

RADIO TEST REPORT FCC ID: 2ARTX-BLAZE

Product:	Mobile Phone	
Trade Mark:	LAVA	
Model No.:	BLAZE	
Family Model:	E20V, LZX407	
Report No.:	S22102501801001	
Issue Date:	14 Nov. 2022	

Prepared for

LAVA International Limited

A-56, Sector 64, Noida 201301, U.P. India

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

Report No.: S22102501801001

TABLE OF CONTENTS

2 SUMMARY OF TEST RESULTS	3
3.1 FACILITIES	4
3.2 LABORATORY ACCREDITATIONS AND LISTINGS 3.3 MEASUREMENT UNCERTAINTY 4 GENERAL DESCRIPTION OF EUT 5 DESCRIPTION OF TEST MODES 6 SETUP OF EQUIPMENT UNDER TEST 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 6.2 SUPPORT EQUIPMENT 16.3 EQUIPMENTS LIST FOR ALL TEST ITEMS 1 6.3 7 TEST REQUIREMENTS 1 7.1 1.2 RADIATED SPURIOUS EMISSION 1.3 NUMBER OF HOPPING CHANNEL 2 7.4 1.4 HOPPING CHANNEL SEPARATION MEASUREMENT 2 7.5 3.8 CONDUCTED BAND EDGE MEASUREMENT 3.7 PEAK OUTPUT POWER 3.7 SPURIOUS RF CONDUCTED EMISSION 3.7 SPURIOUS RF CONDUCTED EMISSION	5
3.3 MEASUREMENT UNCERTAINTY	
4 GENERAL DESCRIPTION OF EUT 5 DESCRIPTION OF TEST MODES 6 SETUP OF EQUIPMENT UNDER TEST 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 6.2 SUPPORT EQUIPMENT 1 6.3 6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS 1 7 7 TEST REQUIREMENTS 1 7 7.1 CONDUCTED EMISSIONS TEST 1 7.3 7.4 ROPPING CHANNEL 2 7.4 4 OPPING CHANNEL SEPARATION MEASUREMENT 2 7.4 4 OPPING CHANNEL SEPARATION MEASUREMENT 2 7.5 7.6 200B BANDWIDTH TEST 7.7 PEAK OUTPUT POWER 3 7.8 7.9 SPURIOUS RF CONDUCTED EMISSION 3 7.9 7.0 ANTENNA APPLICATION	-
5 DESCRIPTION OF TEST MODES 6 SETUP OF EQUIPMENT UNDER TEST 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM. 6.2 SUPPORT EQUIPMENT. 1 6.3 6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS. 1 7 7 TEST REQUIREMENTS 1 7.1 1 7.1 1 7.1 1 7.1 1 7.1 1 7.2 1 7.3 1 7.4 1 7.5 1 7.6 2 7.4 1 7.5 2 7.6 2 7.6 2 7.6 2 7.7 1 7.8 2 7.7 1 7.8 2 7.7 1 7.8 2 7.9 2 7.7 2 7.7 2 7.8 2 7.9	-
6 SETUP OF EQUIPMENT UNDER TEST 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 6.2 SUPPORT EQUIPMENT 1 6.3 6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS 7 TEST REQUIREMENTS 7.1 CONDUCTED EMISSIONS TEST 7.2 RADIATED SPURIOUS EMISSION 7.3 NUMBER OF HOPPING CHANNEL 2 7.4 7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME) 2 7.6 20DB BANDWIDTH TEST 2 7.7 PEAK OUTPUT POWER 3 7.8 7.9 SPURIOUS RF CONDUCTED EMISSION 3 7.10	
6.1BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM.6.2SUPPORT EQUIPMENT.6.3EQUIPMENTS LIST FOR ALL TEST ITEMS.7TEST REQUIREMENTS.7TEST REQUIREMENTS.7.1CONDUCTED EMISSIONS TEST.7.2RADIATED SPURIOUS EMISSION7.3NUMBER OF HOPPING CHANNEL.7.4HOPPING CHANNEL SEPARATION MEASUREMENT.7.5AVERAGE TIME OF OCCUPANCY (DWELL TIME)7.620DB BANDWIDTH TEST7.7PEAK OUTPUT POWER.7.8CONDUCTED BAND EDGE MEASUREMENT.7.9SPURIOUS RF CONDUCTED EMISSION.7.10ANTENNA APPLICATION	
6.2SUPPORT EQUIPMENT.16.3EQUIPMENTS LIST FOR ALL TEST ITEMS.17TEST REQUIREMENTS17.1CONDUCTED EMISSIONS TEST.17.2RADIATED SPURIOUS EMISSION17.3NUMBER OF HOPPING CHANNEL27.4HOPPING CHANNEL SEPARATION MEASUREMENT.27.5AVERAGE TIME OF OCCUPANCY (DWELL TIME)27.620DB BANDWIDTH TEST27.7PEAK OUTPUT POWER.37.8CONDUCTED BAND EDGE MEASUREMENT.37.9SPURIOUS RF CONDUCTED EMISSION37.10ANTENNA APPLICATION3	9
6.2SUPPORT EQUIPMENT.16.3EQUIPMENTS LIST FOR ALL TEST ITEMS.17TEST REQUIREMENTS17.1CONDUCTED EMISSIONS TEST.17.2RADIATED SPURIOUS EMISSION17.3NUMBER OF HOPPING CHANNEL27.4HOPPING CHANNEL SEPARATION MEASUREMENT.27.5AVERAGE TIME OF OCCUPANCY (DWELL TIME)27.620DB BANDWIDTH TEST27.7PEAK OUTPUT POWER.37.8CONDUCTED BAND EDGE MEASUREMENT.37.9SPURIOUS RF CONDUCTED EMISSION37.10ANTENNA APPLICATION3	9
7TEST REQUIREMENTS17.1CONDUCTED EMISSIONS TEST17.2RADIATED SPURIOUS EMISSION17.3NUMBER OF HOPPING CHANNEL27.4HOPPING CHANNEL SEPARATION MEASUREMENT27.5AVERAGE TIME OF OCCUPANCY (DWELL TIME)27.620DB BANDWIDTH TEST27.7PEAK OUTPUT POWER37.8CONDUCTED BAND EDGE MEASUREMENT37.9SPURIOUS RF CONDUCTED EMISSION37.10ANTENNA APPLICATION3	0
7.1CONDUCTED EMISSIONS TEST.17.2RADIATED SPURIOUS EMISSION17.3NUMBER OF HOPPING CHANNEL27.4HOPPING CHANNEL SEPARATION MEASUREMENT27.5AVERAGE TIME OF OCCUPANCY (DWELL TIME)27.620DB BANDWIDTH TEST27.7PEAK OUTPUT POWER37.8CONDUCTED BAND EDGE MEASUREMENT37.9SPURIOUS RF CONDUCTED EMISSION37.10ANTENNA APPLICATION3	
7.2RADIATED SPURIOUS EMISSION17.3NUMBER OF HOPPING CHANNEL27.4HOPPING CHANNEL SEPARATION MEASUREMENT27.5AVERAGE TIME OF OCCUPANCY (DWELL TIME)27.620DB BANDWIDTH TEST27.7PEAK OUTPUT POWER37.8CONDUCTED BAND EDGE MEASUREMENT37.9SPURIOUS RF CONDUCTED EMISSION37.10ANTENNA APPLICATION3	3
7.3NUMBER OF HOPPING CHANNEL27.4HOPPING CHANNEL SEPARATION MEASUREMENT27.5AVERAGE TIME OF OCCUPANCY (DWELL TIME)27.620DB BANDWIDTH TEST27.7PEAK OUTPUT POWER37.8CONDUCTED BAND EDGE MEASUREMENT37.9SPURIOUS RF CONDUCTED EMISSION37.10ANTENNA APPLICATION3	
7.4HOPPING CHANNEL SEPARATION MEASUREMENT27.5AVERAGE TIME OF OCCUPANCY (DWELL TIME)27.620DB BANDWIDTH TEST27.7PEAK OUTPUT POWER37.8CONDUCTED BAND EDGE MEASUREMENT37.9SPURIOUS RF CONDUCTED EMISSION37.10ANTENNA APPLICATION3	
7.5AVERAGE TIME OF OCCUPANCY (DWELL TIME)27.620DB BANDWIDTH TEST27.7PEAK OUTPUT POWER37.8CONDUCTED BAND EDGE MEASUREMENT37.9SPURIOUS RF CONDUCTED EMISSION37.10ANTENNA APPLICATION3	
7.620DB BANDWIDTH TEST27.7PEAK OUTPUT POWER37.8CONDUCTED BAND EDGE MEASUREMENT37.9SPURIOUS RF CONDUCTED EMISSION37.10ANTENNA APPLICATION3	
7.7PEAK OUTPUT POWER37.8CONDUCTED BAND EDGE MEASUREMENT37.9SPURIOUS RF CONDUCTED EMISSION37.10ANTENNA APPLICATION3	, /
7.8CONDUCTED BAND EDGE MEASUREMENT.37.9SPURIOUS RF CONDUCTED EMISSION.37.10ANTENNA APPLICATION3	
7.9SPURIOUS RF CONDUCTED EMISSION	
7.10 ANTENNA APPLICATION	
7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	
8 TEST RESULTS	
8.1 Dwell Time	
8.2 MAXIMUM CONDUCTED OUTPUT POWER	
8.3 Occupied Channel Bandwidth	
8.4 CARRIER FREQUENCIES SEPARATION	-
8.5 NUMBER OF HOPPING CHANNEL	
8.6 BAND EDGE	
8.7 CONDUCTED RF SPURIOUS EMISSION	4

1 TEST RESULT CERTIFICATION

Applicant's name:	LAVA International Limited		
Address	-56, Sector 64, Noida 201301, U.P. India		
Manufacturer's Name:	LAVA International Limited		
Address:	A-154 D, Sector-63, Noida, Gautam Buddha Nagar, Uttar Pradesh, 201301		
Product description			
Product name:	Mobile Phone		
Model and/or type reference:	BLAZE		
Family Model:	E20V, LZX407		
Test sample number	S221025018003		

Measurement Procedure Used:

APPLICABLE STANDARDS

STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	Complied

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	: 27 Oct. 2022 ~ 11 Nov, 2022	
Testing Engineer	:	Dollen Loin
		(Allen Liu)
Authorized Signatory	:	Alex
		(Alex Li)

SUMMARY OF TEST RESULTS 2

FCC Part15 (15.247), Subpart C			
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A. CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705. Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment	Mobile Phone	
Trade Mark	LAVA	
FCC ID	2ARTX-BLAZE	
Model No.	BLAZE	
Family Model	E20V, LZX407	
Model Difference	All models are the same circuit and RF module, except the model name.	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK, π/4-DQPSK, 8-DPSK	
Number of Channels	79 Channels	
Antenna Type	PIFA Antenna	
Antenna Gain	-1.5dBi	
Power supply	DC 3.87V/4900mAh from battery or DC 5V from Adapter.	
Adapter	Model: UT-592A-5200ZY Input: 100-240V~50/60Hz 0.35A Output: 5.0V2.0A 10.0W	
HW Version	LAVA_Blaze_ HW_V001	
SW Version	LAVA_BLAZE_TIGO_LATAM_V001	

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

	I.		
Report No.	Version	Description	Issued Date
S22102501801001	Rev.01	Initial issue of report	14 Nov, 2022

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)	
0	2402	
1	2403	
39	2441	
40	2442	
77 2479		
78 2480		

