCC Part 15: 2018, Subpart C(15.247)

Test Method ANSI C63.10: 2013

PASS Conclusions

In the configuration tested, the EUT complied with the standards specified above,

Test/Witness

Engineer

Engineer

Supervisor

Engineer

Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Fax: +86 75526509195 Tel: +86 75526509301

Page: 2 of 45

Contents

COI	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	
	1.8 Test Facility	9
2.	TEST SUMMARY	10
3.	TEST EQUIPMENT	11
4.	CONDUCTED EMISSION TEST	12
	4.1 Test Standard and Limit	
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	
	4.5 Test Da5ta	13
5.	RADIATED EMISSION TEST	14
	5.1 Test Standard and Limit	14
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 EUT Operating Condition	17
	5.5 Test Data	
6.	RESTRICTED BANDS REQUIREMENT	18
	6.1 Test Standard and Limit	18
	6.2 Test Setup	
	6.3 Test Procedure	18
	6.4 EUT Operating Condition	
	6.5 Test Data	
7.	BANDWIDTH TEST	20
	7.1 Test Standard and Limit	20
	7.2 Test Setup	20
	7.3 Test Procedure	20
	7.4 EUT Operating Condition	
	7.5 Test Data	20
8.	PEAK OUTPUT POWER TEST	2 1
	8.1 Test Standard and Limit	21
	8.2 Test Setup	21
	8.3 Test Procedure	21

Page: 3 of 45

	8.4 EUT Operating Condition	21
	8.5 Test Data	21
9.	POWER SPECTRAL DENSITY TEST	
	9.1 Test Standard and Limit	
	9.2 Test Setup	22
	9.3 Test Procedure	22
	9.4 EUT Operating Condition	22
	9.5 Test Data	22
10.	ANTENNA REQUIREMENT	23
	10.1 Standard Requirement	
	10.2 Antenna Connected Construction	
	10.3 Result	
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	24
ATT	ACHMENT B RADIATED EMISSION TEST DATA	26
ATT	ACHMENT C RESTRICTED BANDS REQUIREMENT TEST DATA	35
ATT	ACHMENT D BANDWIDTH TEST DATA	40
	ACHMENT E PEAK OUTPUT POWER TEST DATA	
	ACHMENT F POWER SPECTRAL DENSITY TEST DATA	

Page: 4 of 45

Revision History

Report No.	Version	Description	Issued Date
TB-FCC165789	Rev.01	Initial issue of report	2019-05-18
WORK WAR	100		TOO TO
B)	10:13	The same of the sa	
TODO S	TO TOP		6003
V N	0		
1000			TO TO
	con B	4000 TO	
		BB TOBB	
13		TOTAL GIVE	
			TUDY
	1033		
MIN TO THE REAL PROPERTY.	a Thomas		
			BY M

Page: 5 of 45

1. General Information about EUT

1.1 Client Information

Applicant : American Exchange Time LLC		
Address :		No.1441 Broadway 27th Floor, New York, NY 10018
Manufacturer : ShenZhen K		ShenZhen KY Technology Co., Ltd
Address	1	No.369, BaoTian 1st RD, TieGang Industrial Park, Xixiang Town, Baoan District,ShenZhen, PRC

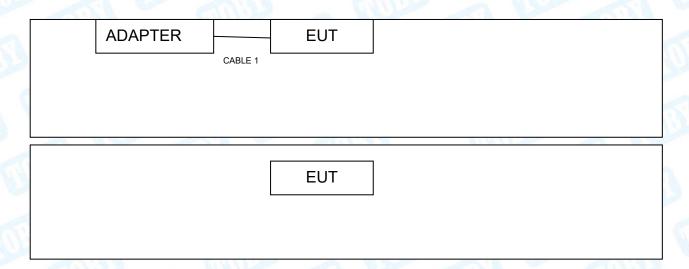
1.2 General Description of EUT (Equipment Under Test)

EUT Name	æ	Smart Band	Smart Band		
Models No.			7, 7548, 7550, 7554, 7555, 7594, 7595, 7597, 3, 7754, 7755, 7756, 7757, 7758, 7759, 9027,		
Model Difference	•	All these models are thousand different is Color of	e same PCB, layout and electrical circuit, the the bands.		
(1)3 ×	C	Operation Frequency:	Bluetooth 4.0(GFSK): 2402MHz~2480MHz		
		Number of Channel:	Bluetooth 4.0(GFSK): 40 channels see note(3)		
Product	A	RF Output Power:	GFSK: -0.167dBm		
Description		Antenna Gain:	1dBi Internal Antenna		
CULT 3		Modulation Type:	GFSK		
631		Bit Rate of Transmitter:	1Mbps(GFSK)		
Power Rating	:	DC 5V 0.5A by USB Cal DC 3.7V by 40mAh Li-io			
Software Version		2600			
Hardware Version	:	V1.1			
Connecting I/O Port(S)		Please refer to the User's Manual			

Note:

This Test Report is FCC Part 15.247 for Bluetooth BLE, the test procedure follows the FCC KDB 558074 D01 DTS Means Guidance v05.

- (1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (2) Antenna information provided by the applicant.



