TEST REPORT

Reference No	WTX23X05111880W001
FCC ID	2ARTX-LT108
Applicant	LAVA International Limited
Address	A-56, Sector-64, Gautam Buddha Nagar, Noida, Uttar Pradesh, 201301
Manufacturer	LAVA International Limited
Address	A-154D, Sector-63, Gautam Buddha Nagar, Noida, Uttar Pradesh, 201301
Product Name	Tablet
Model No	LT108
Standards	FCC Part 22H, FCC Part 24E
Date of Receipt sample :	2023-05-23
Date of Test	2023-05-23 to 2023-06-08
Date of Issue	2023-06-08
Test Report Form No:	WTX_Part 22_Part 24_Part 27W
Test Result	Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of approver.

Prepared By:

Waltek Testing Group (Shenzhen) Co., Ltd.

Address: 1/F., Room 101, Building 1, Hongwei Industrial Park, Liuxian 2nd Road, Block 70 Bao'an District, Shenzhen, Guangdong, China Tel.: +86-755-33663308 Fax.: +86-755-33663309 Email: sem@waltek.com.cn

Tested by:

Jushan chen

Dashan Chen

Approved by:

Silin Chen

Silin Chen

TABLE OF CONTENTS

1. GENERAL INFORMATION	4
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
1.2 TEST STANDARDS	
1.3 Test Methodology	
1.4 Test Facility	
1.5 EUT SETUP AND TEST MODE 1.6 Measurement Uncertainty	
1.7 TEST EQUIPMENT LIST AND DETAILS	
2. SUMMARY OF TEST RESULTS	
3. RF OUTPUT POWER	
3.1 STANDARD APPLICABLE	
3.2 TEST PROCEDURE	
3.3 SUMMARY OF TEST RESULTS/PLOTS	
4. PEAK-TO-AVERAGE RATIO (PAR) OF TRANSMITTER	
4.1 Standard Applicable	
4.2 Test Procedure	
4.3 SUMMARY OF TEST RESULTS	
5. EMISSION BANDWIDTH	
5.1 Standard Applicable	
5.2 Test Procedure	
5.3 SUMMARY OF TEST RESULTS/PLOTS	
6. OUT OF BAND EMISSIONS AT ANTENNA TERMINAL	
6.1 STANDARD APPLICABLE	
6.2 Test Procedure 6.3 Summary of Test Results/Plots	
7. SPURIOUS RADIATED EMISSIONS	-
7.1 STANDARD APPLICABLE	
7.1 STANDARD APPLICABLE 7.2 TEST PROCEDURE	
7.3 SUMMARY OF TEST RESULTS/PLOTS	
8. FREQUENCY STABILITY	
8.1 Standard Applicable	
8.2 Test Procedure	
8.3 SUMMARY OF TEST RESULTS/PLOTS	
9. MODULATION CHARACTERISTICS	
9.1 STANDARD APPLICABLE	
9.2 Test Procedure 9.3 Summary of Test Results/Plots	
APPENDIX PHOTOGRAPHS	

Report version

Version No.	Date of issue	Description
Rev.00	2023-06-08	Original
/	/	/

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

General Description of EUT:		
Product Name:	Tablet	
Trade Name:	LAVA	
Model No.:	LT108	
Adding Model(s):	LT108A, LT108B	
Rated Voltage:	DC3.8V	
Battery:	7000mAh	
Adapter Model:	1	

Note: The Antenna Gain is provided by the customer and can affect the validity of results.

The test data is gathered from a production sample provided by the manufacturer. The appearance of others models listed in the report is different from main-test model LT108, but the circuit and the electronic construction do not change, declared by the manufacturer.

