
1 COVER PAGE 2 CONTENTS 3 VERSION 4 TEST SUMMARY 5 GENERAL INFORMATION 5.1 Client Information 5.2 GENERAL DESCRIPTION OF EUT 5.3 TEST CONFIGURATION 5.4 TEST ENVIRONMENT 5.5 DESCRIPTION OF SUPPORT UNITS 5.8 EQUIPMENT LIST 6 TEST RESULTS AND MEASUREMENT DATA 6.1 ANTENNA REQUIREMENT 6.3 200E Emission BADWOOTH. 6.4 CARRIER FREQUENCY SEPARATION. 6.5 NUMBER OF HOPPING CHAINNEL. 6.6 TIME OF OCCUPANCY. 6.7 BAND EOGE MEASUREMENTS. 6.8 CONDUCTED SUPPORT UNIVERSIONS. 6.9 OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM. 6.11 Radiated Emission below 1GHz. 7 APPENDIX A. 8 PHOTOGRAPHS OF TEST SETUP.								Ра
2 CONTENTS	1 COVER P	AGE						
4 TEST SUMMARY 5 GENERAL INFORMATION								
5 GENERAL INFORMATION	3 VERSION							
5.1 CLIENT INFORMATION. 5.2 GENERAL DESCRIPTION OF EUT. 5.3 TEST CONFIGURATION 5.4 TEST ENVIRONMENT 5.5 DESCRIPTION OF SUPPORT UNITS. 5.8 EQUIPMENT LIST. 6 TEST RESULTS AND MEASUREMENT DATA. 6.1 ANTENNA REQUIREMENT. 6.2 MAXIMUM CONDUCTED OUTPUT POWER. 6.3 200B EMISSION BANDWIDTH. 6.4 CARRIER FREQUENCY SEPARATION. 6.5 NUMBER OF HOPPING CHANNEL. 6.6 TIME OF OCCUPANCY. 6.7 BAND EDGE MEASUREMENTS. 6.8 CONDUCTED SPURIOUS EMISSIONS. 6.9 OTHER REQUIREMENTS. 6.10 RADINETED SPURIOUS EMISSIONS 6.91 THER REQUIREMENTS REQUENCY HOPPING SPREAD SPECTRUM SYSTEM. 6.11.1 Radiated Emission below 1GHz. 7 APPENDIX A. 8 PHOTOGRAPHS OF TEST SETUP.	4 TEST SUI	MMARY	••••••					
5.2 GENERAL DESCRIPTION OF EUT. 5.3 TEST CONFIGURATION 5.4 TEST FENVIRONMENT 5.5 DESCRIPTION OF SUPPORT UNITS. 5.8 EQUIPMENT LIST. 6 TEST RESULTS AND MEASUREMENT DATA. 6.1 ANTENNA REQUIREMENT 6.2 MAXIMUM CONDUCTED OUTPUT POWER. 6.3 20DB EMISSION BANDWIDTH. 6.4 CARRIER FREQUENCY SEPARATION. 6.5 NUMBER OF HOPPING CHANNEL. 6.6 TIME OF OCCUPANCY. 6.7 BAND EDGE MEASUREMENTS 6.8 CONDUCTED SPURIOUS EMISSIONS. 6.9 OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM. 6.10 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS. 6.11.1 Radiated Emission below 1GHz. 7 APPENDIX A. 8 PHOTOGRAPHS OF TEST SETUP.	5 GENERAI			•••••				
6 TEST RESULTS AND MEASUREMENT DATA	5.2 GENE 5.3 TEST 5.4 TEST 5.5 DESC	RAL DESCRIPTION CONFIGURATION ENVIRONMENT RIPTION OF SUPPO	OF EUT					
6.1 ANTENNA REQUIREMENT. 6.2 MAXIMUM CONDUCTED OUTPUT POWER. 6.3 20DB EMISSION BANDWIDTH. 6.4 CARRIER FREQUENCY SEPARATION 6.5 NUMBER OF HOPPING CHANNEL. 6.6 TIME OF OCCUPANCY 6.6 TIME OF OCCUPANCY 6.7 BAND EDGE MEASUREMENTS. 6.8 CONDUCTED SPURIOUS EMISSIONS. 6.9 OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM 6.10 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS. 6.11.1 Radiated Emission below 1GHZ 7 APPENDIX A								
	6.4 CARR 6.5 NUMB 6.6 TIME 0 6.7 BAND 6.8 COND 6.9 OTHE 6.10 RAD 6.11.1	IER FREQUENCY S ER OF HOPPING C OF OCCUPANCY EDGE MEASUREMI UCTED SPURIOUS R REQUIREMENTS I IATED SPURIOUS E Radiated Emissio	EPARATION HANNEL ENTS EMISSIONS FREQUENCY HO MISSION & RES on below 1GHz.	PPING SPREAD TRICTED BAND) Spectrum S S	SYSTEM	\odot	
	7 APPENDI	х А		Hz		0		C
	7 APPENDI	х А		Hz		0		C
	7 APPENDI	х А		Hz		0		C
	7 APPENDI	х А		Hz		0		C
	7 APPENDI 8 PHOTOGI	X ARAPHS OF TEST	SETUP	Hz		0	6	C
	7 APPENDI 8 PHOTOGI	X ARAPHS OF TEST	SETUP	Hz		0	6	C