Page: 6 of 45

(3) Channel List:

	11818				
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

1.3 Block Diagram Showing the Configuration of System Tested

Page: 7 of 45

1.4 Description of Support Units

Equipment Information				
Name	Model	FCC ID/VOC Manufacturer		Used "√"
ADAPTER	FJ-SW1202000U		1	$\sqrt{}$

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test				
Final Test Mode Description				
Mode 1	Charging+TX Mode			

For Radiated Test			
Final Test Mode	Description		
Mode 2	TX Mode		
Mode 3	TX Mode (Channel 00/19/39)		

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

BLE Mode: GFSK Modulation Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 8 of 45

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	8266_emi_test_tool_V1.5		
Frequency	2402 MHz	2440MHz	2480 MHz
BLE GFSK	0dbm	0dbm	0dbm

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
	Level Accuracy:	
Conducted Emission	9kHz~150kHz	±3.42 dB
	150kHz to 30MHz	±3.42 dB
Dedicted Emission	Level Accuracy:	14 CO dD
Radiated Emission	9kHz to 30 MHz	±4.60 dB
Dedicted Emission	Level Accuracy:	±4.40 dB
Radiated Emission	30MHz to 1000 MHz	±4.40 dB
Dedicted Emission	Level Accuracy:	14 20 dB
Radiated Emission	Above 1000MHz	±4.20 dB

Page: 9 of 45

1.8 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01. FCC Accredited Test Site Number: 854351.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 10 of 45

2. Test Summary

Standard Section		+1111	The days and	Damari
FCC IC		Test Item	Judgment	Remark
15.203		Antenna Requirement	PASS	N/A
15.207(a)	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A
15.205&15.247(d)	RSS-GEN 7.2.2	Band-Edge & Unwanted Emissions into Restricted Frequency	PASS	N/A
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	PASS	N/A
15.247(b)(3)	RSS 247 5.4 (4)	Conducted Max Output Power	PASS	N/A
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	PASS	N/A
15.205, 15.209&15.247(d)	RSS 247 5.5	Transmitter Radiated Spurious &Unwanted Emissions into Restricted Frequency	PASS	N/A

Note: N/A is an abbreviation for Not Applicable.

Page: 11 of 45

3. Test Equipment

					Cal. Due
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 18, 2018	Jul. 17, 2019
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 18, 2018	Jul. 17, 2019
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 18, 2018	Jul. 17, 2019
LISN	Rohde & Schwarz	ENV216	101131	Jul. 18, 2018	Jul. 17, 2019
Radiation Emission	n Test			-	
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 18, 2018	Jul. 17, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Jan. 27, 2019	Jan. 26, 2020
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Jan. 27, 2019	Jan. 26, 2020
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.03, 2019	Mar. 02, 2020
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.03, 2019	Mar. 02, 2020
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jan. 27, 2019	Jan. 26, 2020
Pre-amplifier	Sonoma	310N	185903	Mar.04, 2019	Mar. 03, 2020
Pre-amplifier	HP	8449B	3008A00849	Mar.03, 2019	Mar. 02, 2020
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.03, 2019	Mar. 02, 2020
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducte	ed Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 18, 2018	Jul. 17, 2019
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 15, 2018	Sep. 14, 2019
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 15, 2018	Sep. 14, 2019
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 15, 2018	Sep. 14, 2019
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 15, 2018	Sep. 14, 2019
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 15, 2018	Sep. 14, 2019
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 15, 2018	Sep. 14, 2019
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 15, 2018	Sep. 14, 2019

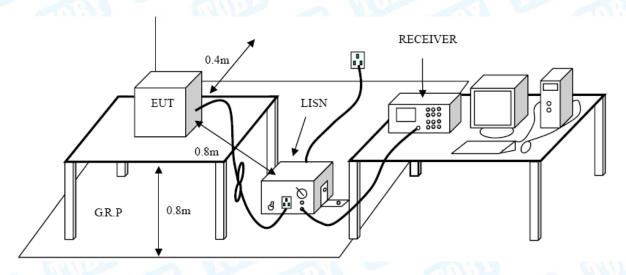
Page: 12 of 45

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit


Conducted Emission Test Limit

	Maximum RF Line	e Voltage (dBμV)
Frequency	Quasi-peak Level	Average Level
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 13 of 45

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Da5ta

Please refer to the Attachment A.

Page: 14 of 45

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.247(d)

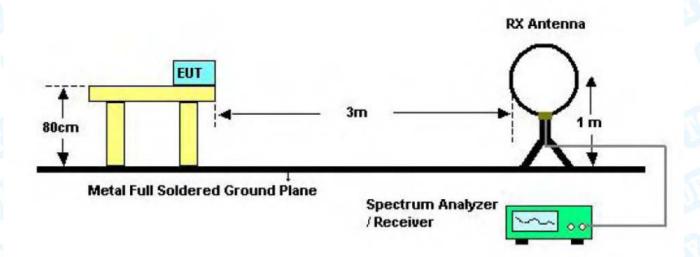
5.1.2 Test Limit

Radiated Emission Limits (9kHz~1000MHz)

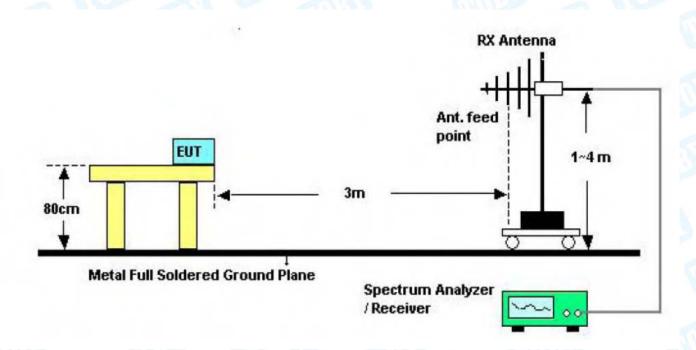
Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance Met	ers(at 3m)
(MHz)	Peak (dBuV/m)	Average (dBuV/m)
Above 1000	74	54

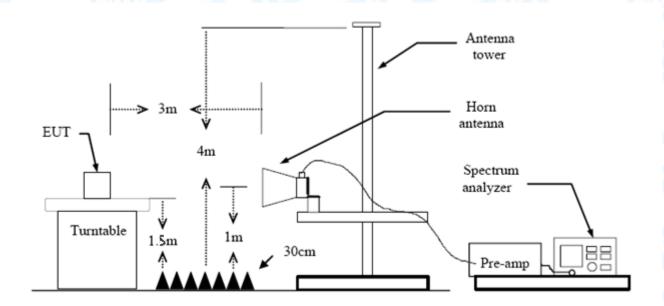

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)