Technical Characteristics of EUT:		
2G		
Support Networks:	GSM, GPRS, EDGE	
Support Band:	GSM850/PCS1900	
Linlink Fraguency	GSM/GPRS/EDGE 850: 824~849MHz	
Uplink Frequency:	GSM/GPRS/EDGE 1900: 1850~1910MHz	
Downlink Fraguancy:	GSM/GPRS/EDGE 850: 869~894MHz	
Downlink Frequency:	GSM/GPRS/EDGE 1900: 1930~1990MHz	
Max RF Output Power:	GSM850: 32.47dBm, GSM1900: 30.15dBm	
	EDGE850: 27.00dBm, EDGE1900: 26.45dBm	
Type of Emission:	GSM850: 248KGXW, GSM1900: 246KGXW	
Type of Emission:	EDGE850: 249KG7W, EDGE1900: 248KG7W	
Type of Modulation:	GMSK, 8PSK	
Type of Antenna:	FPC Antenna	
Antenna Gain:	GSM850: -1.7dBi; GSM1900: 1.56dBi	
GPRS/EDGE Class:	Class 12	

1.2 Test Standards

The tests were performed according to following standards:

FCC Rules Part 2: Frequency Alloca-Tions and Radio Treaty Mat-Ters; General Rules and Reg-Ulations. **FCC Rules Part 22**: Private Land Mobile Radio Services.

FCC Rules Part 24: Public Mobile Services.

<u>TIA/EIA 603 E March 2016:</u> Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

ANSI C63.26-2015: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

KDB 971168 D01 Power Meas License Digital Systems v03r01: Measurement Guidance for Certification of Licensed Digital Transmitters.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with TIA/EIA 603 E/ KDB 971168/ ANSI C63.26 The equipment under test (EUT) was configured to measure its highest possible emission level. The test modes were adapted accordingly in reference to the Operating Instructions.

1.4 Test Facility

Address of the test laboratory

Laboratory: Waltek Testing Group (Shenzhen) Co., Ltd. Address: 1/F., Room 101, Building 1, Hongwei Industrial Park, Liuxian 2nd Road, Block 70 Bao'an District, Shenzhen, Guangdong, China

FCC – Registration No.: 125990

Waltek Testing Group (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is mai ntained in our files. The Designation Number is CN5010, and Test Firm Registration Number is 125990.

Industry Canada (IC) Registration No.: 11464A

The 3m Semi-anechoic chamber of Waltek Testing Group (Shenzhen) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 11464A and the CAB identifier is CN0057.

1.5 EUT Setup and Test Mode

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, and to measure its highest

F				
Test Mode List				
Test Mode	Description	Remark		
TM1	GSM 850	Low, Middle, High Channels		
TM2	GPRS 850	Low, Middle, High Channels		
TM3	EDGE 850	Low, Middle, High Channels		
TM4	GSM 1900	Low, Middle, High Channels		
TM5	GPRS 1900	Low, Middle, High Channels		
TM6	EDGE 1900	Low, Middle, High Channels		

possible emissions level, more detailed description as follows:

esting Configure			
Support Band	Support Standard	Channel Frequency	Channel Number
GSM 850	GSM/GPRS/EDGE	824.2 MHz	128
		836.6 MHz	190
		848.8 MHz	251
		1850.2 MHz	512
PCS 1900	GSM/GPRS/EDGE	1880.0 MHz	661
		1909.8 MHz	810

Note: the transmitter has been tested on the communications mode of GSM, GPRS, EDGE, compliance test and record the worst case.

Test Conditions		
Temperature:	22~25 °C	
Relative Humidity:	50~55 %.	
ATM Pressure:	1019 mbar	

EUT Cable List and Detail	5		
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite
/	/	/	/

Special Cable List and Details			
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite
Earphone Cable	1.0	Unshielded	Without Ferrite
USB Cable	0.95	Shielded	With

Auxiliary Equipment List and Details			
Description	Manufacturer	Model	Serial Number
Notebook	Lenovo	TianYi 100-14IBD	PF0F4ABV
Adapter	Mediacom	BOS050200-02A	/