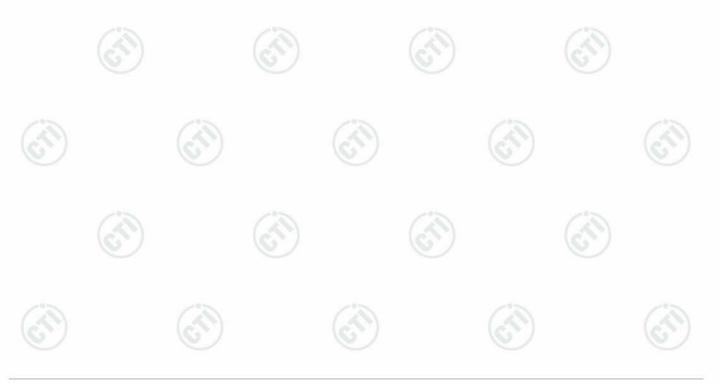
Page 3 of 47

Version No.	Date	Description	
00	Jun. 25, 2021	Original	

Page 4 of 47

4 Test Summary

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	N/A ¹
Maximum Conducted Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	PASS
20dB Emission Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Carrier Frequency Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Number of Hopping Channels	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Time of Occupancy	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS
Band Edge Measurements	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
Restricted bands around fundamental frequency	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS


Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

N/A¹) The Product is powered battery.

N/A¹) Bluetooth will not work when the EUT is charged, so it is not applicable.

Note: There is only one model: TM-053, but it has three colors (black, white, and green), only the black EUT has been tested.

Page 5 of 47

5 General Information

5.1 Client Information

Applicant:	MINISO Corporation
Address of Applicant:	Room 2501, No. 486 Heye Square, Kangwang Middle Road, Liwan District, Guangzhou, Guangdong, China
Manufacturer:	Shenzhen Qiwei Electronic Technology Co., Ltd
Address of Manufacturer:	16 / F, block C, Xixiang Central Avenue, Bao'an District, Shenzhen
Factory:	Dongguan China ETECH GROUPS CO.,LTD.
Address of Factory:	Room 501,Building 6, No.2 Hong Jin Road, Li Zhou Jiao Village, Hongmei Town,Dongguan City

5.2 General Description of EUT

		ireless Headphones				
Model No.:	TM-053	\mathcal{O}	6		6	
Trade Mark:	MINISO					
Product Type:		Portable 🗌 Fix I	_ocation			
Bluetooth Version:	BT 5.1					
Operation Frequency:	2402MHz~2480N	ЛНz		(C)		
Modulation Technique:	Frequency Hoppi	ing Spread Spectrur	n(FHSS)			
Modulation Type:	GFSK, π/4DQPS	K				
Number of Channel:	79		(2)		12	
Hopping Channel Type:	Adaptive Frequer	ncy Hopping system	IS		6	
Antenna Type:	PCB antenna	PCB antenna				
Antenna Gain:	5.1dBi	5.1dBi				
Power Supply:	Li-ion Battery					
Test Voltage:	Battery 3.7V			U		
Sample Received Date:	May. 14, 2021					
Sample tested Date:	May.17, 2021 to	May. 27, 2021			12	
	Product Type:Bluetooth Version:Operation Frequency:Modulation Technique:Modulation Type:Number of Channel:Hopping Channel Type:Antenna Type:Antenna Gain:Power Supply:Test Voltage:Sample Received Date:	Product Type: 	Product Type:MobilePortableFix LBluetooth Version:BT 5.1Operation Frequency:2402MHz~2480MHzModulation Technique:Frequency Hopping Spread SpectrurModulation Type:GFSK, π/4DQPSKNumber of Channel:79Hopping Channel Type:Adaptive Frequency Hopping systemAntenna Type:PCB antennaAntenna Gain:5.1dBiPower Supply:Li-ion Battery-BJY 502025 3. +200mAh 0.74WSample Received Date:May. 14, 2021	Product Type:MobilePortableFix LocationBluetooth Version:BT 5.1Operation Frequency:2402MHz~2480MHzModulation Technique:Frequency Hopping Spread Spectrum(FHSS)Modulation Type:GFSK, π/4DQPSKNumber of Channel:79Hopping Channel Type:Adaptive Frequency Hopping systemsAntenna Type:PCB antennaAntenna Gain:5.1dBiPower Supply:Li-ion Battery-BJY 502025 3.7V +200mAh 0.74Wh 2012Test Voltage:Battery 3.7VSample Received Date:May. 14, 2021	Product Type:MobilePortableFix LocationBluetooth Version:BT 5.1Operation Frequency:2402MHz~2480MHzModulation Technique:Frequency Hopping Spread Spectrum(FHSS)Modulation Type:GFSK, π/4DQPSKNumber of Channel:79Hopping Channel Type:Adaptive Frequency Hopping systemsAntenna Type:PCB antennaAntenna Gain:5.1dBiPower Supply:Li-ion Battery-BJY 502025 3.7V +200mAh 0.74Wh 2012Test Voltage:Battery 3.7VSample Received Date:May. 14, 2021	

()	14	6.4		6.23		12	A
Operation F	- requency each	of channel					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz	215	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

	(C)
Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

5.3 Test Configuration

EUT Test Software Settings Software:		25
Soltware.	FCC_assist_1.0.1.2	
EUT Power Grade:	Default	
Use test software to set the lo transmitting of the EUT.	west frequency, the middle frequency and the	e highest frequency keep
Mode	Channel	Frequency(MHz)
	СНО	2402
DH1/DH3/DH5	CH39	2441
	CH78	2480
	СН0	2402
2DH1/2DH3/2DH5	СН39	2441
	CH78	2480