Page: 15 of 45

5.2 Test Setup


Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 16 of 45

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

Page: 17 of 45

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

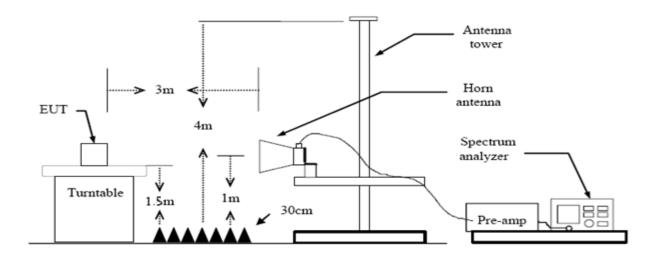
5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

Page: 18 of 45

6. Restricted Bands Requirement


6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.247(d) FCC Part 15.205

6.1.2 Test Limit

Restricted Frequency	Distance Mo	eters(at 3m)
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)
2310 ~2390	74	54
2483.5 ~2500	74	54

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector

Page: 19 of 45

mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

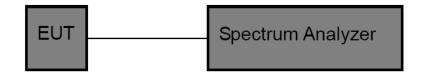
6.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment C.

Page: 20 of 45

7. Bandwidth Test


7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247 (a)(2)

7.1.2 Test Limit

FCC P	FCC Part 15 Subpart C(15.247)/RSS-247						
Test Item	Limit	Frequency Range(MHz)					
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5					

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

7.4 EUT Operating Condition

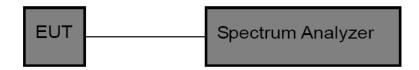
The EUT was set to continuously transmitting in each mode and low, middle and high channel for the test.

7.5 Test Data

Please refer to the Attachment D.

Page: 21 of 45

8. Peak Output Power Test


8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (b)(3)

8.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-247					
Test Item Limit Frequency Range(MHz					
Peak Output Power	1 Watt or 30 dBm	2400~2483.5			

8.2 Test Setup

8.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to section 9.1.1 of KDB 558074 D01 DTS Meas Guidance v05.

- (1) Set the RBW≥DTS Bandwidth
- (2) Set VBW≥3*RBW
- (3) Set Span≥3*RBW
- (4) Sweep time=auto
- (5) Detector= peak
- (6) Trace mode= maxhold.
- (7) Allow trace to fully stabilize, and then use peak marker function to determine the peak amplitude level.

8.4 EUT Operating Condition

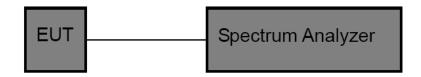
The EUT was set to continuously transmitting in the max power during the test.

8.5 Test Data

Please refer to the Attachment E.

Page: 22 of 45

9. Power Spectral Density Test


9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (e)

9.1.2 Test Limit

FCC Part 15 Subpart C(15.247)					
Test Item Limit Frequency Range(MHz)					
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5			

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz(5) Set the VBW to: 10 kHz
- (6) Detector: peak(7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

9.5 Test Data

Please refer to the Attachment F.

Page: 23 of 45

10. Antenna Requirement

10.1 Standard Requirement

10.1.1 Standard FCC Part 15.203

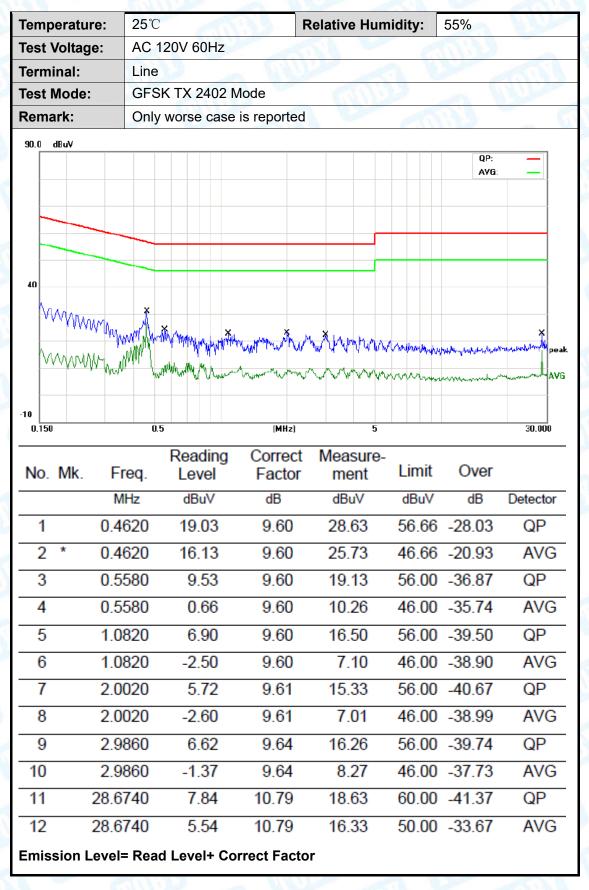
10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2 Antenna Connected Construction

The gains of the antenna used for transmitting is 1dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

10.3 Result


The EUT antenna is a Internal Antenna. It complies with the standard requirement.

Antenna Type	
⊠Permanent attached antenna	
Unique connector antenna	MILES TO THE
☐Professional installation antenna	THE REAL PROPERTY.