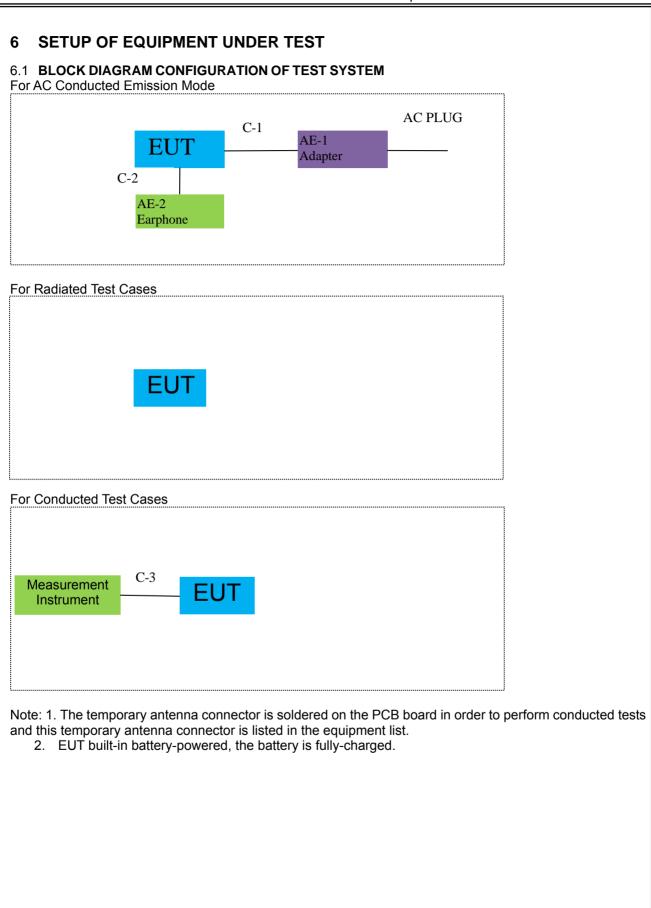
Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	For AC Conducted Emission
Final Test Mode Description	
Mode 1	normal link mode
Nate: AC new relies Conducted Emission was tested under mentioners extract a succe	

Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases			
Final Test Mode	Description		
Mode 1	normal link mode		
Mode 2	CH00(2402MHz)		
Mode 3	CH39(2441MHz)		
Mode 4	CH78(2480MHz)		


Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases			
Final Test Mode	Description		
Mode 2	CH00(2402MHz)		
Mode 3	CH39(2441MHz)		
Mode 4	CH78(2480MHz)		
Mode 5	Hopping mode		

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	UT-592A-5200ZY	N/A	Peripherals
AE-2	Earphone	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	YES	NO	1.0m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

		ooroquipinoin					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2022.04.06	2023.04.05	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2022.04.06	2023.04.05	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2022.04.06	2023.04.05	1 year
4	Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2023.03.30	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.06.16	2023.06.15	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2022.06.17	2023.06.16	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2022.06.16	2023.06.15	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2022.06.16	2023.06.15	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2020.05.11	2023.05.10	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2020.05.11	2023.05.10	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2022.02.22	2023.02.21	1 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2022.04.06	2023.04.05	1 year
2	LISN	R&S	ENV216	101313	2022.04.06	2023.04.05	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2022.04.06	2023.04.05	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

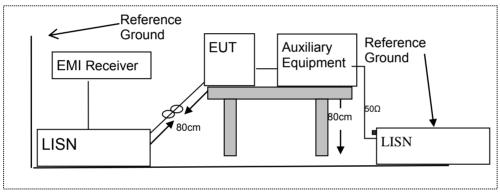
7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit


	Conducted	Emission Limit
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56*	56-46*
0.5-5.0	56	46
5.0-30.0	60	50

Note: 1. *Decreases with the logarithm of the frequency

2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

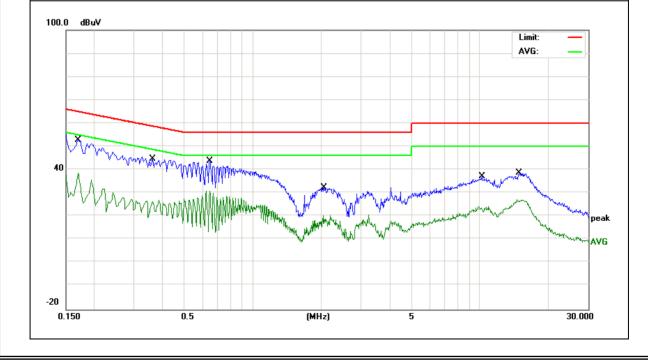
7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

7.1.5 Test Results

Pass

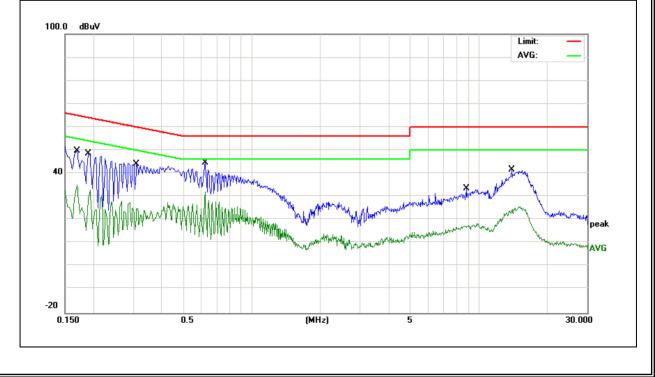

7.1.6 Test Results

EUT:	Mobile Phone	Model Name :	BLAZE
Temperature:	24 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	- Remark
0.1700	43.21	9.61	52.82	64.96	-12.14	QP
0.1700	32.41	9.61	42.02	54.96	-12.94	AVG
0.3620	34.95	9.64	44.59	58.68	-14.09	QP
0.3620	24.72	9.64	34.36	48.68	-14.32	AVG
0.6460	34.10	9.67	43.77	56.00	-12.23	QP
0.6460	23.58	9.67	33.25	46.00	-12.75	AVG
2.0620	22.64	9.68	32.32	56.00	-23.68	QP
2.0620	12.47	9.68	22.15	46.00	-23.85	AVG
10.2139	27.13	9.94	37.07	60.00	-22.93	QP
10.2139	17.11	9.94	27.05	50.00	-22.95	AVG
14.9019	28.44	10.08	38.52	60.00	-21.48	QP
14.9019	18.25	10.08	28.33	50.00	-21.67	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.



EUT:	Mobile Phone	Model Name :	BLAZE
Temperature:	24 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1700	40.01	9.65	49.66	64.96	-15.30	QP
0.1700	29.37	9.65	39.02	54.96	-15.94	AVG
0.1900	38.94	9.63	48.57	64.03	-15.46	QP
0.1900	28.59	9.63	38.22	54.03	-15.81	AVG
0.3100	34.48	9.64	44.12	59.97	-15.85	QP
0.3100	24.61	9.64	34.25	49.97	-15.72	AVG
0.6220	35.08	9.67	44.75	56.00	-11.25	QP
0.6220	24.49	9.67	34.16	46.00	-11.84	AVG
8.7939	23.64	9.87	33.51	60.00	-26.49	QP
8.7939	13.15	9.87	23.02	50.00	-26.98	AVG
13.9779	31.63	10.01	41.64	60.00	-18.36	QP
13.9779	21.32	10.01	31.33	50.00	-18.67	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to FCC Fait 15.20			
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV	/m) (at 3M)
r requency(mriz)	PEAK	AVERAGE
Above 1000	74	54

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz:

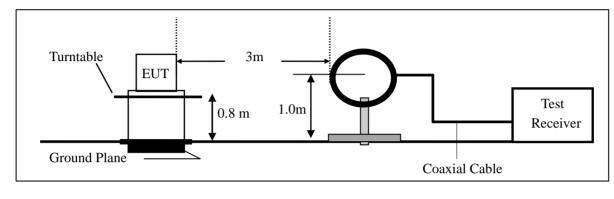
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

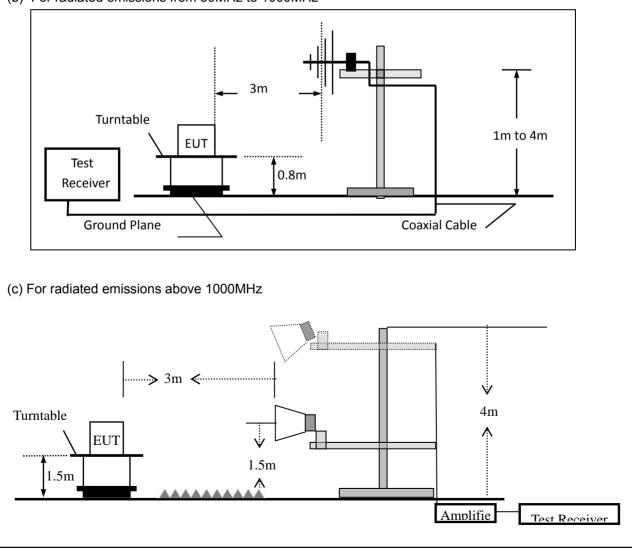
For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments


The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

(b) For radiated emissions from 30MHz to 1000MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission t	est, the Spectrum An	alyzer was set with the follow	ving configurations:
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Abovo 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	1 MHz

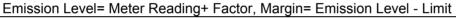
Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

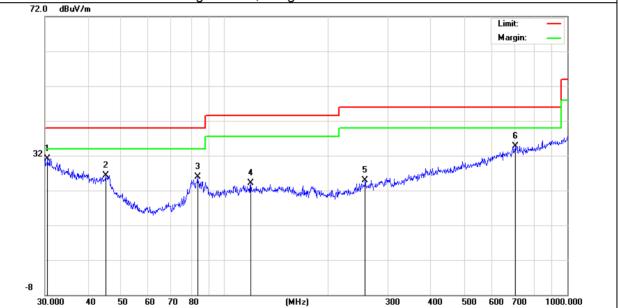
7.2.6 Test Results

EUT:	Mobile Phone	Model No.:	BLAZE
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)	
(MHz)	H/V	PK AV		PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.


■ Spurious Emission below 1GHz (30MHz to 1GHz)


All the modulation modes have been tested, and the worst result was report as below:

EUT:	Mobile Phone	Model Name :	BLAZE
Temperature:	24 ℃	Relative Humidity:	53%
Pressure:	1010hPa	Test Mode:	Mode 1
Test Voltage :	DC 3.87V		

Polar	Frequency	Meter ReadingFactorEmission LevelLimits		Limits	Margin	Remark	
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	30.5304	5.32	25.87	31.19	40.00	-8.81	QP
V	45.0583	8.55	17.73	26.28	40.00	-13.72	QP
V	83.5222	10.04	15.96	26.00	40.00	-14.00	QP
V	119.4361	5.38	18.78	24.16	43.50	-19.34	QP
V	257.4222	5.43	19.41	24.84	46.00	-21.16	QP
V	704.2259	6.79	27.91	34.70	46.00	-11.30	QP

Remark:

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark	
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Kemark	
Н	31.5093	6.03	25.27	31.30	40.00	-8.70	QP	
Н	134.5592	5.47	18.65	24.12	43.50	-19.38	QP	
Н	263.8190	5.17	19.59	24.76	46.00	-21.24	QP	
Н	287.9904	7.23	20.15	27.38	46.00	-18.62	QP	
Н	374.6225	8.11	22.39	30.50	46.00	-15.50	QP	
Н	731.9202	7.54	28.26	35.80	46.00	-10.20	QP	
							-6	
32 1					5	6 A MANY MANY	مساليعانين	
	the or the state of the state o	when the second second second	2 Marina	man a the second	nyulun vitin una manana			
-8	00 40 50	60 70 80	(MI		300 400 50	0 600 700	1000.000	