5.4 Test Environment

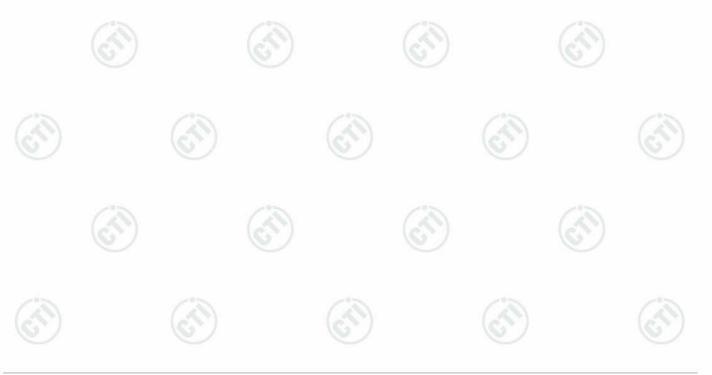
	Operating Environment	t:				
	Radiated Spurious Emi	ssions:				
	Temperature:	22~25.0 °C				-1-
2	Humidity:	50~55 % RH				(A)
2	Atmospheric Pressure:	1010mbar		S		C
	Conducted Emissions:					
	Temperature:	22~25.0 °C				
	Humidity:	50~55 % RH				
	Atmospheric Pressure:	1010mbar	(0)		S)	
	RF Conducted:					
	Temperature:	22~25.0 °C				
	Humidity:	50~55 % RH		13		10
e)	Atmospheric Pressure:	1010mbar		(3)		(\mathcal{C}^{*})

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Certification	Supplied b
Notebook	DELL	D245DX2	CE&FCC	DELL

5.6 Test Location


All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

5.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty		
1	Radio Frequency	7.9 x 10 ⁻⁸		
2	PE nower conducted	0.46dB (30MHz-1GHz)		
2	RF power, conducted	0.55dB (1GHz-18GHz)		
		3.3dB (9kHz-30MHz)		
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)		
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)		
		3.4dB (18GHz-40GHz)		
\mathbf{S}	Conduction emission	3.5dB (9kHz to 150kHz)		
4	Conduction emission	3.1dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	3.8%		
7	DC power voltages	0.026%		

Page 9 of 47

5.8 Equipment List

		RF test s	ystem		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-28-2020	12-27-2021
Signal Generator	Keysight	N5182B	MY53051549	12-28-2020	12-27-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-29-2020	06-28-2021
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	$(\underline{\circ})$		S
High-pass filter	MICRO- TRONICS	SPA-F-63029-4			
DC Power	Keysight	E3642A	MY56376072	12-28-2020	12-27-2021
PC-1	Lenovo	R4960d		(C)	
Power unit	R&S	OSP120	101374	12-28-2020	12-27-2021
RF control unit	JS Tonscend	JS0806-2	158060006	12-28-2020	12-27-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	A	(<u>()</u>

		3M Semi/full-anec	noic Champer	1	
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2021	05-15-2022
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-15-2021	04-14-2024
Receiver	R&S	ESCI7	100938-003	10-16-2020	10-15-2021
Multi device Controller	maturo	NCD/070/10711 112	_		
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-29-2020	06-28-2021
Cable line	Fulai(7M)	SF106	5219/6A		63
Cable line	Fulai(6M)	SF106	5220/6A		(C
Cable line	Fulai(3M)	SF106	5216/6A	<u> </u>	>
Cable line	Fulai(3M)	SF106	5217/6A		

Page 10 of 47

		3M full-anecho	Serial	Cal. date	Cal. Due date
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-04-2021	03-03-2022
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-04-2021	03-03-2022
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-04-2021	03-03-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020 05-20-2021	05-19-2021 05-19-2022
Preamplifier	EMCI	EMC001330	980563	04-22-2021	04-21.2024
Preamplifier	JS Tonscend	980380	EMC051845 SE	12-31-2020	12-30-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-16-2021	04-15-2022
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018 01-09-2021	01-16-2021 01-08-2024
Filter bank	JS Tonscend	JS0806-F	188060094	01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002	25	
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		- (é
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		
Cable line	Times	EMC104-NMNM- 1000	SN160710		
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001	(<u>-</u>
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	(3)	- /

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard re	equirement:	47 CFR	Part 15C Sec	tion 15.203 /2	247(c)			
responsible antenna that so that a bro electrical con 15.247(b) (4 The conduct antennas wir section, if tra power from t	al radiator sha party shall be t uses a unique oken antenna nnector is pro-) requirement ted output poor th directional ansmitting ant the intentional b)(3) of this s	e used with the ue coupling to can be replate whibited. t: wer limit spect gains that do tennas of direct	I be designed to ensure that no antenna other than that furnished by the used with the device. The use of a permanently attached antenna or of an e coupling to the intentional radiator, the manufacturer may design the unit an be replaced by the user, but the use of a standard antenna jack or ibited. er limit specified in paragraph (b) of this section is based on the use of ains that do not exceed 6 dBi. Except as shown in paragraph (c) of this nnas of directional gain greater than 6 dBi are used, the conducted output radiator shall be reduced below the stated values in paragraphs (b)(1), ction, as appropriate, by the amount in dB that the directional gain of the					
EUT Antenr		Please s	ee Internal ph	notos				
The antenna is PCB antenr		nna. The bes	a. The best case gain of the antenna is 5.1dBi.					