Page: 24 of 45

Attachment A-- Conducted Emission Test Data

Page: 25 of 45

Temperature	e: 25°	C		Relative H	umidity:	55%	TOP
Test Voltage	: AC	120V 60Hz	180	- (PH)	11/10		ART
Terminal:	Neu	utral	-	8.0	60	DIS	
Test Mode:	GF	SK TX 2402	Mode		J. C		
Remark:	Onl	y worse case	e is reported	(M) (1)		1 N	
90.0 dBuV							
						QP: AVG:	_
	+						
	+						
40	-						
MANA	, W(
k h o A M	Maryling	MARYANTIK M. J.	4 My JAM JAM JA	MARA	W. W. W. A.		×
MANAM	MA. MAMPINA	Allen Jan .	" WANT W	MANAMAN	/ INTO TO THE PARTY OF THE PART	Whilehaman	pe
1 1 1 4 1	C. IAMA	Hulling Mary	Jan Jany	Amaria	monument	Carlaga Marka Carlang Salaman Salaman	mandan A
	+ + +						
-10							
0.150	0.5	ī	(MHz)	5			30.000
0.150	0.5						30.000
0.150 No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	30.000
		Reading	Correct	Measure-		Over	30.000 Detector
	Freq.	Reading Level	Correct Factor	Measure- ment	Limit dBuV		
No. Mk.	Freq. MHz 0.1548	Reading Level dBuV 23.05	Correct Factor dB 9.64	Measure- ment dBuV 32.69	dBuV 65.73	dB -33.04	Detector
No. Mk.	Freq. MHz 0.1548 0.1548	Reading Level dBuV 23.05 7.46	Correct Factor dB 9.64 9.64	Measure- ment dBuV 32.69 17.10	dBuV 65.73 55.73	dB -33.04 -38.63	Detector QP AVG
No. Mk. 1 2 3	Freq. MHz 0.1548 0.1548 0.4620	Reading Level dBuV 23.05 7.46 20.65	Correct Factor dB 9.64 9.64 9.58	Measure- ment dBuV 32.69 17.10 30.23	dBuV 65.73 55.73 56.66	dB -33.04 -38.63 -26.43	Detector QP AVG QP
No. Mk. 1 2 3 4 *	Freq. MHz 0.1548 0.1548 0.4620 0.4620	Reading Level dBuV 23.05 7.46 20.65 13.25	Correct Factor dB 9.64 9.64 9.58 9.58	Measure- ment dBuV 32.69 17.10 30.23 22.83	dBuV 65.73 55.73 56.66 46.66	dB -33.04 -38.63 -26.43 -23.83	Detector QP AVG QP AVG
No. Mk. 1 2 3	Freq. MHz 0.1548 0.1548 0.4620	Reading Level dBuV 23.05 7.46 20.65	Correct Factor dB 9.64 9.64 9.58	Measure- ment dBuV 32.69 17.10 30.23	dBuV 65.73 55.73 56.66 46.66	dB -33.04 -38.63 -26.43	Detector QP AVG QP
No. Mk. 1 2 3 4 *	Freq. MHz 0.1548 0.1548 0.4620 0.4620	Reading Level dBuV 23.05 7.46 20.65 13.25	Correct Factor dB 9.64 9.64 9.58 9.58	Measure- ment dBuV 32.69 17.10 30.23 22.83	dBuV 65.73 55.73 56.66 46.66 56.00	dB -33.04 -38.63 -26.43 -23.83	Detector QP AVG QP AVG
No. Mk. 1 2 3 4 * 5	Freq. MHz 0.1548 0.1548 0.4620 0.4620 1.1300	Reading Level dBuV 23.05 7.46 20.65 13.25 10.10	Correct Factor dB 9.64 9.64 9.58 9.58	Measure- ment dBuV 32.69 17.10 30.23 22.83 19.69	dBuV 65.73 55.73 56.66 46.66 56.00 46.00	dB -33.04 -38.63 -26.43 -23.83 -36.31	Detector QP AVG QP AVG
No. Mk. 1 2 3 4 * 5 6 7	Freq. MHz 0.1548 0.1548 0.4620 0.4620 1.1300 1.1300 1.6380	Reading Level dBuV 23.05 7.46 20.65 13.25 10.10 2.81 8.78	Correct Factor dB 9.64 9.64 9.58 9.58 9.59 9.59	Measure- ment dBuV 32.69 17.10 30.23 22.83 19.69 12.40 18.38	bimit dBuV 65.73 55.73 56.66 46.66 56.00 46.00 56.00	dB -33.04 -38.63 -26.43 -23.83 -36.31 -33.60 -37.62	Detector QP AVG QP AVG QP AVG
No. Mk. 1 2 3 4 * 5 6 7 8	Freq. MHz 0.1548 0.1548 0.4620 0.4620 1.1300 1.1300 1.6380 1.6380	Reading Level dBuV 23.05 7.46 20.65 13.25 10.10 2.81 8.78 1.74	Correct Factor dB 9.64 9.64 9.58 9.58 9.59 9.60 9.60	Measure- ment dBuV 32.69 17.10 30.23 22.83 19.69 12.40 18.38 11.34	bimit dBuV 65.73 55.73 56.66 46.66 56.00 46.00 46.00	dB -33.04 -38.63 -26.43 -23.83 -36.31 -33.60 -37.62 -34.66	Detector QP AVG QP AVG QP AVG
No. Mk. 1 2 3 4 * 5 6 7 8 9	Freq. MHz 0.1548 0.1548 0.4620 0.4620 1.1300 1.1300 1.6380 1.6380 3.0300	Reading Level dBuV 23.05 7.46 20.65 13.25 10.10 2.81 8.78 1.74 8.06	Correct Factor dB 9.64 9.64 9.58 9.59 9.59 9.60 9.60 9.67	Measure- ment dBuV 32.69 17.10 30.23 22.83 19.69 12.40 18.38 11.34 17.73	Limit dBuV 65.73 55.73 56.66 46.66 56.00 46.00 46.00 56.00	dB -33.04 -38.63 -26.43 -23.83 -36.31 -33.60 -37.62 -34.66 -38.27	Detector QP AVG QP AVG QP AVG QP AVG
No. Mk. 1 2 3 4 * 5 6 7 8	Freq. MHz 0.1548 0.1548 0.4620 0.4620 1.1300 1.1300 1.6380 1.6380	Reading Level dBuV 23.05 7.46 20.65 13.25 10.10 2.81 8.78 1.74	Correct Factor dB 9.64 9.64 9.58 9.58 9.59 9.60 9.60	Measure- ment dBuV 32.69 17.10 30.23 22.83 19.69 12.40 18.38 11.34	Limit dBuV 65.73 55.73 56.66 46.66 56.00 46.00 46.00 56.00	dB -33.04 -38.63 -26.43 -23.83 -36.31 -33.60 -37.62 -34.66	Detector QP AVG QP AVG QP AVG