UT:	Mobile	e Phone		Model	No.:	BL	AZE		
emperature:	20 ℃			Relativ	e Humidity	<i>ı</i> : 48	%		
Fest Mode:	Mode	2/Mode3/	/Mode4	Test By	y:	All	en Liu		
Il the modulati				-				W:	
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/n	ı) (dB)		
			Low Chan	nel (2402 M	Hz)(GFSK)/	Above 1G			
4804.214	64.10	5.21	35.59	44.30	60.60	74.00	-13.40	Pk	Vertical
4804.214	40.29	5.21	35.59	44.30	36.79	54.00	-17.21	AV	Vertical
7206.265	60.78	6.48	36.27	44.60	58.93	74.00	-15.07	Pk	Vertical
7206.265	44.36	6.48	36.27	44.60	42.51	54.00	-11.49	AV	Vertical
4804.109	60.56	5.21	35.55	44.30	57.02	74.00	-16.98	Pk	Horizontal
4804.109	43.99	5.21	35.55	44.30	40.45	54.00	-13.55	AV	Horizontal
7206.224	63.10	6.48	36.27	44.52	61.33	74.00	-12.67	Pk	Horizontal
7206.224	47.81	6.48	36.27	44.52	46.04	54.00	-7.96	AV	Horizontal
		I	Mid Chanr	nel (2441 MI	Hz)(GFSK)A	Above 1G		1	I
4882.396	63.38	5.21	35.66	44.20	60.05	74.00	-13.95	Pk	Vertical
4882.396	42.95	5.21	35.66	44.20	39.62	54.00	-14.38	AV	Vertical
7323.241	61.38	7.10	36.50	44.43	60.55	74.00	-13.45	Pk	Vertical
7323.241	47.15	7.10	36.50	44.43	46.32	54.00	-7.68	AV	Vertical
4882.108	62.29	5.21	35.66	44.20	58.96	74.00	-15.04	Pk	Horizontal
4882.108	49.04	5.21	35.66	44.20	45.71	54.00	-8.29	AV	Horizontal
7323.132	61.00	7.10	36.50	44.43	60.17	74.00	-13.83	Pk	Horizontal
7323.132	42.28	7.10	36.50	44.43	41.45	54.00	-12.55	AV	Horizontal
		1	High Chanr	nel (2480 M	Hz)(GFSK)	Above 1G	i 1	1	1
4960.397	67.02	5.21	35.52	44.21	63.54	74.00	-10.46	Pk	Vertical
4960.397	43.75	5.21	35.52	44.21	40.27	54.00	-13.73	AV	Vertical
7440.201	60.74	7.10	36.53	44.60	59.77	74.00	-14.23	Pk	Vertical
7440.201	45.84	7.10	36.53	44.60	44.87	54.00	-9.13	AV	Vertical
4960.225	67.20	5.21	35.52	44.21	63.72	74.00	-10.28	Pk	Horizontal
4960.225	48.38	5.21	35.52	44.21	44.90	54.00	-9.10	AV	Horizontal
7440.298	61.55	7.10	36.53	44.60	60.58	74.00	-13.42	Pk	Horizontal
7440.298	46.01	7.10	36.53	44.60	45.04	54.00	-8.96	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

Report No.: S22102501801001

EUT	Spurious I 	Mobile Pho			Model I			BLAZE				
-	nperature:					e Humidity		3%				
	•					,						
	t Mode:	Mode2/ Mc		on tastad	Test By			len Liu report as bel	0.W.			
	lne modui	1	l l		Í		ll was i	eport as bei	Ow.			
	Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	s Margin	Detector	Comment		
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/	m) (dB)	Туре			
L	1Mbps(GFSK)-Non-hopping											
L	2310.00	57.73	2.97	27.80	43.80	44.70	74	-29.30	Pk	Horizontal		
L	2310.00	43.82	2.97	27.80	43.80	30.79	54	-23.21	AV	Horizontal		
L	2310.00	58.73	2.97	27.80	43.80	45.70	74	-28.30	Pk	Vertical		
L	2310.00	43.62	2.97	27.80	43.80	30.59	54	-23.41	AV	Vertical		
L	2390.00	59.27	3.14	27.21	43.80	45.82	74	-28.18	Pk	Vertical		
L	2390.00	42.70	3.14	27.21	43.80	29.25	54	-24.75	AV	Vertical		
L	2390.00	56.20	3.14	27.21	43.80	42.75	74	-31.25	Pk	Horizontal		
L	2390.00	43.39	3.14	27.21	43.80	29.94	54	-24.06	AV	Horizontal		
L	2483.50	57.77	3.58	27.70	44.00	45.05	74	-28.95	Pk	Vertical		
L	2483.50	43.52	3.58	27.70	44.00	30.80	54	-23.20	AV	Vertical		
L	2483.50	59.80	3.58	27.70	44.00	47.08	74	-26.92	Pk	Horizontal		
L	2483.50	42.44	3.58	27.70	44.00	29.72	54	-24.28	AV	Horizontal		
			-		1Mbps(GFS	SK)-hopping						
	2310.00	50.90	2.97	27.80	43.80	37.87	74.00	-36.13	Pk	Vertical		
L	2310.00	43.16	2.97	27.80	43.80	30.13	54.00) -23.87	AV	Vertical		
L	2310.00	50.45	2.97	27.80	43.80	37.42	74.00	-36.58	Pk	Horizontal		
L	2310.00	43.11	2.97	27.80	43.80	30.08	54.00	-23.92	AV	Horizontal		
L	2390.00	54.80	3.14	27.21	43.80	41.35	74.00	-32.65	Pk	Vertical		
L	2390.00	40.07	3.14	27.21	43.80	26.62	54.00) -27.38	AV	Vertical		
L	2390.00	50.35	3.14	27.21	43.80	36.90	74.00	-37.10	Pk	Horizontal		
L	2390.00	42.09	3.14	27.21	43.80	28.64	54.00	-25.36	AV	Horizontal		
L	2483.50	52.51	3.58	27.70	44.00	39.79	74.00	-34.21	Pk	Vertical		
	2483.50	40.20	3.58	27.70	44.00	27.48	54.00	-26.52	AV	Vertical		
	2483.50	51.92	3.58	27.70	44.00	39.20	74.00	-34.80	Pk	Horizontal		
	2483.50	42.75	3.58	27.70	44.00	30.03	54.00) -23.97	AV	Horizontal		

Note: (1) All other emissions more than 20dB below the limit.

EU	Г:		Mobile	e Phone		Model	No.:		BLAZ	AZE		
Ten	nperature:		20 ℃			Relativ	Relative Humidity: 48%					
Tes	Test Mode: Mode2/ Mode4			Test B	est By: Allen Liu							
All	All the modulation modes have been tested,			, and the	worst resu	lt wa	is rep	ort as bel	ow:			
	Frequency		eading evel	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lir	nits	Margin	Detector	Comment
	(MHz)	(0	lBμV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	ıV/m)	(dB)	Туре	
	3260	6	0.34	4.04	29.57	44.70	49.25	7	74	-24.75	Pk	Vertical
	3260	5	57.12	4.04	29.57	44.70	46.03	5	54	-7.97	AV	Vertical
	3260	6	62.13	4.04	29.57	44.70	51.04	7	74	-22.96	Pk	Horizontal
	3260	5	57.35	4.04	29.57	44.70	46.26	5	54	-7.74	AV	Horizontal
	3332	6	5.50	4.26	29.87	44.40	55.23	7	74	-18.77	Pk	Vertical
	3332	5	3.14	4.26	29.87	44.40	42.87	5	54	-11.13	AV	Vertical
	3332	6	2.30	4.26	29.87	44.40	52.03	7	74	-21.97	Pk	Horizontal
	3332	5	3.55	4.26	29.87	44.40	43.28	5	54	-10.72	AV	Horizontal
	17797	4	4.77	10.99	43.95	43.50	56.21	7	74	-17.79	Pk	Vertical
	17797	3	2.56	10.99	43.95	43.50	44.00	5	54	-10.00	AV	Vertical
	17788	4	4.93	11.81	43.69	44.60	55.83	7	74	-18.17	Pk	Horizontal
	17788	3	2.22	11.81	43.69	44.60	43.12	5	54	-10.88	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	Mobile Phone	Model No.:	BLAZE
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Allen Liu

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Measurement Bandwidth or Channel Separation RBW: Start with the RBW set to approximately 3% of the channel spacing; adjust as necessary to best identify the center of each individual channel. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	Mobile Phone	Model No.:	BLAZE
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 Test Results

EUT:	Mobile Phone	Model No.:	BLAZE
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4 DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	Mobile Phone	Model No.:	BLAZE
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW \geq the 20 dB bandwidth of the emission being measured VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	Mobile Phone	Model No.:	BLAZE
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Mobile Phone	Model No.:	BLAZE
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Allen Liu

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached PIFA antenna (Gain: -1.5dBi). It comply with the standard requirement.

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

7.11.2 Frequency Hopping System

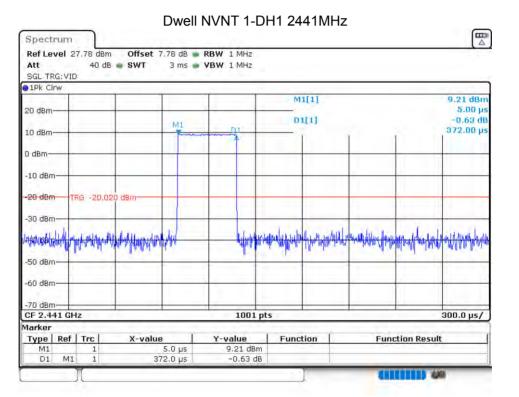
This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

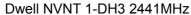
Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

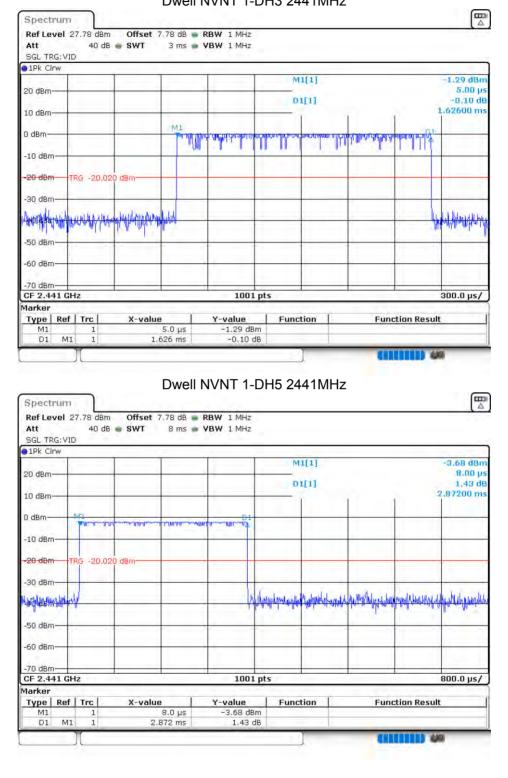
The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.