6.2 Maximum Conducted Output Power

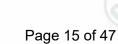
Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)			
Test Method:	ANSI C63.10:2013			
Test Setup:	Control Control Control Power Suppy Power TemPerature CABINET Table			
	Remark: Offset=Cable loss+ attenuation factor.			
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.			
Limit:	21dBm			
Exploratory Test Mode	e: Non-hopping transmitting with all kind of modulation and all kind of data type			
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSk modulation type, 2-DH5 of data type is the worst case of π /4DQPSk modulation type.			
Test Results:	Refer to Appendix A			

Page 13 of 47

6.3 20dB Emission Bandwidth

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)					
	Test Method:	ANSI C63.10:2013					
	Test Setup:	Control Computer Supply Forwar Supply Table RF test System Instrument					
	Test Procedure:	 Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. 4. Measure and record the results in the test report. 					
<u></u>	Limit:	NA					
8	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type					
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type.					
	Test Results:	Refer to Appendix A					
	0						

Page 14 of 47


6.4 Carrier Frequency Separation

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)			
	Test Method:	ANSI C63.10:2013			
	Test Setup:	Control Computer Power Supply Teliperature CaBnet Table			
4		Remark: Offset=Cable loss+ attenuation factor.			
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for eac measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW i set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report. 			
	Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.			
	Exploratory Test Mode	e: Hopping transmitting with all kind of modulation and all kind of data type			
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type.			
0	Test Results:	Refer to Appendix A			

6.5 Number of Hopping Channel

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)				
•					
Test Method:	ANSI C63.10:2013				
Test Setup:	Control Control Control Power Supply Temperature CABNET Table				
1	Remark: Offset=Cable loss+ attenuation factor.				
Test Procedure:	 Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto Detector function = peak; Trace = max hold. 5. The number of hopping frequency used is defined as the number of total channel. 6. Record the measurement data in report. 				
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.				
Test Mode:	Hopping transmitting with all kind of modulation				
Test Results:	Refer to Appendix A				

Page 16 of 47

6.6 Time of Occupancy

Т	est Requirement:	47 CFR Part 15C Section 15.247 (a)(1)					
Т	est Method:	ANSI C63.10:2013					
T	ēst Setup:	Control Control Control Power Supply Temperature casher Table					
-		Remark: Offset=Cable loss+ attenuation factor.					
	est Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 					
L	imit:	The average time of occupancy on any channel shall not be greater than 0. seconds within a period of 0.4 seconds multiplied by the number of hoppin channels employed.					
Т	est Mode:	Hopping transmitting with all kind of modulation and all kind of data type.					
Т	est Results:	Refer to Appendix A					

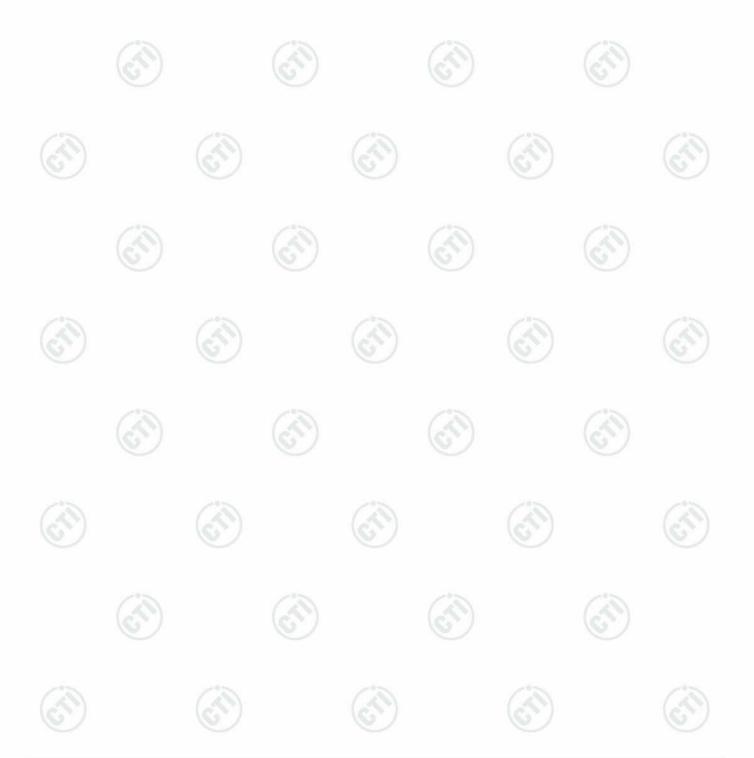
Page 17 of 47

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Control Power Supply Power Power Power Power Table RF test System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 Set to the maximum power setting and enable the EUT transmic continuously. Set RBW = 100 kHz, VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Exploratory Test Mode	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type.
Test Results:	Refer to Appendix A

Test Requirement:	47 CFR Part 15C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013				
Test Setup:	Control Computer Power Suppy Temperature cabinet Table				
	Remark: Offset=Cable loss+ attenuation factor.				
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. 				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type				
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type.				
Test Results:	Refer to Appendix A				

Page 19 of 47

6.9	Other requirements Frequency Hopping Spread Spectrum System						
	Test Requirement:47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:						
0	The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.						
	Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.						
	The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.						
	Compliance for section 15.247(a)(1)						
	According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. • Number of shift register stages: 9						
D	 Length of pseudo-random sequence: 2⁹ -1 = 511 bits Longest sequence of zeros: 8 (non-inverted signal) 						
	Linear Feedback Shift Register for Generation of the PRBS sequence						
	An example of Pseudorandom Frequency Hopping Sequence as follow:						
D	20 62 46 77 7 64 8 73 16 75 1						
	Each frequency used equally on the average by each transmitter. According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and II bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.						
	According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and II bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals. Compliance for section 15.247(g)						
	According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and II bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.						