Emission Level= Read Level+ Correct Factor

9.69

4.49

10.79

10.79

20.48

15.28

28.6740

28.6740

11

12

QP

AVG

60.00 -39.52

50.00 -34.72

Page: 26 of 45

Attachment B-- Radiated Emission Test Data

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

Below the permissible value has no need to be reported.

30MHz~1GHz

	: 25°C	-	diffusion 1	Relative Hun	nidity:	55%	M
Test Voltage:	AC 120)V 60Hz		MINIS		THE STATE OF	
Ant. Pol.	Horizor	ntal		Contract of			67
Test Mode:	GFSK.	TX 2402 Mo	de				
Remark:	Only w	orse case is	reported	1133		CHIE	
80.0 dBuV/m							
30	3		4 5 6 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	300	(RF)FCC	15C 3M Radiati Margin	-6 dB
	50 60 70						
30.000 40	50 60 70		(, ,	300	400		
		Reading Level	Correct Factor	Measure- ment	Limit	Over	
30.000 40	Freq.	Level	Correct Factor	Measure- ment	Limit dBuV/m	Over	Detector
No. Mk	. Freq.	Level	Correct Factor	Measure- ment	Limit	Over	QP
No. Mk	Freq.	Level	Correct Factor	Measure- ment	Limit dBuV/m	Over	
No. Mk	Freq. MHz 32.4059	dBuV 28.01	Correct Factor dB/m -14.81	Measure- ment dBuV/m 13.20	Limit dBuV/m 40.00	Over dB -26.80	QP
No. Mk	MHz 32.4059 38.0783	Level dBuV 28.01 28.41	Correct Factor dB/m -14.81 -18.21	Measure- ment dBuV/m 13.20 10.20	Limit dBuV/m 40.00 40.00	Over dB -26.80 -29.80	QP QP
No. Mk	32.4059 38.0783 50.4089	Level dBuV 28.01 28.41 37.49	Correct Factor dB/m -14.81 -18.21 -23.29	Measure- ment dBuV/m 13.20 10.20 14.20	Limit dBuV/m 40.00 40.00 40.00	Over dB -26.80 -29.80 -25.80	QP QP QP

Page: 27 of 45

Temperature:	25℃		R	elative Hum	idity:	55%	
Test Voltage:	AC 120	V 60Hz					
Ant. Pol.	Vertical	17.00	1	11	(A)	11:12	
Test Mode:	GFSK 1	TX 2402 Mo	de		1 6		
Remark:	Only wo	orse case is	reported	THID			
80.0 dBuV/m							
					(RF)FC	C 15C 3M Radiat	ion
						Margin	-6 dB
30				Τ' Ι			
*							Mar
2 3			5		- MM	May May May 18 44	MANAGE
N WIN JIM	Marie !	M/n	WWW	hammend apple and	Married		
	, 404	WWW.WVVV	190				
20							
30.000 40 5	0 60 70		(MHz)	300	400	500 600 70	0 1000.0
No. Mk.	Freq.	Reading Level	Correct Factor	Measure-	Limit	Over	
140. WIK.	MHz	dBuV		ment dBuV/m	dBuV/m		Detector
1 * 3	2.4059	39.71	dB/m -14.81	24.90	40.00	-15.10	QP
	8.8878	33.09	-18.59	14.50	40.00	-25.50	QP
	5.3755	35.50	-21.70	13.80	40.00	-26.20	QP
4 5	0.4089	38.79	-23.29	15.50	40.00	-24.50	QP
	31.7577	33.94	-22.44	11.50	43.50	-32.00	QP
5 13	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						

Page: 28 of 45

Above 1GHz

Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Horizontal	Horizontal				
Test Mode:	GFSK Mode TX 2402 MHz					
Remark:	No report for the emission which more than 10 dB below the					
	prescribed limit.	The carrie				

N	lo.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	,	*	4803.652	29.64	14.43	44.07	54.00	-9.93	AVG
2			4803.760	40.97	14.43	55.40	74.00	-18.60	peak

Page: 29 of 45

Temperature:	25 ℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V	DC 3.7V				
Ant. Pol.	Vertical	Vertical				
Test Mode:	GFSK Mode TX 240	02 MHz				
Remark:	No report for the em	No report for the emission which more than 10 dB below the				
	prescribed limit.		33			

No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.718	41.66	14.43	56.09	74.00	-17.91	peak
2	×	4803.718	28.25	14.43	42.68	54.00	-11.32	AVG

Page: 30 of 45

Temperature:	25℃	Relative Humidity:	55%		
Test Voltage:	DC 3.7V	MULL			
Ant. Pol.	Horizontal				
Test Mode:	GFSK Mode TX 2440 MHz	0			
Remark:	No report for the emission which more than 10 dB below the				
	prescribed limit.		13 - 6		

N	lo. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4881.068	43.23	14.91	58.14	74.00	-15.86	peak
2	*	4881.068	28.49	14.91	43.40	54.00	-10.60	AVG

Page: 31 of 45

Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V	THE PARTY OF THE P	1			
Ant. Pol.	Vertical	Vertical				
Test Mode:	GFSK Mode TX 2440 MHz	GFSK Mode TX 2440 MHz				
Remark:	No report for the emission v	No report for the emission which more than 10 dB below the				
	prescribed limit.		13			