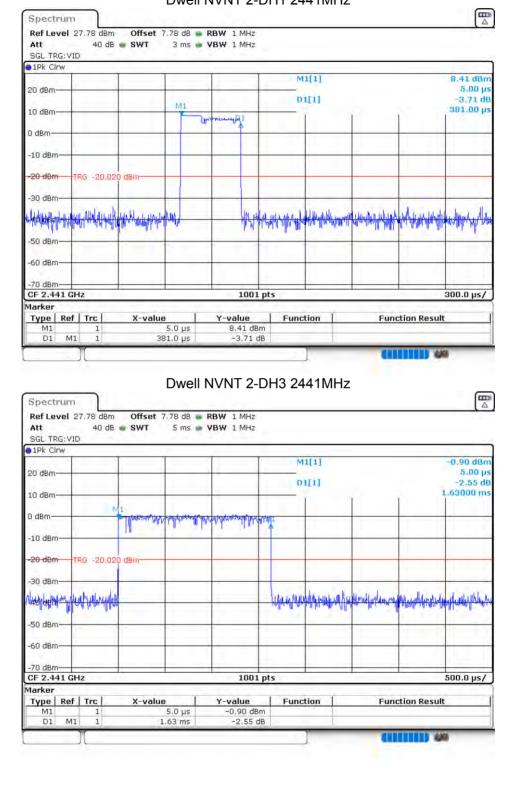
8 TEST RESULTS

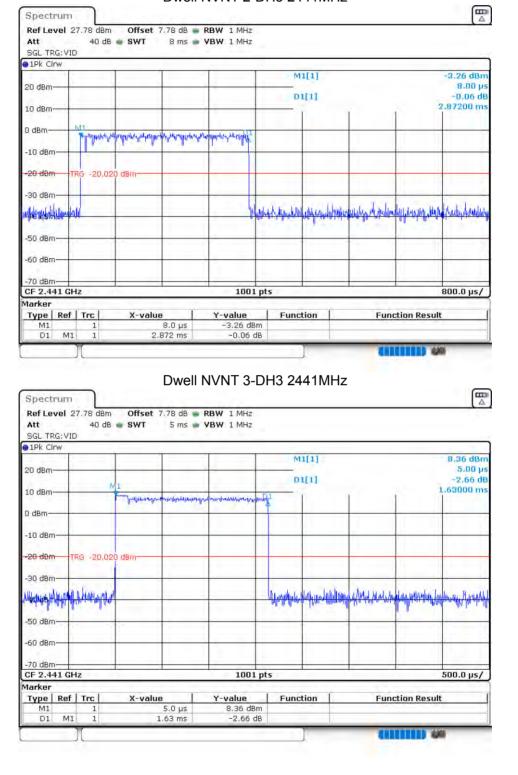
8.1 DWELL TIME


		I I				
Mode	Frequency	Pulse Time	Total Dwell	Period Time	Limit	Verdict
	(MHz)	(ms)	Time (ms)	(ms)	(ms)	
1-DH1	2441	0.372	119.04	31600	400	Pass
1-DH3	2441	1.626	260.16	31600	400	Pass
1-DH5	2441	2.872	306.347	31600	400	Pass
2-DH1	2441	0.381	121.92	31600	400	Pass
2-DH3	2441	1.63	260.8	31600	400	Pass
2-DH5	2441	2.872	306.347	31600	400	Pass
3-DH3	2441	1.63	260.8	31600	400	Pass
3-DH5	2441	2.88	307.2	31600	400	Pass
	1-DH3 1-DH5 2-DH1 2-DH3 2-DH5 3-DH3	(MHz) 1-DH1 2441 1-DH3 2441 1-DH5 2441 2-DH1 2441 2-DH3 2441 2-DH5 2441 3-DH3 2441	(MHz)(ms)1-DH124410.3721-DH324411.6261-DH524412.8722-DH124410.3812-DH324411.632-DH524412.8723-DH324411.63	(MHz)(ms)Time (ms)1-DH124410.372119.041-DH324411.626260.161-DH524412.872306.3472-DH124410.381121.922-DH324411.63260.82-DH524412.872306.3473-DH324411.63260.8	(MHz)(ms)Time (ms)(ms)1-DH124410.372119.04316001-DH324411.626260.16316001-DH524412.872306.347316002-DH124410.381121.92316002-DH324411.63260.8316002-DH524412.872306.347316003-DH324411.63260.831600	(MHz)(ms)Time (ms)(ms)(ms)1-DH124410.372119.04316004001-DH324411.626260.16316004001-DH524412.872306.347316004002-DH124410.381121.92316004002-DH324411.63260.8316004002-DH524412.872306.347316004002-DH524411.63260.8316004003-DH324411.63260.831600400



Report No.: S22102501801001

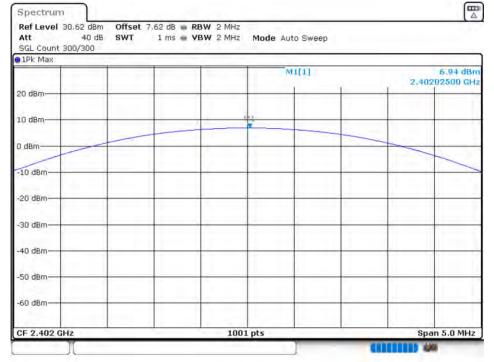



Dwell NVNT 2-DH1 2441MHz

Dwell NVNT 2-DH5 2441MHz

Dwell NVNT 3-DH5 2441MHz

	T.	_	· · · · · ·			M	1[1]			-3.28 dBm
20 dBm	-		-				1[1]			8.00 µs -2.53 dt
10 dBm							TIT			2.88000 m
10 0.00								1	1	
0 dBm-	_	Ma Sauturation	namp of the second	can manyilani can	manshel auronamita	_			-	-
10-10-		and a state	and a throw of a f	Jame of ada	4					
-10 dBr	1-1-									
-20 dBr	- IT	RG -20.0	20 dBm						_	
							-	1 - F -		
-30 dBr	1 -		-			_		-	-	
ualdillabi	Allaha	6			(Hdm	and Montan	Mart Hall Hall	INFO MALE AND	and the state of t	And the application of the
844110DI	1 Marte				8.000		Law of a	al al boo de t	a la tisti, alla	allo d a a utili
-50 dBr		_		_			-	-		
	1									
-60 dBr										
									12	
-70 dBr		Iz			1001 p	ts				800.0 µs/
-60 dBr -70 dBr CF 2.4 Narker		Iz			1001 p	ts				800.0 µs/
-70 dBr CF 2.4	41 GH		X-value	3.0 µs	1001 p Y-value -3.28 dBm	ts Func	tion	Fu	nction Resu	

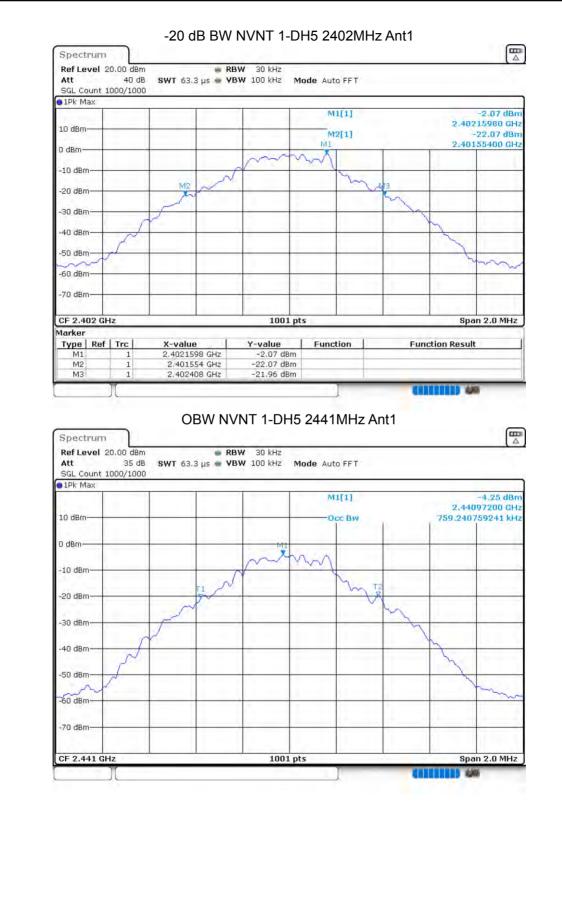


8.2 MAXIMUM CONDUCTED OUTPUT POWER

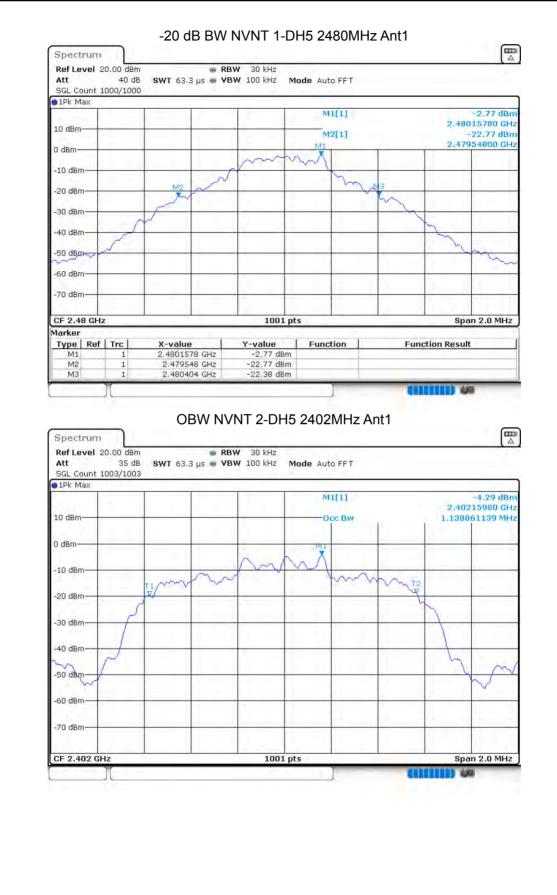
Condition	Mode	Frequency (MHz)	Antenna	Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant 1	6.939	30	Pass
NVNT	1-DH5	2441	Ant 1	6.785	30	Pass
NVNT	1-DH5	2480	Ant 1	7.831	30	Pass
NVNT	2-DH5	2402	Ant 1	6.671	21	Pass
NVNT	2-DH5	2441	Ant 1	6.01	21	Pass
NVNT	2-DH5	2480	Ant 1	7.072	21	Pass
NVNT	3-DH5	2402	Ant 1	6.657	21	Pass
NVNT	3-DH5	2441	Ant 1	6.006	21	Pass
NVNT	3-DH5	2480	Ant 1	7.049	21	Pass

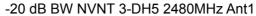

Power NVNT 1-DH5 2402MHz Ant1

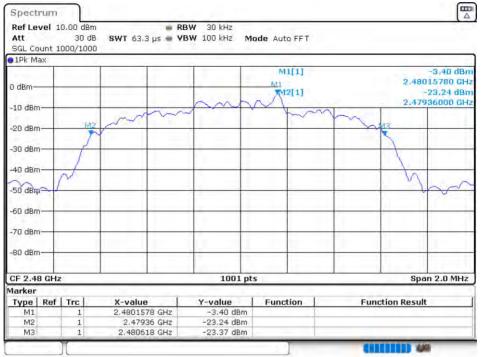
8.3 OCCUPIED CHANNEL BANDWIDTH

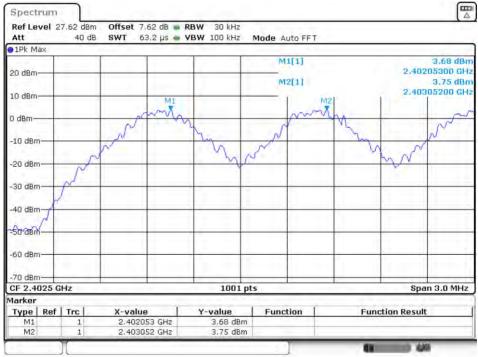

0.3 OCCUPIE						
Condition	Mode	Frequency	Antenna	99% OBW	-20 dB Bandwidth	Verdict
		(MHz)		(MHz)	(MHz)	
NVNT	1-DH5	2402	Ant 1	0.7552	0.854	Pass
NVNT	1-DH5	2441	Ant 1	0.7592	0.86	Pass
NVNT	1-DH5	2480	Ant 1	0.7632	0.856	Pass
NVNT	2-DH5	2402	Ant 1	1.1389	1.25	Pass
NVNT	2-DH5	2441	Ant 1	1.1469	1.254	Pass
NVNT	2-DH5	2480	Ant 1	1.1469	1.262	Pass
NVNT	3-DH5	2402	Ant 1	1.1409	1.25	Pass
NVNT	3-DH5	2441	Ant 1	1.1429	1.25	Pass
NVNT	3-DH5	2480	Ant 1	1.1528	1.258	Pass