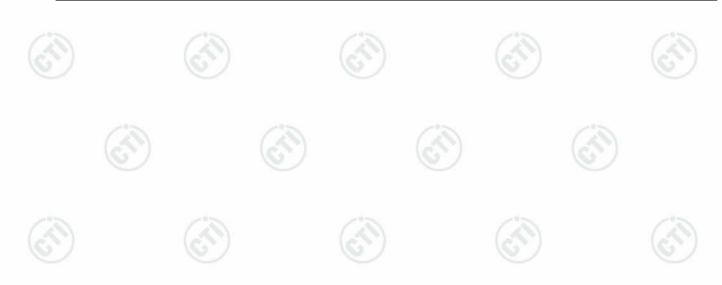


Page 20 of 47

Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels. According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual

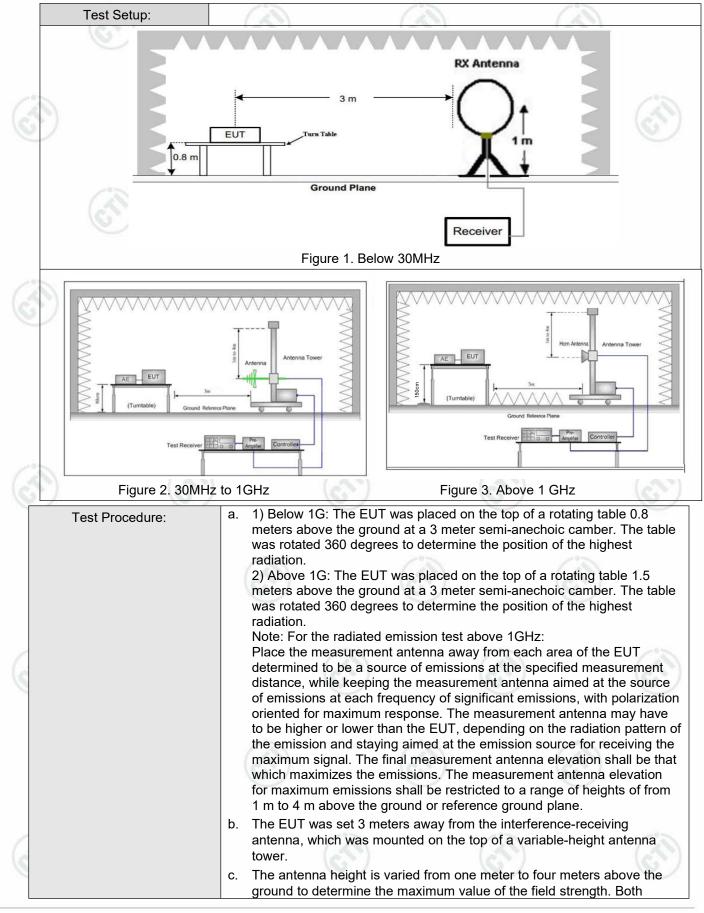
hopping frequencies by multiple transmitter.



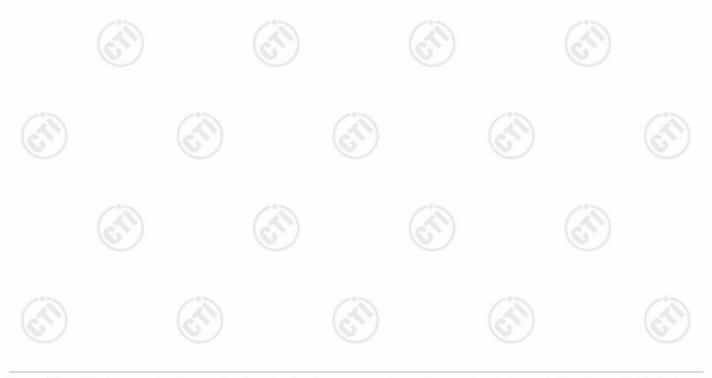
Page 21 of 47

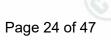
6.10 Radiated Spurious Emission & Restricted bands

	Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205							
	Test Method:	ANSI C63.10: 2013							
	Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)							
<	Receiver Setup:	Frequency		Detector	RBW	VBW	Remark		
2		0.009MHz-0.090MH	z	Peak	10kHz	: 30kHz	Peak		
		0.009MHz-0.090MH	lz	Average	10kHz	: 30kHz	Average		
		0.090MHz-0.110MH	lz	Quasi-peak	10kHz	: 30kHz	Quasi-peak		
		0.110MHz-0.490MH	lz	Peak	10kHz	30kHz	Peak		
		0.110MHz-0.490MH	lz	Average	10kHz	30kHz	Average		
		0.490MHz -30MHz	<u>.</u>	Quasi-peak	10kHz	: 30kHz	Quasi-peak		
		30MHz-1GHz		Peak	100 kH	z 300kHz	Peak		
2				Peak	1MHz	3MHz	Peak		
3		Above 1GHz	91	Peak	1MHz	10kHz	Average		
	Limit:	Frequency	1	ld strength rovolt/meter)	Limit (dBuV/m)	Remark	Measuremen distance (m)		
		0.009MHz-0.490MHz	24	00/F(kHz)	-	-/3	300		
		0.490MHz-1.705MHz	240	000/F(kHz)	-	- (A)	30		
		1.705MHz-30MHz		30	-	_	30		
		30MHz-88MHz		100	40.0	Quasi-peak	3		
2		88MHz-216MHz	5	150	43.5	Quasi-peak	3		
5		216MHz-960MHz	(200	46.0	Quasi-peak	3		
4		960MHz-1GHz	1	500	54.0	Quasi-peak	3		
		Above 1GHz		500	54.0	Average	3		
		Note: 15.35(b), Unless emissions is 20df applicable to the peak emission lev	3 abo equip	ove the maxin ment under t	num permi test. This p	tted average	emission limit		