1.6 Measurement Uncertainty

Measurement uncertainty		
Parameter	Conditions	Uncertainty
RF Output Power	Conducted	±0.42dB
Occupied Bandwidth	Conducted	±1.5%
Frequency Stability	Conducted	2.3%
Transmitter Spurious Emissions	Conducted	±0.42dB
Transmitter Spurious Emissions	Radiated	30-200MHz ±4.52dB
		0.2-1GHz ±5.56dB
		1-6GHz ±3.84dB
		6-18GHz ±3.92dB

1.7 Test Equipment List and Details

Fixed asset Number	Description	Manufacturer	Model	Serial No.	Cal Date	Due. Date
WTXE1041A 1001	Communication Tester	Rohde & Schwarz	CMW500	148650	2023-02-25	2024-02-24
WTXE1022A 1002	GSM Tester	Rohde & Schwarz	CMU200	114403	2023-02-25	2024-02-24
WTXE1104A 1001	MXG Vector Signal Generator	Agilent	N5182A	MY474201 08	2023-02-25	2024-02-24
WTXE1104A 1002	DC Power Sup ply	Agilent	E3634A	MY400092 94	2023-02-25	2024-02-24
WTXE1104A 1003	EXG Analog Si gnal Generator	KEYSIGHT	N5173B	MY612528 92	2023-02-25	2024-02-24
WTXE1104A 1004	Spectrum Anal yzer	Rohde&Schwar z	FSV40-N	101559	2023-02-25	2024-02-24
WTXE1104A 1005-2	Band Reject Fil ter Group Below 1GHz	Tonscend	JS0806-F	23A806F0 658	2023-02-25	2024-02-24
WTXE1005A	Spectrum	Rohde &		836079/03		
1003	Analyzer	Schwarz	FSP30	5	2023-02-25	2024-02-24
WTXE1007A 1001	EMI Test Receiver	Rohde & Schwarz	ESVB	825471/00 5	2023-02-25	2024-02-24
WTXE1007A 1001	Amplifier	HP	8447F	2805A034 75	2023-02-25	2024-02-24
WTXE1010A 1007	Loop Antenna	Schwarz beck	FMZB 1516	9773	2021-03-20	2024-03-19
WTXE1010A 1006	Broadband Antenna	Schwarz beck	VULB9163	9163-333	2023-03-20	2026-03-19
Chamber A:	Above 1GHz					
WTXE1005A 1003	Spectrum Analyzer	Rohde & Schwarz	FSP30	836079/03 5	2023-02-25	2024-02-24
WTXE1007A 1001	EMI Test Receiver	Rohde & Schwarz	ESVB	825471/00 5	2023-02-25	2024-02-24
WTXE1065A 1001	Amplifier	C&D	PAP-1G18	14918	2023-02-25	2024-02-24
WTXE1010A 1005	Horn Antenna	ETS	3117	00086197	2021-03-19	2024-03-18
WTXE1010A 1010	DRG Horn Antenna	A.H. SYSTEMS	SAS-574	571	2021-03-19	2024-03-18
WTXE1003A 1001	Pre-amplifier	Schwarzbeck	BBV 9721	9721-031	2023-02-25	2024-02-24