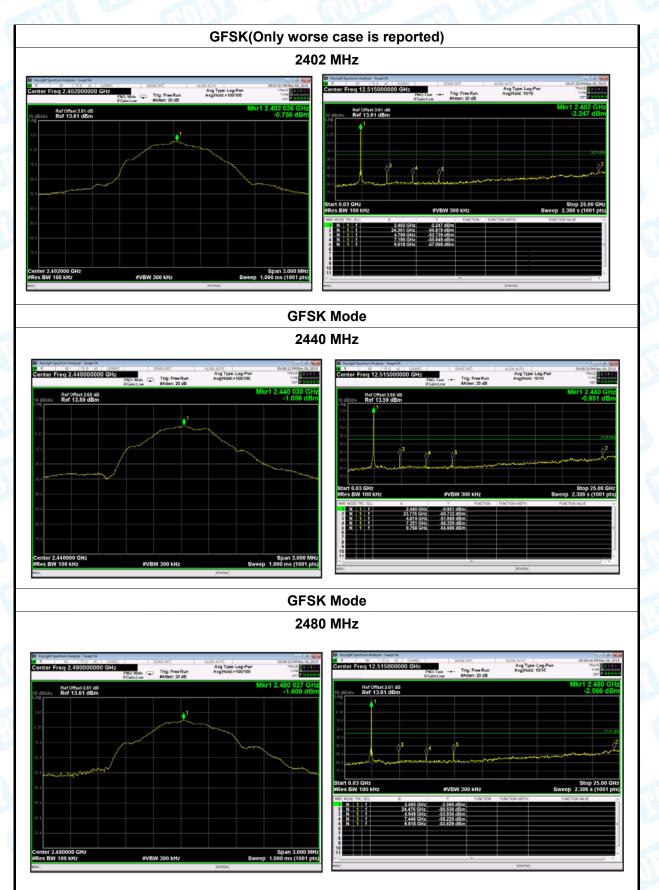
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4878.722	42.62	14.89	57.51	74.00	-16.49	peak
2	*	4880.030	28.58	14.89	43.47	54.00	-10.53	AVG

Page: 32 of 45

Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Horizontal	-lorizontal					
Test Mode:	GFSK Mode TX 2480 MHz	GFSK Mode TX 2480 MHz					
Remark:	No report for the emission w	No report for the emission which more than 10 dB below the					
	prescribed limit.						

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4960.072	43.11	15.39	58.50	74.00	-15.50	peak
2	*	4960.072	29.82	15.39	45.21	54.00	-8.79	AVG

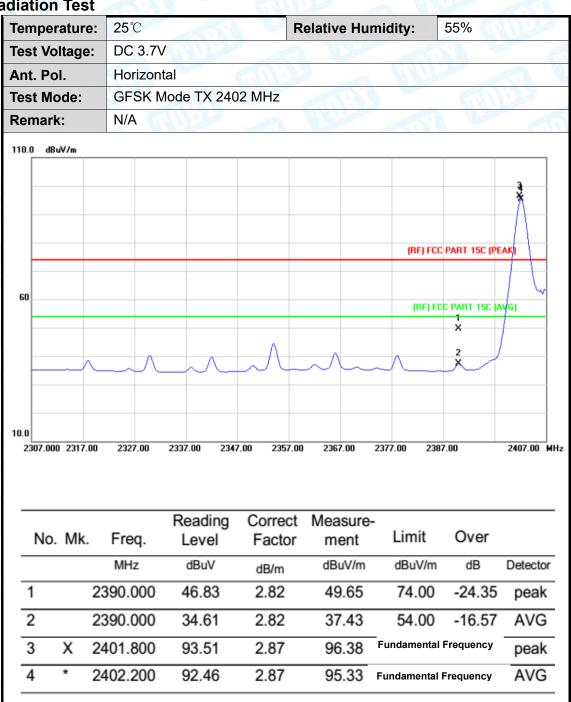
Page: 33 of 45


Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V	OC 3.7V				
Ant. Pol.	Vertical					
Test Mode:	GFSK Mode TX 2480 MHz	O				
Remark:	No report for the emission which more than 10 dB below the					
	prescribed limit.					

No	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4959.976	43.54	15.39	58.93	74.00	-15.07	peak
2		4959.994	29.87	15.39	45.26	74.00	-28.74	peak