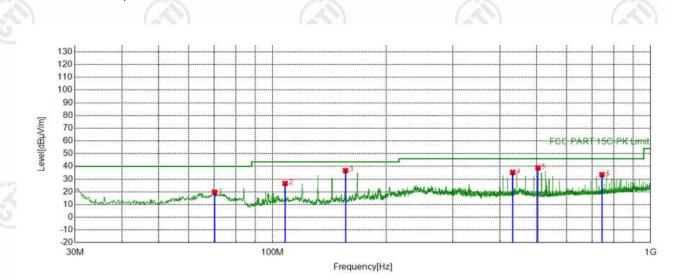
Report No. : EED32N80339001





Page 23 of 47

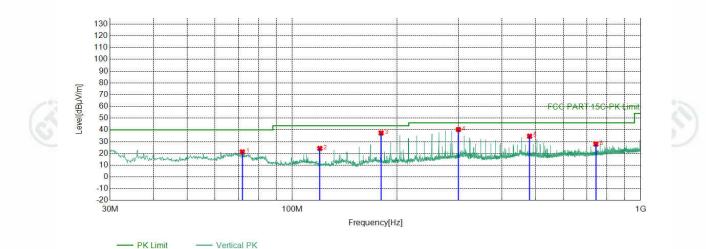
	Test Results:	Pass
		Only the worst case is recorded in the report.
		Pretest the EUT at Transmitting mode, For below 1GHz part, through pre- scan, the worst case is the lowest channel.
	Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case.
	Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type
		i. Repeat above procedures until all frequencies measured was complete.
6		h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
		 g. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz)
		f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
0		e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
		d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
		horizontal and vertical polarizations of the antenna are set to make the measurement.



6.11.1 Radiated Emission below 1GHz

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes with all channels, GFSK Channel 2480MHz was selected as the worst condition. The test data of the worst-case condition was recorded in this report.

	Mode:		GF	SK Transmit	ting	Channel:			2480		
C	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
C	1	70.2590	-20.85	40.51	19.66	40.00	20.34	PASS	Horizontal	PK	
	2	107.995	-18.39	45.01	26.62	43.50	16.88	PASS	Horizontal	PK	
	3	156.015	-21.35	58.07	36.72	43.50	6.78	PASS	Horizontal	PK	
	4	432.008	-12.22	47.53	35.31	46.00	10.69	PASS	Horizontal	PK	
	5	503.989	-10.79	49.64	38.85	46.00	7.15	PASS	Horizontal	PK	
	6	743.991	-7.09	40.59	33.50	46.00	12.50	PASS	Horizontal	PK	



Page 25 of 47

		QP Detector	r 🗰 AV I	Detector						
2	Mode:		GF	SK Transmit	tting Channel:			24	80	
Ó	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	71.9082	-21.14	42.45	21.31	40.00	18.69	PASS	Vertical	PK
	2	120.025	-20.08	44.37	24.29	43.50	19.21	PASS	Vertical	PK
	3	179.977	-19.82	57.24	37.42	43.50	6.08	PASS	Vertical	PK
	4	299.978	-15.44	55.75	40.31	46.00	5.69	PASS	Vertical	PK
	5	480.028	-11.20	45.86	34.66	46.00	11.34	PASS	Vertical	PK
	6	743.991	-7.09	35.03	27.94	46.00	18.06	PASS	Vertical	PK
100	1		-0-		100			11 may		10-

Page 26 of 47

6.11.2 Transmitter Emission above 1GHz

	Mode:			GFSK Tran	smitting		Channel:		2402	
5	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1887.8888	3.94	39.91	43.85	74.00	30.15	PASS	Н	PK
	2	3989.0659	-18.91	62.88	43.97	74.00	30.03	PASS	Н	PK
	3	4804.1203	-16.23	64.54	48.31	74.00	25.69	PASS	Н	PK
	4	7205.2804	-11.83	69.57	57.74	74.00	16.26	PASS	Н	PK
	5	7207.2805	-11.83	62.49	50.66	54.00	3.34	PASS	Н	AV
	6	9607.4405	-7.37	68.21	60.84	74.00	13.16	PASS	Н	PK
2	7	9609.4406	-7.37	56.38	49.01	54.00	4.99	PASS	Н	AV
	8	15242.8162	1.02	50.12	51.14	74.00	22.86	PASS	Н	PK
9	9	2128.7129	4.57	42.84	47.41	74.00	26.59	PASS	V	PK
	10	4251.0834	-17.62	65.07	47.45	74.00	26.55	PASS	V	PK
	11	5314.1543	-14.77	60.57	45.80	74.00	28.20	PASS	V	PK
	12	7205.2804	-11.83	66.29	54.46	74.00	19.54	PASS	V	PK
	13	7207.2805	-11.83	58.45	46.62	54.00	7.38	PASS	V	AV
	14	9607.4405	-7.37	64.45	57.08	74.00	16.92	PASS	V	PK
	15	9609.4406	-7.37	54.88	47.51	54.00	6.49	PASS	V	AV
	16	14376.7585	0.83	50.00	50.83	74.00	23.17	PASS	V	PK

Mode:			GFSK Tran	smitting		Channel:		2441	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2125.9126	4.60	42.22	46.82	74.00	27.18	PASS	Н	PK
2	3992.0661	-18.91	62.58	43.67	74.00	30.33	PASS	Н	PK
3	4882.1255	-16.21	65.19	48.98	74.00	25.02	PASS	Н	PK
4	5698.1799	-13.93	62.69	48.76	74.00	25.24	PASS	Н	PK
5	7322.2882	-11.65	65.07	53.42	74.00	20.58	PASS	Н	PK
6	9763.4509	-7.50	61.08	53.58	74.00	20.42	PASS	Н	PK
7	1410.2410	1.40	41.55	42.95	74.00	31.05	PASS	V	PK
8	1850.2850	3.66	40.18	43.84	74.00	30.16	PASS	V	PK
9	4258.0839	-17.56	64.91	47.35	74.00	26.65	PASS	V	PK
10	7323.2882	-11.65	59.23	47.58	74.00	26.42	PASS	V	PK
11	9763.4509	-7.50	58.64	51.14	74.00	22.86	PASS	V	PK
12	14390.7594	1.07	49.29	50.36	74.00	23.64	PASS	V	PK