Waltek Testing Group (Shenzhen) Co., Ltd. Http://www.waltek.com.cn

WTXE1004A	Spectrum	Rohde &	FSP40	100612	2023-02-25	2024-02-24			
1-001	Analyzer	Schwarz		100012	2020 02 20	20210221			
Chamber B:Below 1GHz									
WTXE1010A 1006	Trilog Broadband Antenna	Schwarz beck	VULB9163(B)	9163-635	2021-04-09	2024-04-08			
WTXE1038A 1001	Amplifier	Agilent	8447D	2944A101 79	2023-02-25	2024-02-24			
WTXE1001A	EMI Test	Rohde &	ESPI	101391	2022 02 25	2024 02 24			
1002	Receiver	Schwarz	ESPI	101391	2023-02-25	2024-02-24			
Chamber C	Below 1GHz								
WTXE1093A	EMI Test	Rohde &		100404	2022 02 25	2024 02 24			
1001	Receiver	Schwarz	ESIB 26	100401	2023-02-25	2024-02-24			
WTXE1010A 1013-1	Trilog Broadband Antenna	Schwarz beck	VULB 9168	1194	2021-05-28	2024-05-27			
WTXE1010A 1007	Loop Antenna	Schwarz beck	FMZB 1516	9773	2021-03-20	2024-03-19			
WTXE1007A 1002	Amplifier	HP	8447F	2944A038 69	2023-02-25	2024-02-24			
Chamber C	: Above 1GHz								
WTXE1093A	EMI Test	Rohde &	ESIB 26	100401	2023-02-25	2024-02-24			
1001	Receiver	Schwarz		100401	2023-02-23	2024-02-24			
WTXE1103A	Horn Antenna	POAM	RTF-11A	LP228060	2023-03-10	2026-03-09			
1005		FUAM		221	2023-03-10	2020-03-09			
WTXE1103A 1006	Amplifier	Tonscend	TAP01018050	AP22E806 235	2023-02-25	2024-02-24			

Software List							
Description Manufacturer Model Version							
EMI Test Software	Fored		DA 0244				
(Radiated Emission)*	Farad	EZ-EMC	RA-03A1				

*Remark: indicates software version used in the compliance certification testing.

2. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test Item	Result
§22.913(a), §24.232(c), §27.50(d)	RF Output Power	Compliant
§24.51, §27.50	Peak-to-average Ratio (PAR) of Transmitter	Compliant
§22.917(b), §24.238(b), §27.53	Emission Bandwidth	Compliant
§22.917(a), §24.238(a), §27.53(h)	Spurious Emissions at Antenna Terminal	Compliant
§22.917(a), §24.238(a), §27.53(h)	Spurious Radiation Emissions	Compliant
§22.917(a), §24.238(a), §27.53(h)	Out of Band Emissions	Compliant
§22.355, §24.235, §27.54	Frequency Stability	Compliant

3. RF Output Power

3.1 Standard Applicable

According to §22.913(a)(2), the ERP of mobile and portable stations transmitters and auxiliary test transmitters must not exceed 7 Watts.


According to §24.232(c), mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

According to §27.50(d)(4), fixed, mobile, and portable (hand-held) stations operating in the 1710-1755MHz band and mobile and portable stations operating in the 1695-1710MHz and 1755-1780MHz bands are limited to 1 watt EIRP.

3.2 Test Procedure

Conducted output power test method:

Universal Radio Communication Tester

Radiated power test method:

1. The setup of EUT is according with per ANSI/TIA Standard 603E and ANSI C63.26 measurement procedure.

- 2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
- 3. The frequency range up to tenth harmonic of the fundamental frequency was investigated.
- 4. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

3.3 Summary of Test Results/Plots

> Max. Radiated Power

Mode	Channel	Antenna Polar	ERP (dBm)	Limit (dBm)	Result
	400	V	28.65		
	128	Н	20.74		Deve
COMOSO	100	V	28.43	20.45	
GSM850	190	Н	20.19	<38.45	Pass
	054	V	28.56		
	251	Н	20.64		
	128	V	28.75		
	120	Н	20.61	- <38.45	Pass
CDDC050	190	V	27.98		
GPRS850		Н	19.86		
	054	V	28.64		
	251	Н	20.08		
	128	V	28.79		
	128	Н	20.45		
	100	V	28.56	-29.45	Daga
EGPRS850	190	Н	20.19	<38.45	Pass
	251	V	28.47		
	201	Н	20.14		