OBW NVNT 1-DH5 2402MHz Ant1



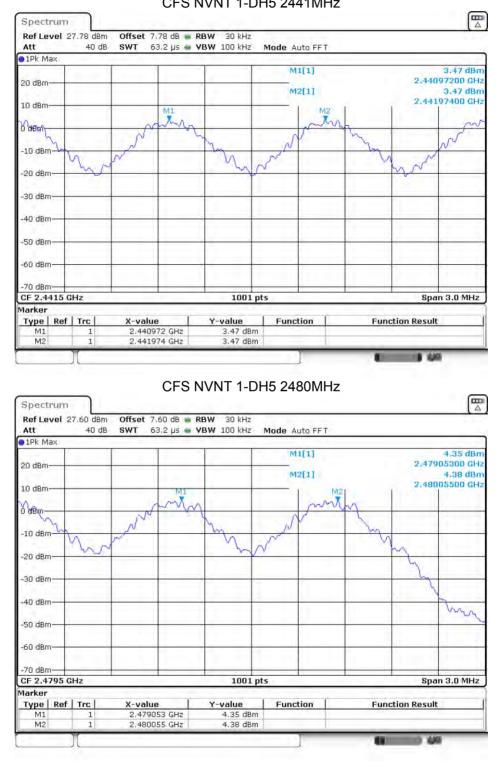


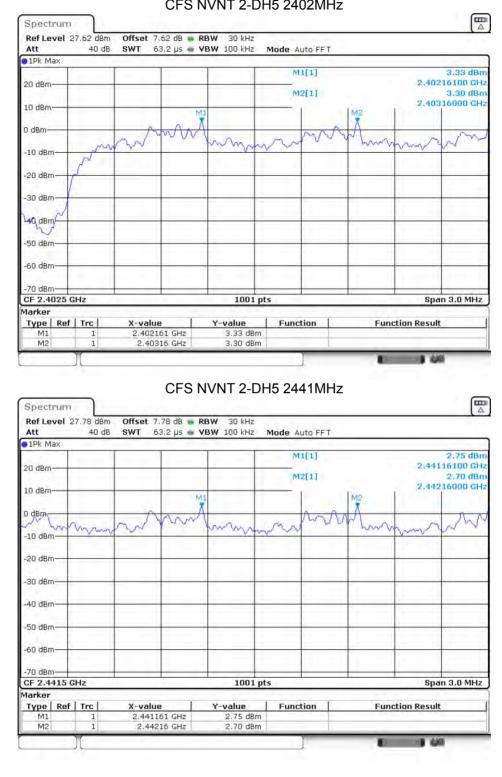


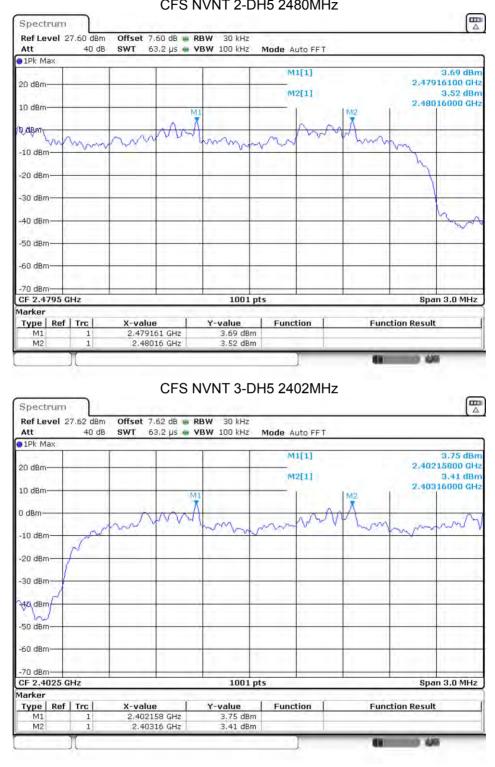


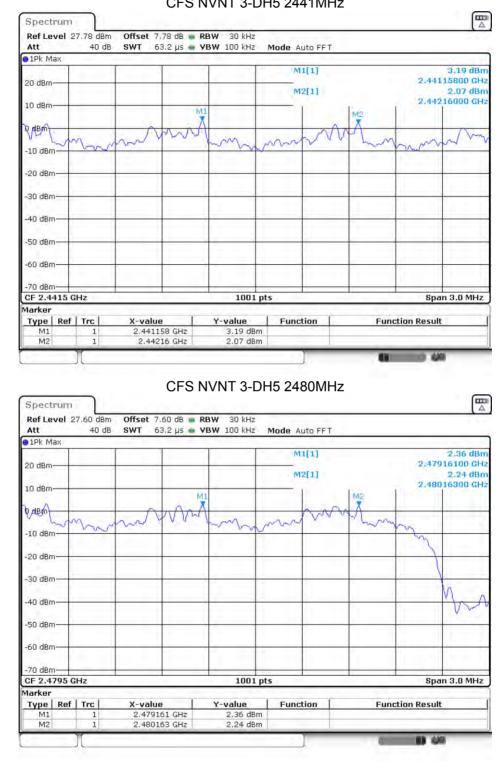
8.4 CARRIER FREQUENCIES SEPARATION

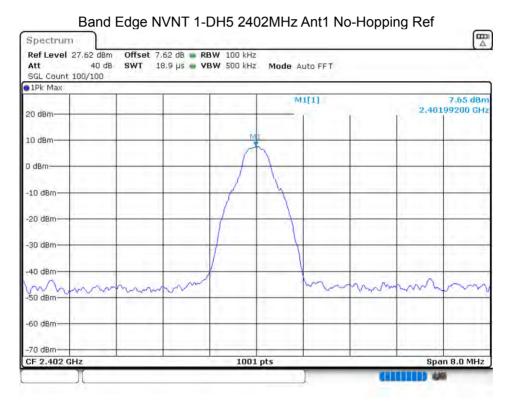
Condition	Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
		(MHz)	(MHz)	(MHz)	(MHz)	
NVNT	1-DH5	2402.053	2403.052	0.999	0.854	Pass
NVNT	1-DH5	2440.972	2441.974	1.002	0.86	Pass
NVNT	1-DH5	2479.053	2480.055	1.002	0.856	Pass
NVNT	2-DH5	2402.161	2403.16	0.999	0.833	Pass
NVNT	2-DH5	2441.161	2442.16	0.999	0.836	Pass
NVNT	2-DH5	2479.161	2480.16	0.999	0.841	Pass
NVNT	3-DH5	2402.158	2403.16	1.002	0.833	Pass
NVNT	3-DH5	2441.158	2442.16	1.002	0.833	Pass
NVNT	3-DH5	2479.161	2480.163	1.002	0.839	Pass