Page 27 of 47

		100		100		2107		2	(B)	
	Mode:			GFSK Tran	smitting		Channel:		2480	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2125.9126	4.60	41.22	45.82	74.00	28.18	PASS	Н	PK
6	2	3997.0665	-18.90	62.46	43.56	74.00	30.44	PASS	Н	PK
	3	5217.1478	-14.54	67.64	53.10	74.00	20.90	PASS	Н	PK
	4	7439.2960	-11.34	57.73	46.39	74.00	27.61	PASS	Н	PK
	5	9913.4609	-7.09	59.60	52.51	74.00	21.49	PASS	Н	PK
	6	14339.7560	0.22	50.33	50.55	74.00	23.45	PASS	Н	PK
	7	1700.8701	2.94	41.19	44.13	74.00	29.87	PASS	V	PK
	8	4263.0842	-17.52	64.60	47.08	74.00	26.92	PASS	V	PK
	9	5308.1539	-14.79	58.89	44.10	74.00	29.90	PASS	V	PK
	10	6387.2258	-12.87	58.39	45.52	74.00	28.48	PASS	V	PK
6	11	9914.4610	-7.09	57.09	50.00	74.00	24.00	PASS	V	PK
9	12	14363.7576	0.62	49.25	49.87	74.00	24.13	PASS	V	PK

	Mode:			π/4DQPSK	Transmitting		Channel:		2402		
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	1760.2760	3.14	41.07	44.21	74.00	29.79	PASS	Н	PK	
1	2	3993.0662	-18.90	59.57	40.67	74.00	33.33	PASS	Н	PK	
0	3	4804.1203	-16.23	63.85	47.62	74.00	26.38	PASS	Н	PK	
	4	7205.2804	-11.83	69.30	57.47	74.00	16.53	PASS	Н	PK	
	5	7207.2805	-11.83	59.77	47.94	54.00	6.06	PASS	Н	AV	
	6	9607.4405	-7.37	67.18	59.81	74.00	14.19	PASS	Н	PK	
	7	9608.4406	-7.37	57.95	50.58	54.00	3.42	PASS	Н	AV	
	8	13674.7116	-1.73	51.64	49.91	74.00	24.09	PASS	Н	PK	
	9	1657.4657	2.66	41.21	43.87	74.00	30.13	PASS	V	PK	
	10	4266.0844	-17.50	62.36	44.86	74.00	29.14	PASS	V	PK	
2	11	5316.1544	-14.77	59.19	44.42	74.00	29.58	PASS	V	PK	
6	12	7206.2804	-11.83	65.68	53.85	74.00	20.15	PASS	V	PK	
0	13	9607.4405	-7.37	61.71	54.34	74.00	19.66	PASS	V	PK	
	14	9608.4406	-7.37	51.18	43.81	54.00	10.19	PASS	V	AV	
	15	13676.7118	-1.74	52.66	50.92	74.00	23.08	PASS	V	PK	
		10 miles		100		100		1.00	All many		

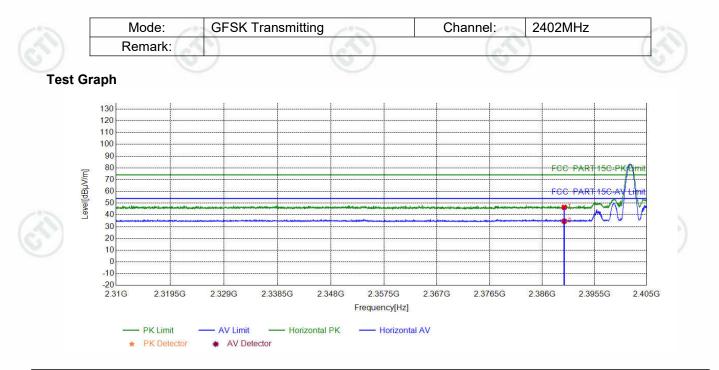
Page 28 of 47

		100		100		2197		1	(B 1)	
	Mode:			π/4DQPSK	Transmitting		Channel:		2441	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1614.4614	2.38	41.19	43.57	74.00	30.43	PASS	Н	PK
6	2	3321.0214	-19.88	57.94	38.06	74.00	35.94	PASS	Н	PK
	3	4257.0838	-17.57	64.12	46.55	74.00	27.45	PASS	Н	PK
	4	4882.1255	-16.21	64.21	48.00	74.00	26.00	PASS	Н	PK
	5	7323.2882	-11.65	64.07	52.42	74.00	21.58	PASS	Н	PK
	6	9764.4510	-7.50	60.76	53.26	74.00	20.74	PASS	Н	PK
	7	2128.5129	4.57	42.53	47.10	74.00	26.90	PASS	V	PK
	8	3190.0127	-20.38	59.79	39.41	74.00	34.59	PASS	V	PK
	9	4251.0834	-17.62	66.04	48.42	74.00	25.58	PASS	V	PK
	10	5322.1548	-14.75	59.30	44.55	74.00	29.45	PASS	V	PK
(11	7322.2882	-11.65	58.25	46.60	74.00	27.40	PASS	V	PK
9	12	9758.4506	-7.52	58.58	51.06	74.00	22.94	PASS	V	PK