Mode	Channel	Antenna Polar	EIRP (dBm)	Limit (dBm)	Result
	512	V	28.94		
	512	Н	20.63		Pass
PCS1900	661	V	29.06	<33.00	
PC31900	001	Н	21.14	<33.00	Fass
	810	V	29.13		
	010	Н	21.32		
	512	V	28.75		
	512	Н	20.62	- <33.00	Pass
GPRS1900	661	V	28.64		
GFR31900		Н	20.11		
	810	V	28.57		
	010	Н	20.43		
	512	V	28.92		
	512	Н	20.32		
EGPRS1900	661	V	29.06	<33.00	Page
	001	Н	21.08	<33.00	Pass
	810	V	28.87		
	010	Н	20.65		

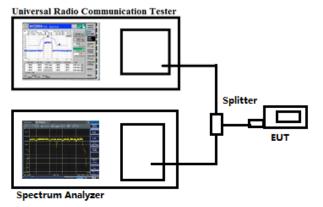
> Max. Conducted Power (Average power)

Please refer to Appendix A

4. Peak-to-average Ratio (PAR) of Transmitter

4.1 Standard Applicable

According to §24.232(d), power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51, in measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13dB.


According to §27.50(B), the peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13dB. The PAPR measurements should be made using either an instrument with complementary cumulative distribution function (CCDF) capabilities to determine that PAPR will not exceed 13dB for more than 0.1 percent of the time or other Commission approved procedure. The measurement must be performed using a signal corresponding to the highest PAPR expected during periods of continuous transmission.

4.2 Test Procedure

According with KDB 971168

- 1. The signal analyzer's CCDF measurement profile is enabled.
- 2. Frequency = carrier center frequency.
- 3. Measurement BW > Emission bandwidth of signal.
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve.
- 5. The measurement interval was set depending on the type of signal analyzed. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms. For burst transmissions, the spectrum analyzer is set to use an internal " RF Burst" trigger that is synced with an incoming pulse and the measurement interval is set to less than the duration of the " on time" of one burst to ensure that energy is only captured during a time in which the transmitter is operating at maximum power.

Test Configuration for the emission bandwidth testing:

4.3 Summary of Test Results

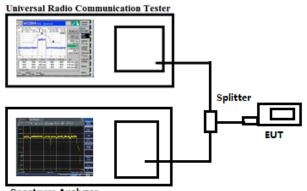
Please refer to Appendix B.

Waltek Testing Group (Shenzhen) Co., Ltd. Http://www.waltek.com.cn Page 16 of 28

5. Emission Bandwidth

5.1 Standard Applicable

According to §22.917(b), the emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26dB below the transmitter power.


According to §24.238(b), the emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26dB below the transmitter power.

According to §27.53, the emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26dB below the transmitter power.

5.2 Test Procedure

The RF output terminal of the transmitter was connected to the input of the spectrum analyzer via a suitable attenuation. The RBW of the spectrum analyzer was set to 10kHz for GSM mode and 100kHz for WCDMA mode, VBW shall be at least 3 times the RBW, and the 26dB bandwidth was recorded.

Test Configuration for the emission bandwidth testing:

Spectrum Analyzer

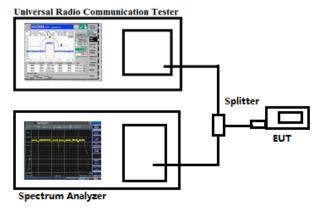
5.3 Summary of Test Results/Plots

Please refer to Appendix C.

6. Out of Band Emissions at Antenna Terminal

6.1 Standard Applicable

According to §22.917(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.


According to §24.238(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

According to 27.53 (h), the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least $43 + 10 \log 10$ (P) dB.

6.2 Test Procedure

The RF output terminal of the transmitter was connected to the input of the spectrum analyzer via a suitable attenuation. The RBW of the spectrum analyzer was set to 100kHz and 1MHz for the scan frequency from 30MHz to 1GHz and the scan frequency from 1GHz to up to 10th harmonic.

Test Configuration for the out of band emissions testing:

6.3 Summary of Test Results/Plots

Please refer to Appendix D.

