

Report No.: EED32O80708601

TEST REPORT

Product 2.4G Wireless Mouse

Trade mark **MINISO** Model/Type reference M906 **Serial Number** N/A

Report Number EED32O80708601

FCC ID 2ART4-M906 Date of Issue Jun. 15. 2022

47 CFR Part 15 Subpart C **Test Standards**

Test result **PASS**

Prepared for:

MINISO Corporation Room 2501, 25th floor, No.486 Heye Square, Kangwang Middle Road, Liwan District, Guangzhou, Guangdong, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

mark. chen Mark Chen

ioven Ma

Aaron Ma

Reviewed by:

Tom Chen

Date:

Jun. 15, 2022

Check No.:9506200522

Contents

4 CONTENTO	Page
1 CONTENTS	
3 TEST SUMMARY	2
4 GENERAL INFORMATION	
4.1 CLIENT INFORMATION	
5 TEST RESULTS AND MEASUREMENT DATA	
5.1 Antenna Requirement	
6 APPENDIX A	
7 PHOTOGRAPHS OF TEST SETUP	
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	32

Report No.: EED32O80708601

Version

Version No.	Date	Description	- 61%
00	Jun. 15, 2022	Original	(2)



3 Test Summary

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	N/A
Maximum Conducted Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	PASS
20dB Emission Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Carrier Frequency Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Number of Hopping Channels	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Time of Occupancy	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS
Band Edge Measurements	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
Restricted bands around fundamental frequency	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information was/ were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

General Information

4.1 **Client Information**

Applicant:	MINISO Corporation
Address of Applicant:	Room 2501, 25th floor, No.486 Heye Square, Kangwang Middle Road, Liwan District, Guangzhou, Guangdong, China
Manufacturer:	Dongguan Eranode electronics limited
Address of Manufacturer:	building 2, No.17 DAHUAN Road, Dalingshan Town, Dongguan City, Guangdong Province
Factory:	Dongguan Eranode electronics limited
Address of Factory:	building 2, No.17 DAHUAN Road, Dalingshan Town, Dongguan City, Guangdong Province

4.2 **General Description of EUT**

Product Name:	2.4G Wireless Mouse	
Model No.(EUT):	M906	
Trade Mark:	MINISO	
Power Supply:	DC 1.5V	
Operation Frequency:	2400MHz - 2483.5MHz	
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)	
Test Power Grade:	Default	
Test Software of EUT:	N/A	(15)
Modulation Type:	GFSK	
Number of Channel:	16	
Hopping Channel Type:	Adaptive Frequency Hopping systems	
Antenna Type and Gain:	PCB Antenna, -1.52dBi	
Test Voltage:	DC 1.5V	
Sample Received Date:	May 20, 2022	
Sample tested Date:	May 20, 2022 to May 31, 2022	

Operation Frequency each of channel

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	6	2428MHz	11	2454MHz	16	2480MHz
2	2404MHz	7	2432MHz	12	2464MHz	17	
3	2410MHz	8	2440MHz	13	2468MHz	18	0
4	2412MHz	9	2448MHz	14	2470MHz	19	
5	2418MHz	10	2450MHz	15	2476MHz	20	

Report No.: EED32O80708601 Page 6 of 37

4.3 Test Environment

Operating Environment	t:				
Radiated Spurious Emi	ssions:				
Temperature:	22~25.0 °C		(1)		(3)
Humidity:	50~55 % RH		(0)		(0)
Atmospheric Pressure:	1010mbar				
Conducted Emissions:					
Temperature:	22~25.0 °C	12		1.5	
Humidity:	50~55 % RH	(8.73)		(8/2)	
Atmospheric Pressure:	1010mbar				
RF Conducted:					
Temperature:	22~25.0 °C		-07		-07
Humidity:	50~55 % RH		(41)		(41)
Atmospheric Pressure:	1010mbar		(0)		(0,)

4.4 Description of Support Units

The EUT has been tested independently

4.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

FCC Designation No.: CN1164 ISED test site number:7408A, CAB identifier number:CN0037

4.6 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
	(0)	3.3dB (9kHz-30MHz)
3	Dedicted Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%