	Mode:			π/4DQPSK	Transmitting		Channel:		2480	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2129.3129	4.56	42.29	46.85	74.00	27.15	PASS	Н	PK
1	2	3994.0663	-18.90	60.83	41.93	74.00	32.07	PASS	Н	PK
C	3	4960.1307	-15.97	64.23	48.26	74.00	25.74	PASS	Н	PK
	4	6906.2604	-11.83	58.97	47.14	74.00	26.86	PASS	Н	PK
	5	9914.4610	-7.09	59.70	52.61	74.00	21.39	PASS	Н	PK
	6	14320.7547	-0.10	51.37	51.27	74.00	22.73	PASS	Н	PK
	7	1754.8755	3.13	40.83	43.96	74.00	30.04	PASS	V	PK
	8	4257.0838	-17.57	62.39	44.82	74.00	29.18	PASS	V	PK
	9	5311.1541	-14.78	57.95	43.17	74.00	30.83	PASS	V	PK
	10	6648.2432	-12.66	57.38	44.72	74.00	29.28	PASS	V	PK
2	11	9914.4610	-7.09	57.03	49.94	74.00	24.06	PASS	V	PK
	12	14393.7596	1.12	49.55	50.67	74.00	23.33	PASS	V	PK
0	2.7					1	0			

Remark:

- The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor
 - Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low.



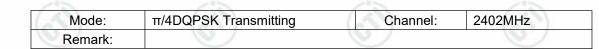
Page 29 of 47

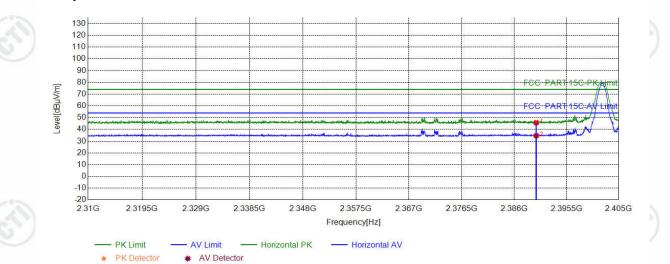
6.10.1 Transmitter Emission at Band edges

Test plot as follows:

	Suspecte	d List								
6	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390.0000	5.77	40.68	46.45	74.00	27.55	PASS	Horizontal	PK
	2	2390.0000	5.77	28.87	34.64	54.00	19.36	PASS	Horizontal	AV

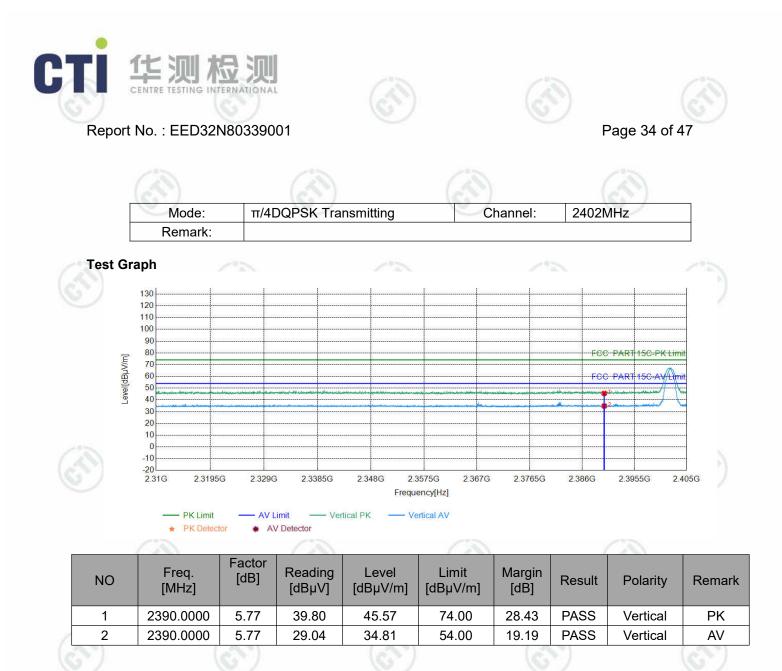
	NO	Freq. [MHz]	r [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390.0000	5.77	39.84	45.61	74.00	28.39	PASS	Vertical	PK
1	2	2390.0000	5.77	29.21	34.98	54.00	19.02	PASS	Vertical	AV

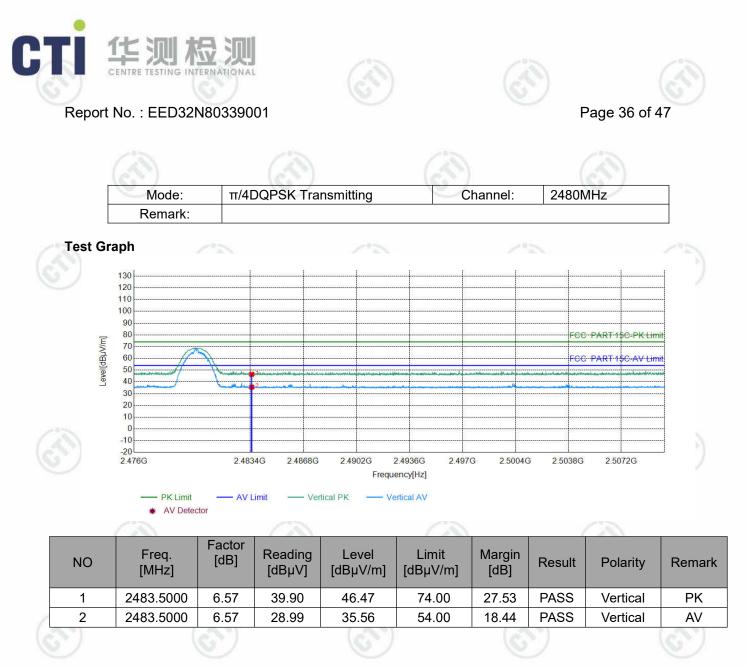




Page 33 of 47

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	39.95	45.72	74.00	28.28	PASS	Horizontal	PK
2	2390.0000	5.77	28.89	34.66	54.00	19.34	PASS	Horizontal	AV





Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