7. Spurious Radiated Emissions

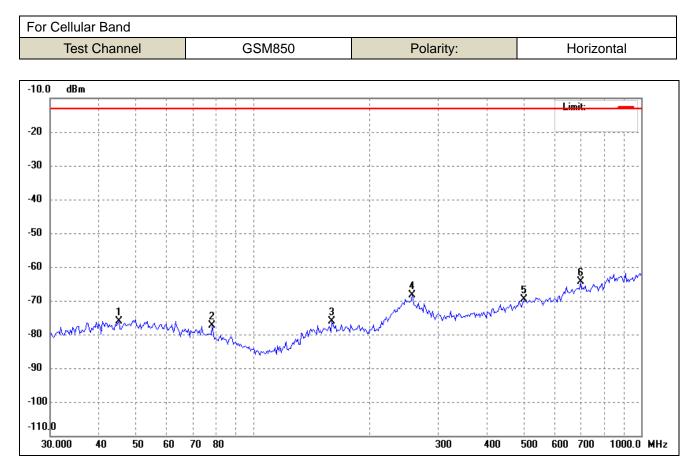
7.1 Standard Applicable

According to §22.917(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

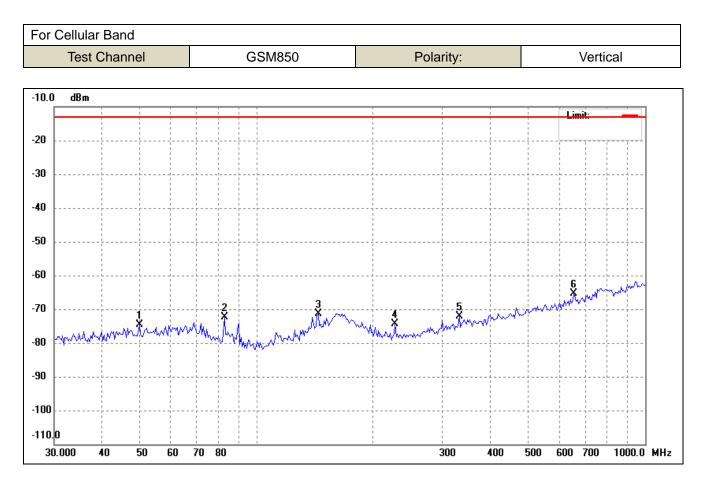
According to §24.238(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

According to \$27.53 (h), the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least $43 + 10 \log 10$ (P) dB.