Page: 34 of 45

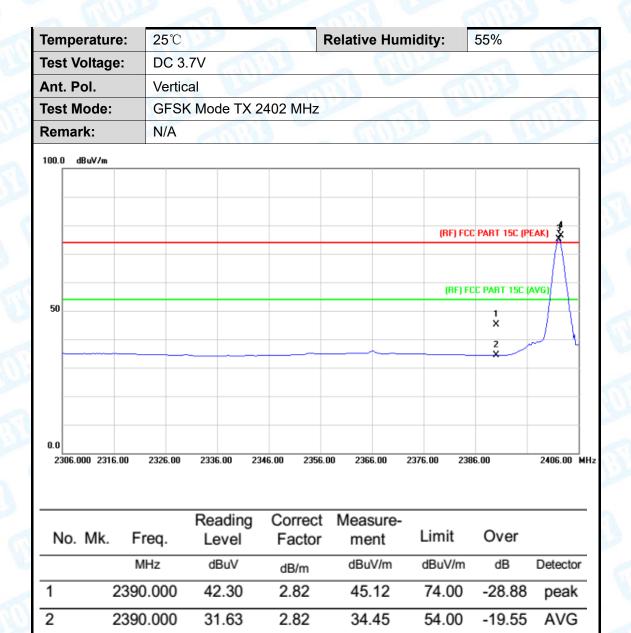
Conducted Emission Test Data



Page: 35 of 45

C-- Restricted Bands Requirement **Attachment** and **Band-edge Test Data**

(1) Radiation Test



Page: 36 of 45

Fundamental Frequency

Fundamental Frequency

Emission Level= Read Level+ Correct Factor

72.17

73.62

2.87

2.87

75.04

76.49

2402.200

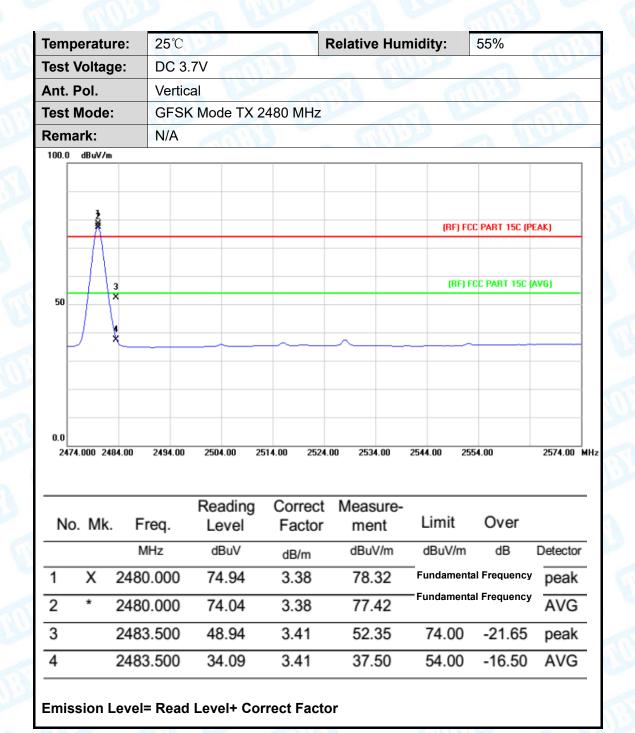
2402.600

3

Х

AVG

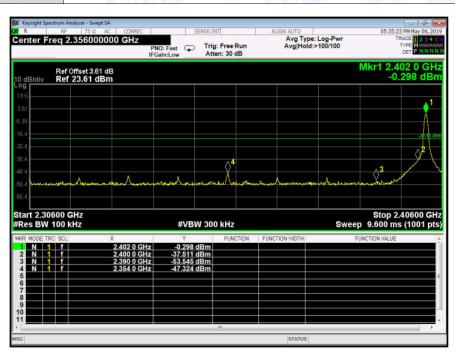
peak



Page: 37 of 45

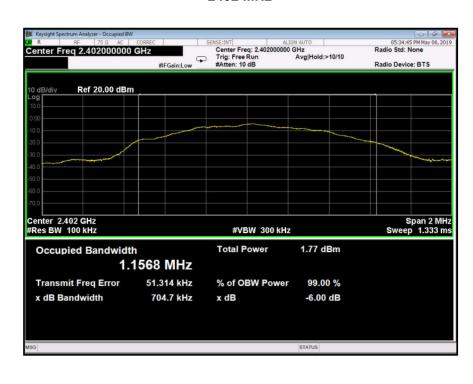
Temperature:	25℃		Relative H	lumidity:	55%		
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	GFSK Mod	e TX 2480 MH	Z	1 600		UIF.	
Remark:	N/A		THE PERSON NAMED IN	امر الا	FIR		
10.0 dBuV/m 12 X 3 X 10.0 2474.000 2484.00	2494.00 2504.00	0 2514.00 2524	.00 2534.00 2		ART 15C (PEAK)	74.00 MH	
No. Mk.		iding Corre		- Limit	Over		
	MHz dB	uV dB/m	dBuV/m	dBuV/m	dB	Detec	
1 X 247	79.600 89	.92 3.38	93.30	— Fundamental F	requency	pea	
2 * 248	30.000 88	.92 3.38	92.30	– Fundamental Fr	requency	AV	
3 248	33.500 63	.62 3.41	67.03	74.00	-6.97	pea	
4 248	33.500 46	.38 3.41	49.79	54.00	-4.21	AV	