CFS NVNT 1-DH5 2402MHz



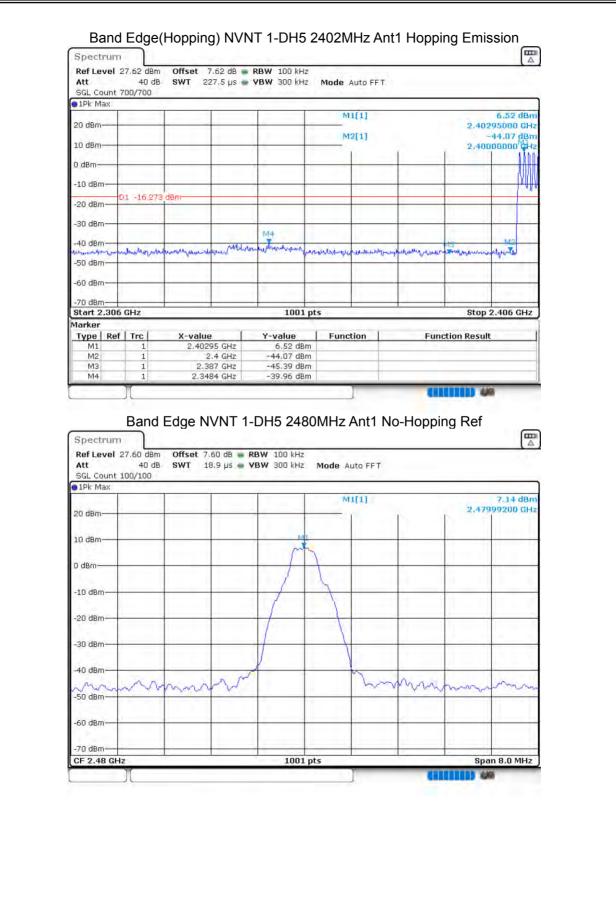



CFS NVNT 2-DH5 2480MHz

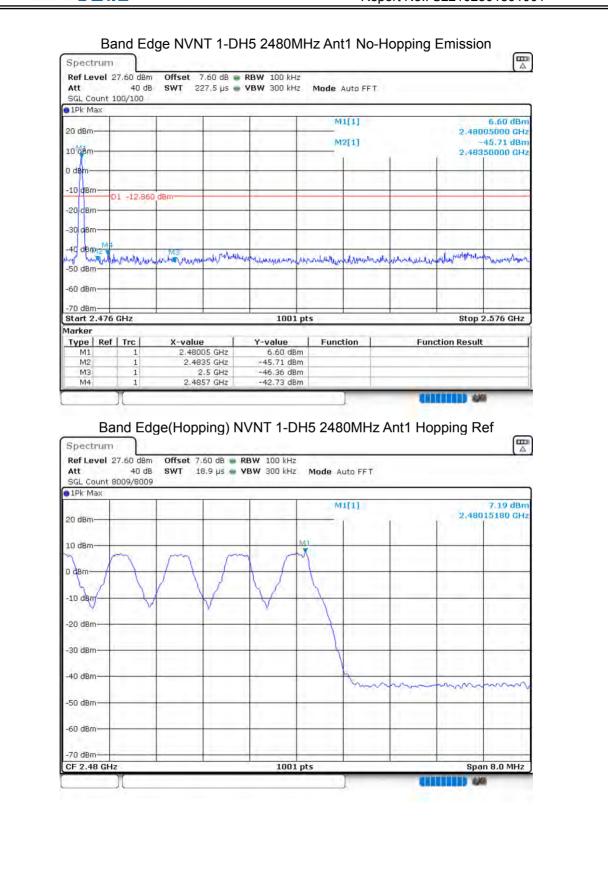

VNT 1-DH5 79 15 Pass Hopping No. NVNT 1-DH5 2402MHz Spectrum Ref Level 27.62 db m Offset 7.62 db m RBW 100 kHz Mode Auto Sweep Su Count 7000/700 MI[1] 2.402040 GHz MI[1] 2.402040 GHz O Bit Max MI[1] 2.402040 GHz O Bit 1 DE	Hopping No. NVNT 1-DH5 2402MHz Ref Level 27.52 dBm Offset 7.62 dB RBW 100 kHz Att 40 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep SGL Count 7000/7000 SWT 1 ms VBW 300 kHz Mode Auto Sweep SGL Count 7000/7000 SWT 1 ms VBW 300 kHz Mode Auto Sweep SGL Count 7000/7000 SWT 1 ms WI[1] 6.38 dBm 20 dBm 1 ms WI[1] 2.402040 GHz 6.77 dBm 10 dBm 2.4022433/GHz 6.77 dBm 2.4022433/GHz 0 dBm 40 dBm 411 2.4022433/GHz 6.77 dBm -10 dBm	ndition	Mode	H	oppin	g Numb			dict				
Spectrum Image: Control of the second s	Spectrum Image: Construction of the sector of	VNT	1-DH5			79	1	5 Pa	ISS				
Spectrum Image: Control of the second s	Spectrum Image: Construction of the sector of					н.				0400			
Ref Level 27.62 dB RBW 100 kHz Att 40 db SWT 1 ms VBW 300 kHz Mode Auto Sweep SGL Count 7000/7000 Image: Count 7000/7000 MI[1] 6.38 dBm Image: Count 7000/7000 MI[1] 2.402040 GHz Image: Count 700 dBm Image: Count 700 dBm Image: Count 700 dBm Image: Count 700 dBm Image: Count 700 dBm Image: Count 700 dBm Image: Count 700 dBm Image: Count 700 dBm Image: Count 700 dBm Image: Count 700 dBm Image: Count 700 dBm Image: Count 700 dBm Image: Count 700 dBm Image: Count 700 dBm Image: Count 700 dBm Image: Count 700 dBm Image: Count 700 dBm Image: Count 700 dBm Image: Count 700	Ref Level 27.62 dBm Offset 7.62 dB RBW 100 kHz Mode Auto Sweep SGL Count 7000/7000 SWT 1 ms VBW 300 kHz Mode Auto Sweep © 1Pk Max		_		_	Но	pping I	NO. NVN	II 1-DH5	2402	MHZ		(77)
Att 40 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep SGL Count 7000/7000 Image: Solution of the second of the sec	Att 40 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep SGL Count 7000/7000 1 ms VBW 300 kHz Mu[1] 6.38 dBm 20 dBm												
SGL Count 7000/7000 IPk Max M1[1] 6.38 dBm 20 dBm M2[1] 2.4020040 GHz 10 dBm M2[1] 6.77 dBm 0 dBm M2[1] 6.77 dBm -10 dBm M2[1] 6.77 dBm -20 dBm -10 dBm -10 dBm -50 dBm -10 dBm -10 dBm -50 dBm -10 dBm -10 dBm -70 dBm -10 dBm -10 dBm <	SGL Count 7000/7000 IPk Max G.38 dBm G.77 dBm G.77 dBm G.80 dBm G.77 dBm G.80 dBm G.77 dBm G.80 dBm <lig.80 dbm<="" li=""></lig.80>			/el 2						ito Sweep	1		
20 dBm M1[1] 6.38 dBm 2.4020040 GHz 6.77 dBm 10 dBm 2.402435/GHz 0 dBm 2.402435/GHz -10 dBm -20 dBm -20 dBm -10 dBm -20 dBm -20 dBm -50 dBm -20 dBm -20 dBm -20 dBm <t< td=""><td>20 dBm M1[1] 6.38 dBm 10 dBm 2.4020040 GHz 6.77 dBm 10 dBm 2.4802435/GHz 6.77 dBm -10 dBm 2.4802435/GHz -10 dBm -20 dBm -20 dBm -20 dBm -50 dBm -20 dBm -20 dBm -50 dBm -20 dBm -20 dBm -10 dBm -20 dBm -20 dBm -20 dBm -20 dBm<</td><td></td><td></td><td></td><td>000/700</td><td>)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	20 dBm M1[1] 6.38 dBm 10 dBm 2.4020040 GHz 6.77 dBm 10 dBm 2.4802435/GHz 6.77 dBm -10 dBm 2.4802435/GHz -10 dBm -20 dBm -20 dBm -20 dBm -50 dBm -20 dBm -20 dBm -50 dBm -20 dBm -20 dBm -10 dBm -20 dBm -20 dBm -20 dBm -20 dBm<				000/700)							
M2[1] 6.77 dBm 2.4802433/GH2 0 gBm 2.4802433/GH2 -10 dBm -10 dBm -20 dBm -10 dBm -80 dBm -10 dBm -50 dBm -10 dBm -60 dBm -10 dBm -70 dBm -1001 pts Start 2.4 GHz 1001 pts Start 2.4 GHz -1001 pts Start 2.4 GHz -1001 pts Start 2.4 GHz -2.4835 GHz	M2[1] 6.77 dBm 0 dBm 2.4802435/GHz -10 dBm -10 dBm -20 dBm -10 dBm -80 dBm -10 dBm -80 dBm -10 dBm -80 dBm -10 dBm -80 dBm -10 dBm -10 dBm -10 dBm -11 dBm -10 dBm		TEK M	10		1		1	M	[1]			
101dBm 2.4802433/GH2 0 #Bm -10 #Bm -10 #Bm -10 H -20 dBm -10 H -20 dBm -10 H -30 dBm -10 H -40 dBm -10 H -50 dBm -10 H -60 dBm -10 H -70 dBm -10 H	10 dBm 2.4802433/GHz 0 dBm -10 dBm -20 dBm -20 dBm -80 dBm -10 dBm -80 dBm -10 dBm -80 dBm -10 dBm -80 dBm -10 dBm -90 dBm -10 dBm -10 dBm -10 dBm -50 dBm -10 dBm -70 dBm -1001 pts Start 2.4 GHz 1001 pts Start 2.4 GHz 1001 pts Start 2.4 GHz 1001 pts Marker -10 dBm Type Ref Trc X-value Y-value Function M1 1 2.402004 GHz		20 dBm-	-				-	M	111		2.40	
-10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -60 dBm -70	-10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm -1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Result		10 dBm-				00000.00	NAAAAAAAAA	1. 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0040447	DISANORADO	2.4	
-10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -60 dBm -70	-10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm -1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Result			MAN	100000	ADTOLOLUA	Innanal	MALIALAAN	TUMANAN	HANAN	HANADAR	MARIANAA	100008
-20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm -60 dBm -60 dBm -70	-20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -60 dBm -60 dBm -60 dBm -70			UW	UWU	WWWWW	NVYYW	WWWW	WWWW	IVYYYYY	WWWWWW	NV VIII	AWWA
-80 dBm -80 dBm -40 dBm -50 dBm -60 dBm -60 dBm -60 dBm -70	-80 dBm -40 dBm -50 dBm -60 dBm -60 dBm -70 dB		-10 881	1111	194043	1	101-10-0	1	THE CONTRACT	un i	<u> </u>	<u> </u>	
AD dBm Image: constraint of the second s	-f0 dBm -10 dBm -10 dBm -50 dBm -50 dBm -10 dBm -60 dBm -10 dBm -10 dBm -70 dBm -10 dBm -10 dBm Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker -70 dBm -70 dBm Type Ref Trc X-value M1 1 2.402004 GHz 6.38 dBm		-20 dBm	-		-	-	-			-		
Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker	-50 dBm -50 dBm -60 dBm -60 dBm -70 dBm -70 dBm Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 6.38 dBm 0		-80 dBm	_				-			-		
Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Y-value Y-value Function Result M1 1 2.402004 GHz 6.38 dBm	-50 dBm -50 dBm -60 dBm -60 dBm -70 dBm -70 dBm Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 6.38 dBm 0												
-60 dBm -70 dBm Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 6.38 dBm	-60 dBm -70 dBm Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 6.38 dBm		-An anu					-					hellow
-70 dBm 1001 pts Stop 2.4835 GHz Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 6.38 dBm 6.38 dBm Function Function	-70 dBm. Image: Start 2.4 GHz 1001 pts Stop 2.4835 GHz Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Image: Stop 2.4835 GHz Image: Stop 2.4835 GHz Type Ref Trc X-value Y-value Function M1 1 2.402004 GHz 6.38 dBm Image: Stop 2.4835 GHz		-50 dBm		_	-	-	-				-	
Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 6.38 dBm 6.38 dBm 6.38 dBm	Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 6.38 dBm 6.38 dBm 6.38 dBm		-60 dBm	-		-		-					
Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 6.38 dBm 6.38 dBm 6.38 dBm	Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 6.38 dBm 6.38 dBm 6.38 dBm		70 dBm					1.1	1.1			$ \cdot = \cdot $	
Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 6.38 dBm 6.38 dBm 6.38 dBm	Type Ref Trc X-value Y-value Function Function Result M1 1 2.402004 GHz 6.38 dBm				z	4	1	100	1 pts	-	1	Stop 2	.4835 GHz
M1 1 2.402004 GHz 6.38 dBm	M1 1 2.402004 GHz 6.38 dBm			Pof	Teo I	V-ualu		Y-ualua	L Eunct	ion 1	Fund	tion Pocul	
	M2 1 2.4802435 GHz 6.77 dBm		M1	KGI	1	2.4020	04 GHz	6.38 d	Bm		Tun	cion kesu	
			M2		1	2,48024	35 GHZ	6.77 d	Bm	-			-
											-		
				_	IL								
				_	IL								
					IL								
					۱ <u>ر</u>								
					۱ <u>۱</u> ـــــ								

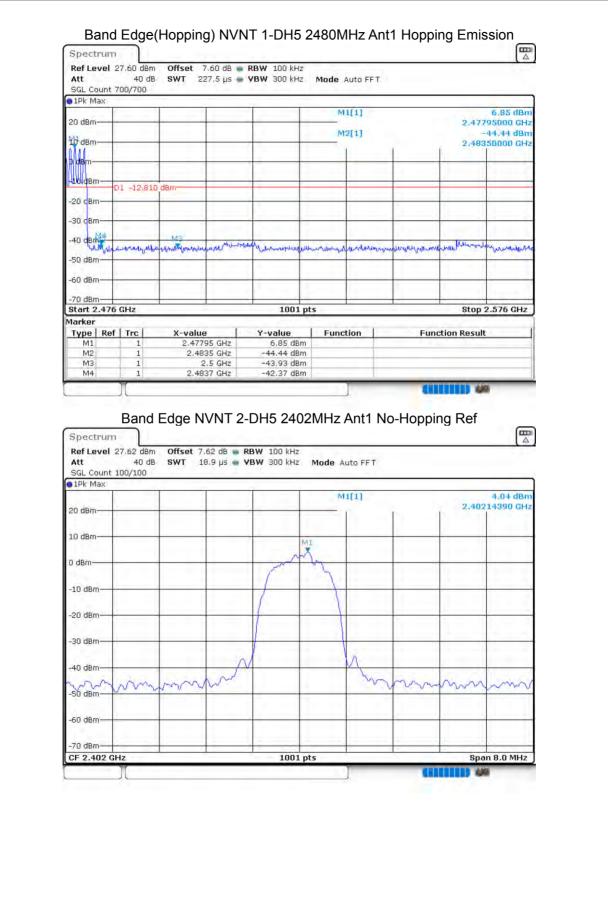
8.6 BAND EDGE

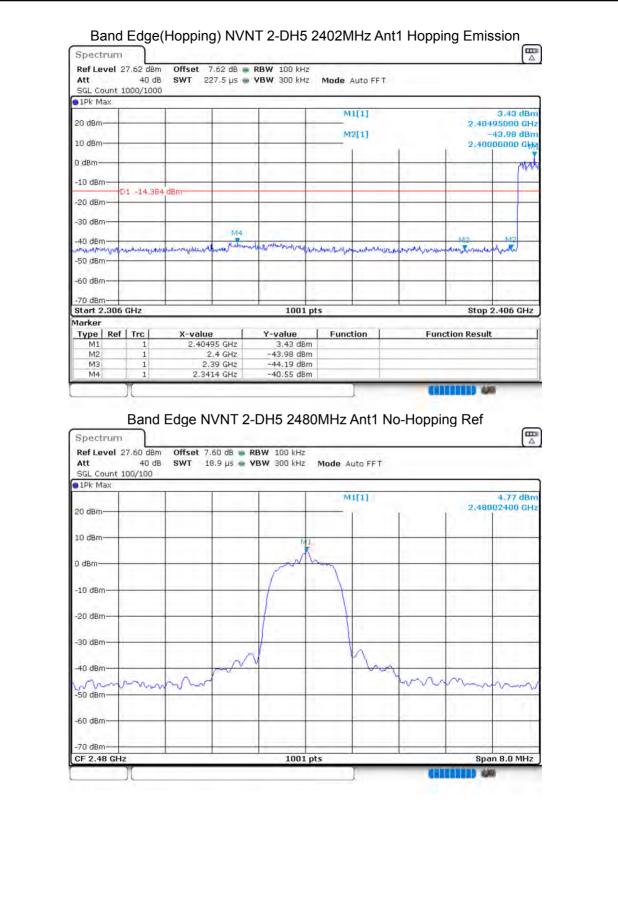
8.6 BANDEL	JGE						
Condition	Mode	Frequency	Antenna	Hopping	Max Value	Limit	Verdict
		(MHz)		Mode	(dBc)	(dBc)	
NVNT	1-DH5	2402	Ant 1	No-Hopping	-49.2	-20	Pass
NVNT	1-DH5	2402	Ant 1	Hopping	-46.69	-23	Pass
NVNT	1-DH5	2480	Ant 1	No-Hopping	-49.86	-20	Pass
NVNT	1-DH5	2480	Ant 1	Hopping	-49.56	-20	Pass
NVNT	2-DH5	2402	Ant 1	No-Hopping	-45.34	-20	Pass
NVNT	2-DH5	2402	Ant 1	Hopping	-46.17	-20	Pass
NVNT	2-DH5	2480	Ant 1	No-Hopping	-46.99	-20	Pass
NVNT	2-DH5	2480	Ant 1	Hopping	-48.56	-20	Pass
NVNT	3-DH5	2402	Ant 1	No-Hopping	-45.93	-20	Pass
NVNT	3-DH5	2402	Ant 1	Hopping	-47.24	-20	Pass
NVNT	3-DH5	2480	Ant 1	No-Hopping	-49.06	-20	Pass
NVNT	3-DH5	2480	Ant 1	Hopping	-47.93	-20	Pass