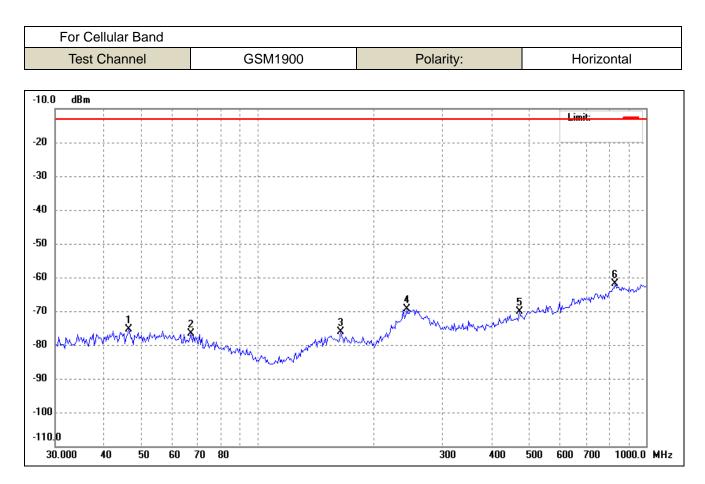
7.2 Test Procedure

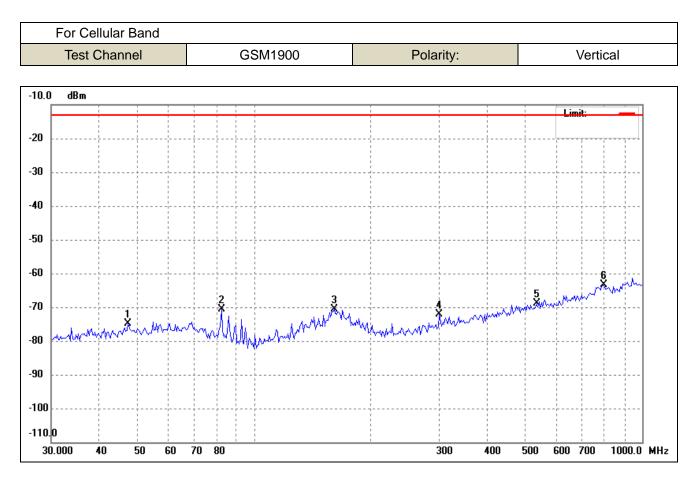

- 1. The setup of EUT is according with per ANSI/TIA Standard 603E and ANSI C63.26 measurement procedure.
- 2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
- 3. The frequency range up to tenth harmonic of the fundamental frequency was investigated.
- 4. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious attenuation limit in dB =43+10 Log₁₀ (power out in Watts)


7.3 Summary of Test Results/Plots

Note: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.


Spurious Emissions Below 1GHz


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBm)	Factor(dB)	(dBm)	(dBm)	(dB)	
1	45.0951	-79.07	3.03	-76.04	-13.00	-63.04	ERP
2	78.5645	-76.90	-0.43	-77.33	-13.00	-64.33	ERP
3	159.7586	-77.00	0.98	-76.02	-13.00	-63.02	ERP
4	257.6266	-76.31	7.92	-68.39	-13.00	-55.39	ERP
5	498.7303	-76.88	7.26	-69.62	-13.00	-56.62	ERP
6	698.8035	-75.23	10.96	-64.27	-13.00	-51.27	ERP

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBm)	Factor(dB)	(dBm)	(dBm)	(dB)	
1	49.7571	-78.02	3.48	-74.54	-13.00	-61.54	ERP
2	82.5257	-72.00	-0.27	-72.27	-13.00	-59.27	ERP
3	143.7760	-75.11	3.69	-71.42	-13.00	-58.42	ERP
4	227.0164	-75.43	1.03	-74.40	-13.00	-61.40	ERP
5	331.7858	-76.17	3.96	-72.21	-13.00	-59.21	ERP
6	655.9766	-74.99	9.54	-65.45	-13.00	-52.45	ERP

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBm)	Factor(dB)	(dBm)	(dBm)	(dB)	
1	46.3806	-78.61	3.16	-75.45	-13.00	-62.45	ERP
2	67.3109	-77.90	1.40	-76.50	-13.00	-63.50	ERP
3	163.1623	-77.07	0.98	-76.09	-13.00	-63.09	ERP
4	241.8377	-76.52	7.15	-69.37	-13.00	-56.37	ERP
5	471.4665	-76.72	6.53	-70.19	-13.00	-57.19	ERP
6	833.0127	-75.16	13.37	-61.79	-13.00	-48.79	ERP

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBm)	Factor(dB)	(dBm)	(dBm)	(dB)	
1	47.3688	-78.00	3.25	-74.75	-13.00	-61.75	ERP
2	82.5257	-70.33	-0.27	-70.60	-13.00	-57.60	ERP
3	160.8852	-78.43	7.77	-70.66	-13.00	-57.66	ERP
4	300.6988	-75.35	3.32	-72.03	-13.00	-59.03	ERP
5	535.0377	-76.69	7.75	-68.94	-13.00	-55.94	ERP
6	798.6205	-75.89	12.62	-63.27	-13.00	-50.27	ERP