Page: 38 of 45



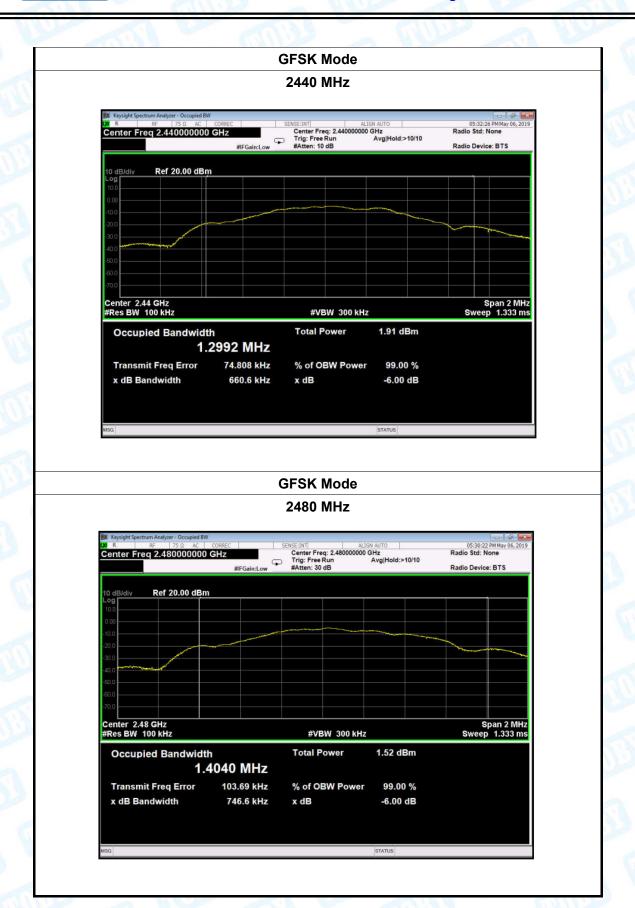
Page: 39 of 45

(2) Conducted Test



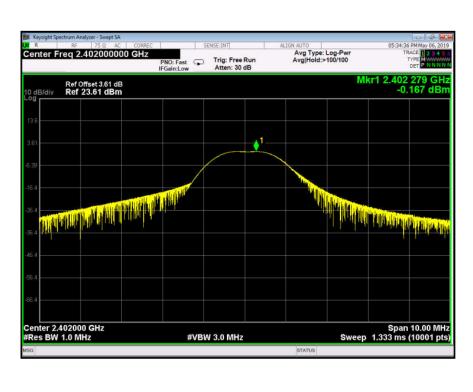
Page: 40 of 45

Attachment D-- Bandwidth Test Data


Temperature:	25℃		Relative Humidity:	55%	
Test Voltage:	DC 3	.7V		7:39	
Test Mode:	GFS	K TX Mode			
Channel frequency		6dB Bandwidth	B Bandwidth 99% Bandwidth		
(MHz)		(kHz)	(kHz)	(kHz)	
2402		704.7	1156.8		
2440		660.6	1299.2	>=500	
2480		746.5	1404.0	-	

GFSK Mode

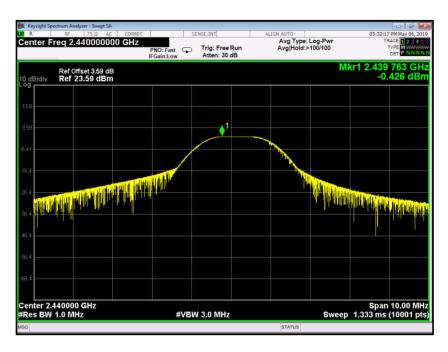
Page: 41 of 45

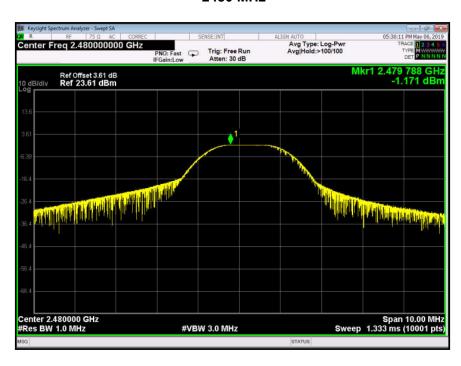


42 of 45 Page:

Attachment E-- Peak Output Power Test Data

Temperature:	25 [°] C Relative Humidity:			55%		
Test Voltage:	DC 3.7V					
Test Mode:	GFSK TX Mode					
Channel frequency (MHz)		Test Result (dBm)		Limit (dBm)		
2402		-0.1	167			
2440 2480		-0.4	126	30		
		-1.171				
		GFSK	Mode			

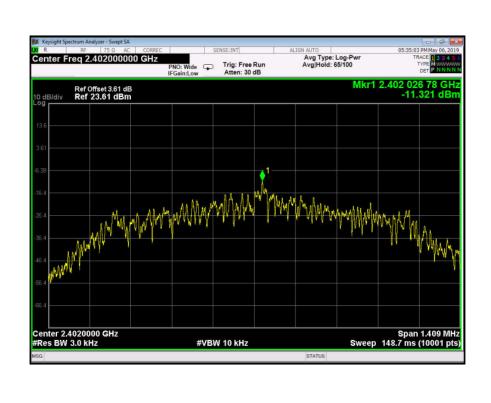



Page: 43 of 45

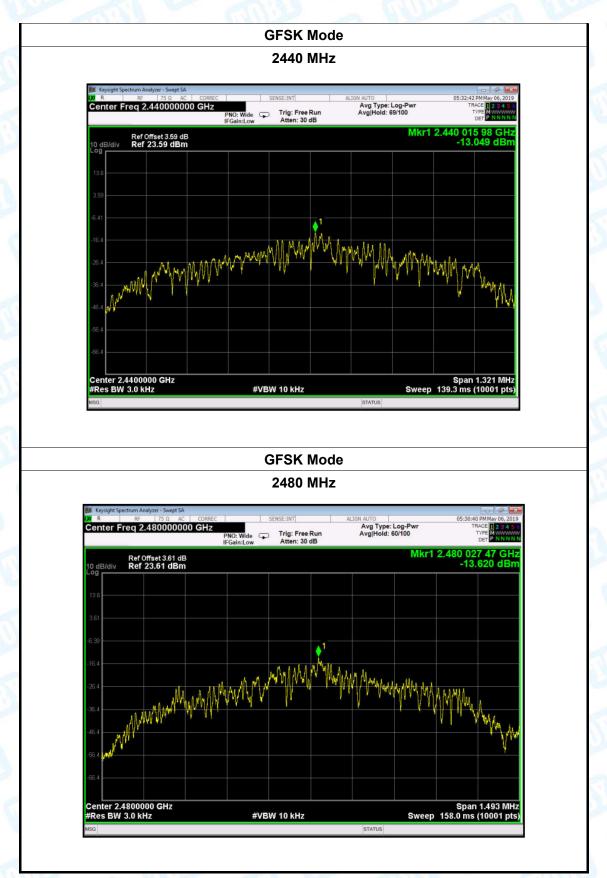
GFSK Mode

2440 MHz

GFSK Mode



44 of 45 Page:


Attachment F-- Power Spectral Density Test Data

Temperature:	25℃		Relative Humidity: 55%			%	
Test Voltage:	DC 3.7V						
Test Mode:	GFSK TX	Mode		aW		100	
Channel Frequency		Power D	ensity	Limit		Result	
(MHz)		(dBm/3	kHz)	(dBm/3kHz)		Resuit	
2402		-11.3	21				
2440 2480		-13.0	49	8 PAS		PASS	
		-13.620					
		GESK I	/lode				

Page: 45 of 45

----END OF REPORT-----