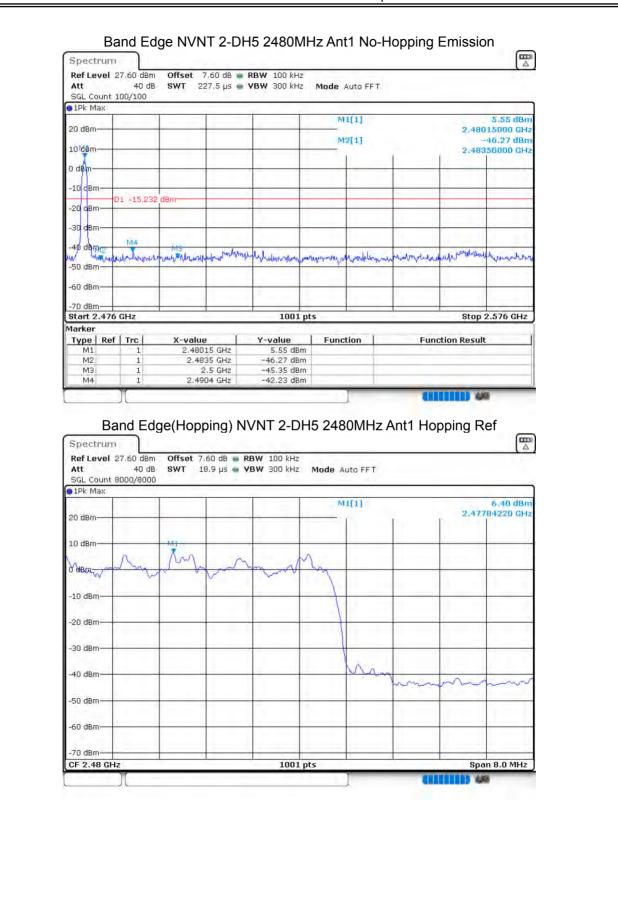
Report No.: S22102501801001 Band Edge NVNT 1-DH5 2402MHz Ant1 No-Hopping Emission Spectrum Ref Level 27.62 dBm Offset 7.62 dB 🝙 RBW 100 kHz Att 40 dB SWT 227.5 µs 🖝 VBW 500 kHz Mode Auto FFT SGL Count 100/100 1Pk Max M1[1] 7.78 dBm 20 dBm 2.40195000 GHz M2[1] 45.67 dBn 10 dBm 2.40000000 GHz 0 dBm -10 dBm-D1 -12,346 dBm--20 dBm--30 dBm Ma -40 dBm and the plan al three hand 11 hours which the strange which and the second strange which which the second strange which are www. nound in more added to the product of the second o 41.1 -60 dBm--70 dBm Start 2.306 GHz 1001 pts Stop 2.406 GHz Marker Type | Ref | Trc X-value Y-value Function Function Result 2.40195 GHz M1 1 7.78 dBm M2 -45.67 dBm 1 2.4 GHz 2.39 GHz M3 -46.55 dBm 1 2.3508 GHz M4 -41.56 dBm 1 Band Edge(Hopping) NVNT 1-DH5 2402MHz Ant1 Hopping Ref Spectrum Ref Level 27.62 dBm Offset 7.62 dB 💼 RBW 100 kHz Att 40 dB SWT 18.9 µs 🖷 VBW 300 kHz Mode Auto FFT SGL Count 8000/8000 1Pk Max MI[1] 6.73 dBn 2.40383820 GHz 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm--60 dBm -70 dBm-CF 2.402 GHz 1001 pts Span 8.0 MHz 100

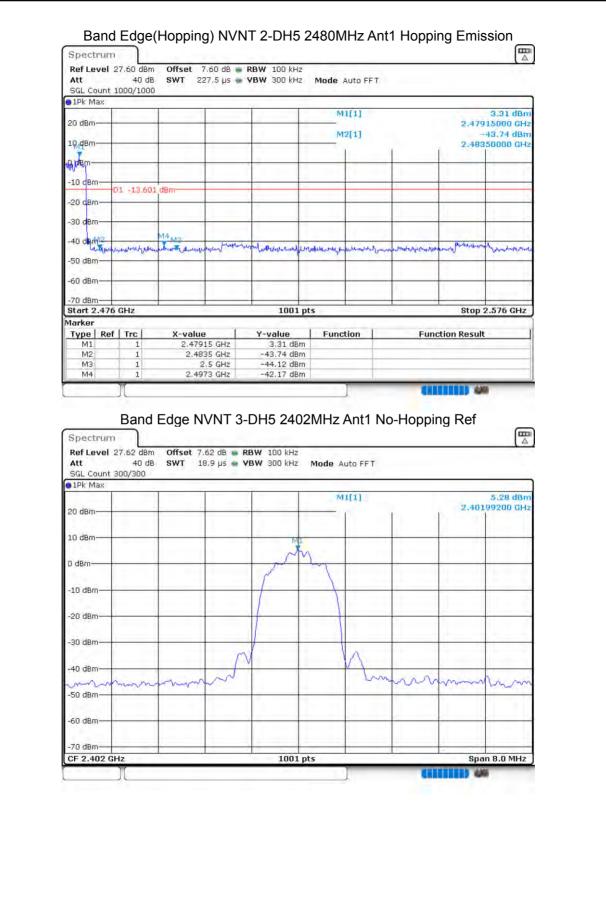


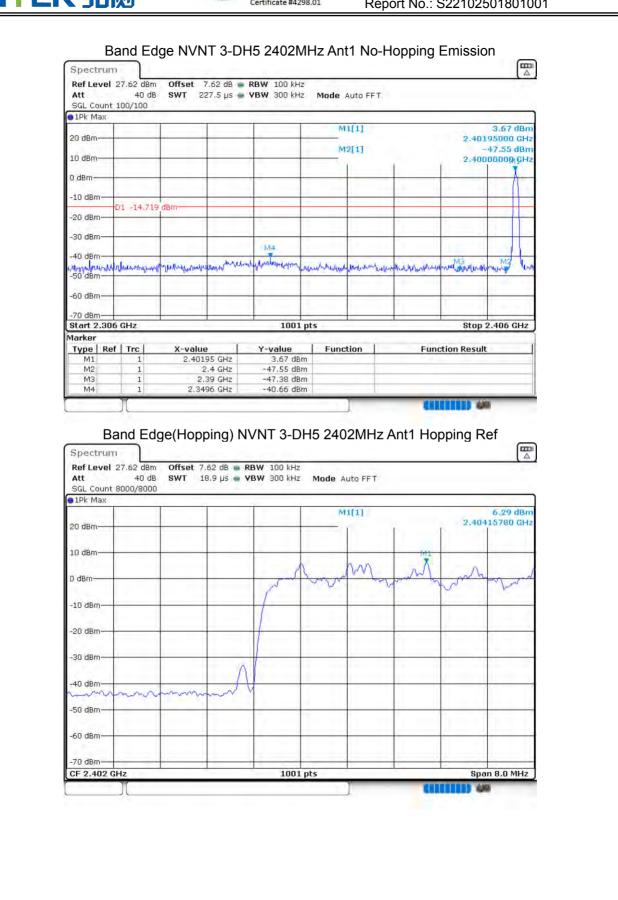


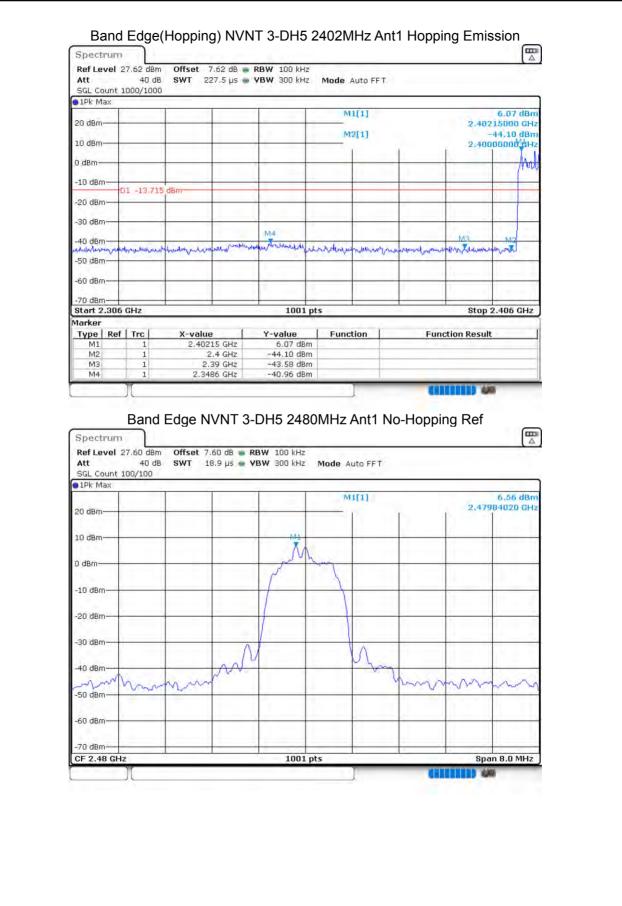


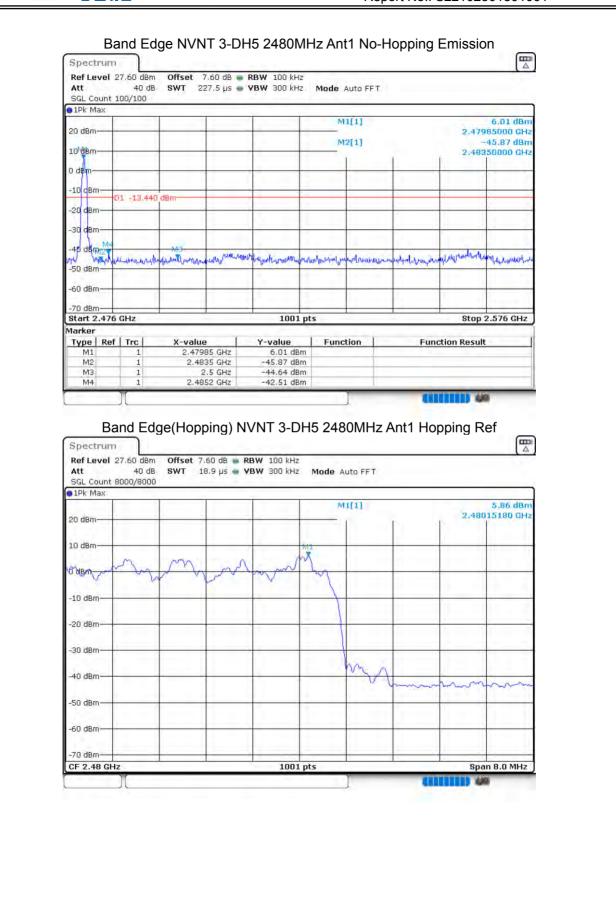
Band Edge NVNT 2-DH5 2402MHz Ant1 No-Hopping Emission Spectrum Ref Level 27.62 dBm Offset 7.62 dB 🝙 RBW 100 kHz Att 40 dB SWT 227.5 µs 🖝 VBW 300 kHz Mode Auto FFT SGL Count 100/100 1Pk Max M1[1] 4.81 dBn 20 dBm 2.40205000 GHz M2[1] 45.73 dBm 10 dBm 2.400000001CHz 0 dBm -10 dBm D1 -15,955 dBm -20 dBm--30 dBm MA -40 dBm and the every good deburg have the she where the on which in with matrich mannahur and have been Miletube about unstaling here -50 dBm -60 dBm -70 dBm Start 2.306 GHz 1001 pts Stop 2.406 GHz Marker Type | Ref | Trc X-value Y-value Function Function Result 2.40205 GHz M1 1 4.81 dBm M2 -45.73 dBm 1 2.4 GHz 2.39 GHz -46.13 dBm M3 1 2.3402 GHz M4 -41.31 dBm 1 Band Edge(Hopping) NVNT 2-DH5 2402MHz Ant1 Hopping Ref Spectrum Ref Level 27.62 dBm Offset 7.62 dB 👜 RBW 100 kHz Att 40 dB SWT 18.9 µs 🖷 VBW 300 kHz Mode Auto FFT SGL Count 8000/8000 1Pk Max MI[1] 5,62 dBn 2.40599600 GHz 20 dBm-10 dBm W 0 dBm In a -10 dBm -20 dBm -30 dBm 40 dBm S -50 dBm -60 dBm -70 dBm-Span 8.0 MHz CF 2.402 GHz 1001 pts 100