Note: Margin= (Reading+ Correct)- Limit

- Spurious Emissions Above 1GHz
- > For Cellular Band_GSM850 Mode

Frequency	Result	Limit	Margin	Polar						
(MHz)	(dBm)	(dBm)	(dB)	H/V						
	Low Channel (824.2MHz)									
1648.4	-37.79	-13	-24.79	Н						
2472.6	-42.45	-13	-29.45	Н						
1648.4	-44.15	-13	-31.15	V						
2472.6	-45.18	-13	-32.18	V						
	N	liddle Channel (836.6M	Hz)							
1673.2	-48.53	-13	-35.53	Н						
2509.8	-39.64	-13	-26.64	Н						
1673.2	-37.62	-13	-24.62	V						
2509.8	-40.55	-13	-27.55	V						
	I	High Channel (848.8MH	lz)							
1697.6	-48.35	-13	-35.35	Н						
2546.4	-45.96	-13	-32.96	Н						
1697.6	-49.26	-13	-36.26	V						
2546.4	-42.32	-13	-29.32	V						

Frequency	Result	Limit	Margin	Polar
(MHz)	(dBm)	(dBm)	(dB)	H/V
	Lo	w Channel (1850.2MF	lz)	
3700.4	-40.37	-13	-27.37	Н
5550.6	-31.18	-13	-18.18	Н
3700.4	-42.19	-13	-29.19	V
5550.6	-29.36	-13	-16.36	V
	Mi	ddle Channel (1880MH	Hz)	
3760.0	-41.01	-13	-28.01	Н
5640.0	-32.09	-13	-19.09	Н
3760.0	-35.55	-13	-22.55	V
5640.0	-41.01	-13	-28.01	V
	Hi	gh Channel (1909.8MH	Hz)	
3819.6	-34.71	-13	-21.71	Н
5729.4	-30.84	-13	-17.84	Н
3819.6	-40.17	-13	-27.17	V
5729.4	-31.74	-13	-18.74	V

For PCS Band_GSM1900 Mode

Note: Result=Reading+ Correct, Margin= Result- Limit

Note: Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

8. Frequency Stability

8.1 Standard Applicable

According to §22.355, §24.235, §27.54 the limit is 2.5ppm.

8.2 Test Procedure

According to §2.1055, the following test procedure was performed.

The Frequency Stability is measured directly with a Frequency Domain Analyzer. Frequency Deviation in ppm is calculated from the measured peak to peak value.

The Carrier Frequency Stability over Power Supply Voltage and over Temperature is measured with a Frequency Domain Analyzer in histogram mode.

8.3 Summary of Test Results/Plots

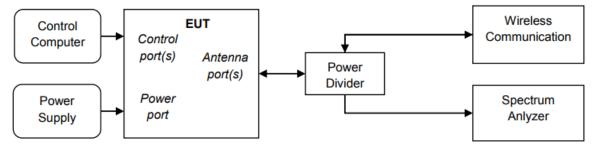
Please refer to Appendix E

9. Modulation characteristics

9.1 Standard Applicable

According to §2.1047, measurements required: Modulation characteristics is given below:

(a) Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter, or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.


(b) Equipment which employs modulation limiting. A curve or family of curves showing the percentage of modulation versus the modulation input voltage shall be supplied. The information submitted shall be sufficient to show modulation limiting capability throughout the range of modulating frequencies and input modulating signal levels employed.

(c) Single sideband and independent sideband radiotelephone transmitters which employ a device or circuit to limit peak envelope power. A curve showing the peak envelope power output versus the modulation input voltage shall be supplied. The modulating signals shall be the same in frequency as specified in paragraph (c) of §2.1049 for the occupied bandwidth tests.

(d) Other types of equipment. A curve or equivalent data which shows that the equipment will meet the modulation requirements of the rules under which the equipment is to be licensed.

9.2 Test Procedure

According to ANSI C63.26-2015 section 5.3.2, the following test setup was performed.

9.3 Summary of Test Results/Plots

Please refer to Appendix F

APPENDIX PHOTOGRAPHS

Please refer to "ANNEX"

***** END OF REPORT