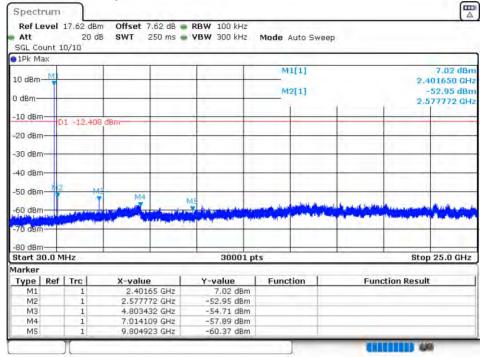


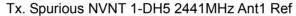


Ref Level Att SGL Count	67 CO 400					
	40 df		VBW 300 kHz	Mode Auto FFT		
1Pk Max	1000/100					
				M1[1]		4.19 dBm
20 dBm				AADEAT		2.47995000 GHz -44.34 dBm
10 d8m-			1	M2[1]		2,48350000 GHz
J					1 1	
prais m						
-10 cBm					-	
	D1 -14.13	7 dBm				
-20 dBm			1 1			
-30 dBm-	· · · · · ·				-	
	M4	Ma				100 B
		and white an internet from the second	Mr. Monthe Mutan marine	municular	man warment	weith managentic markers
-50 dBm	k.					1.125
1.1						
-60 dBm						
-70 dBm	_				-	
Start 2.476	GHz		1001 pts	5		Stop 2.576 GHz
larker						
	Trc	X-value	Y-value	Function	Functi	on Result
M1 M2	1	2.47995 GHz 2.4835 GHz	4.19 dBm -44.34 dBm			
M3	1	2.5 GHz	-44.02 dBm			
M4	1	2.4881 GHz	-42.08 dBm	-		

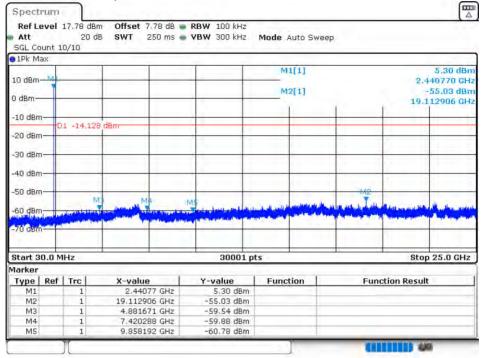
8.7 CONDUCTED RF SPURIOUS EMISSION

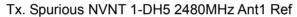
	-					
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	-60.54	-20	Pass
NVNT	1-DH5	2441	Ant 1	-60.89	-20	Pass
NVNT	1-DH5	2480	Ant 1	-61.52	-20	Pass
NVNT	2-DH5	2402	Ant 1	-60.4	-20	Pass
NVNT	2-DH5	2441	Ant 1	-61.03	-20	Pass
NVNT	2-DH5	2480	Ant 1	-61.63	-20	Pass
NVNT	3-DH5	2402	Ant 1	-59.91	-20	Pass
NVNT	3-DH5	2441	Ant 1	-60.36	-20	Pass
NVNT	3-DH5	2480	Ant 1	-61.43	-20	Pass

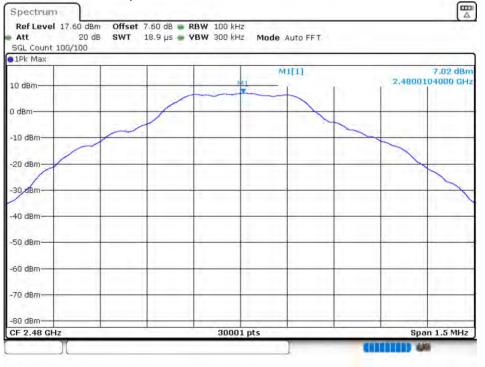



Tx. Spurious NVNT 1-DH5 2402MHz Ant1 Ref

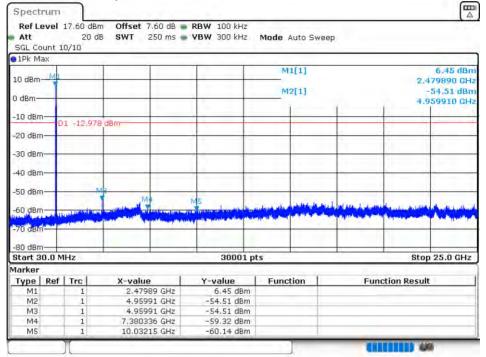
Tx. Spurious NVNT 1-DH5 2402MHz Ant1 Emission

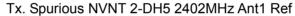


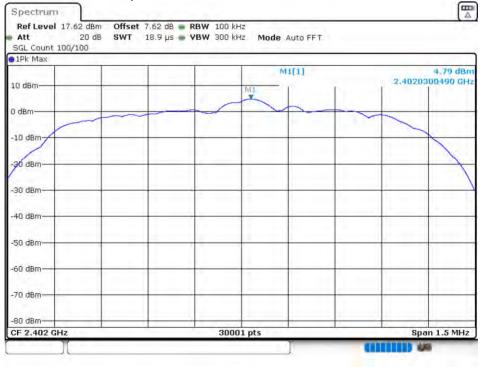




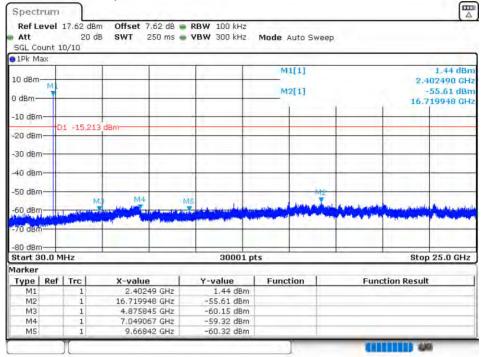
Tx. Spurious NVNT 1-DH5 2441MHz Ant1 Emission

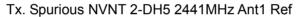


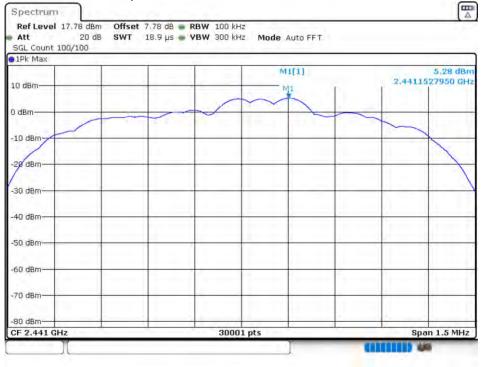




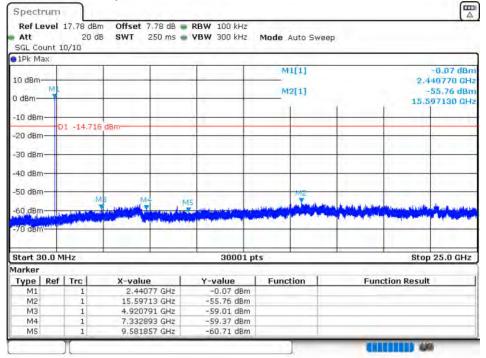
Tx. Spurious NVNT 1-DH5 2480MHz Ant1 Emission

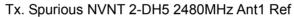


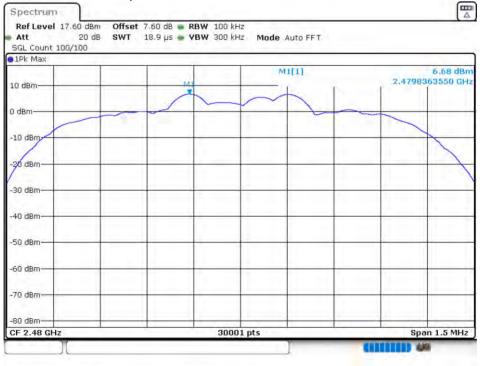




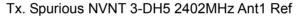
Tx. Spurious NVNT 2-DH5 2402MHz Ant1 Emission



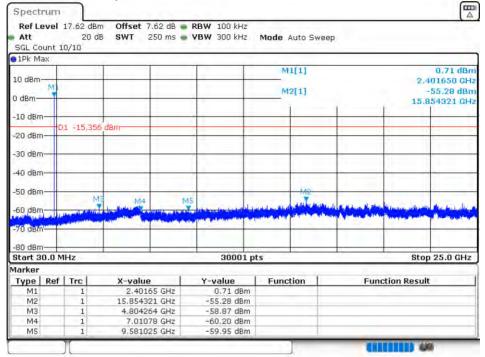




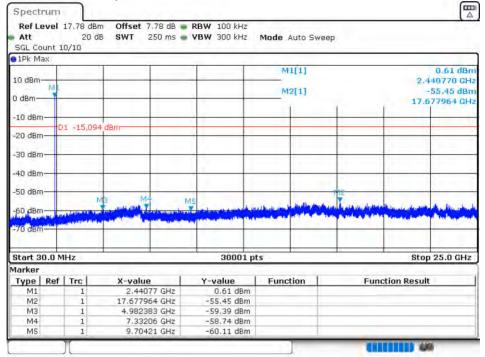
Tx. Spurious NVNT 2-DH5 2441MHz Ant1 Emission

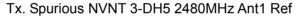


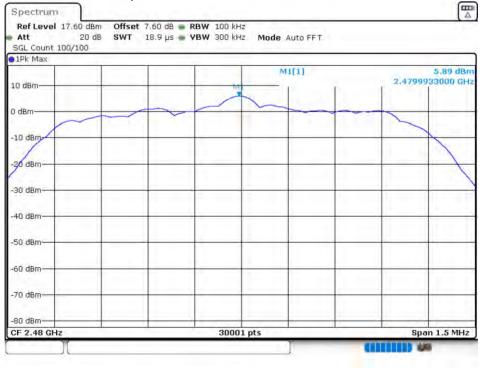
Tx. Spurious NVNT 2-DH5 2480MHz Ant1 Emission



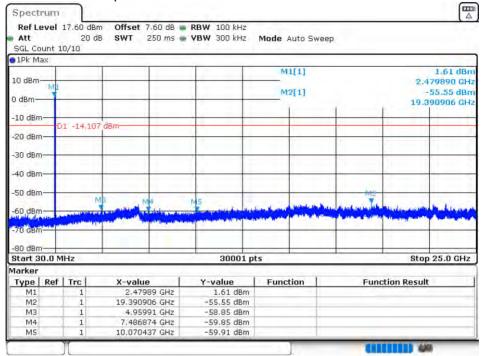
Tx. Spurious NVNT 3-DH5 2402MHz Ant1 Emission







Tx. Spurious NVNT 3-DH5 2441MHz Ant1 Emission



Tx. Spurious NVNT 3-DH5 2480MHz Ant1 Emission

END OF REPORT