Page 7 of 37 Report No.: EED32O80708601

4.7 Equipment List

		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-24-2021	12-23-2022
Signal Generator	Keysight	N5182B	MY53051549	12-24-2021	12-23-2022
Signal Generator	Agilent	N5181A	MY46240094	12-24-2021	12-23-2022
DC Power	Keysight	E3642A	MY56376072	12-24-2021	12-23-2022
Power unit	R&S	OSP120	101374	12-24-2021	12-23-2022
RF control unit	JS Tonscend	JS0806-2	158060006	12-24-2021	12-23-2022
Communication test set	R&S	CMW500	120765	08-04-2021	08-03-2022
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611 879	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-23-2021	06-22-2022
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518		

	3M Semi-anechoic Chamber (2)- Radiated disturbance Test						
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date		
3M Chamber & Accessory Equipment	TDK	SAC-3		05/24/2019 05/22/2022	05/23/2022 05/21/2025		
Receiver	R&S	ESCI7	100938-003	10/14/2021	10/13/2022		
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/23/2019 05-21-2022	05/22/2022 05-20-2023		
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-15-2021	04-14-2024		
Multi device Controller	maturo	NCD/070/10711112					
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024		
Microwave Preamplifier	Agilent	8449B	3008A02425	06/23/2021	06/22/2022		

Page 8 of 37 Report No.: EED32O80708601

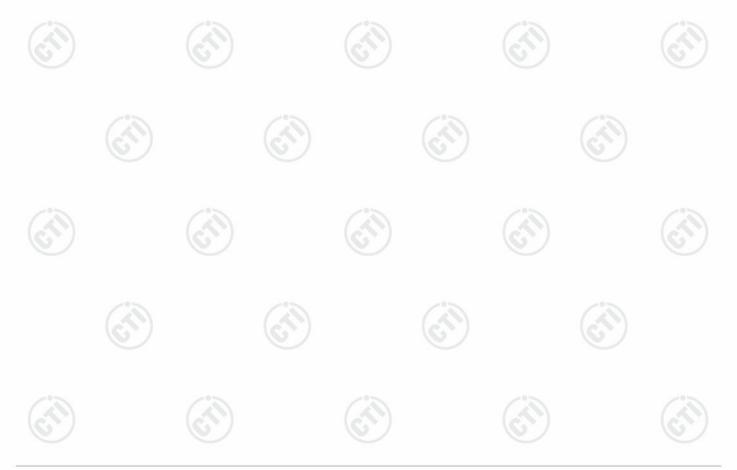
		3M full-anechoic	Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		/*
Receiver	Keysight	N9038A	MY57290136	03-01-2022	02-28-2023
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-01-2022	02-28-2023
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-01-2022	02-28-2023
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	04-20-2022	04-19-2023
Preamplifier	EMCI	EMC001330	980563	04-13-2022	04-12-2023
Preamplifier	JS Tonscend	980380	EMC051845SE	12-24-2021	12-23-2022
Communication test set	R&S	CMW500	102898	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	02-21-2022	02-20-2023
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM-2.50M	394812-0001		
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	(eil)	(3
Cable line	Times	SFT205-NMSM-2.50M	394812-0003		
Cable line	Times	SFT205-NMSM-2.50M	393495-0001		
Cable line	Times	EMC104-NMNM-1000	SN160710	((II)
Cable line	Times	SFT205-NMSM-3.00M	394813-0001		
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	(c/1)	(5
Cable line	Times	HF160-KMKM-3.00M	393493-0001		

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

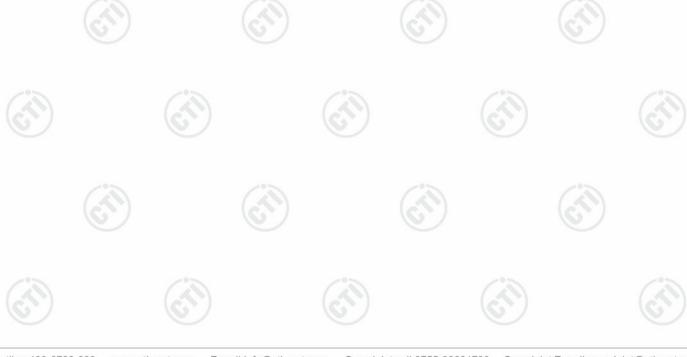
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna: Please see Internal photos

The antenna is PCB antenna. The best case gain of the antenna is -1.52 dBi.

5.2 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	RF test Control Computer Power Supply Power Fable RF test System Instrument Instrument
Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
Limit:	21dBm
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the GFSK modulation type is the worst case
Test Results:	Refer to Appendix C



5.3 20dB Emission Bandwidth

_		
	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
	Test Setup:	Control Contro
		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
	Limit:	NA (A)
	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the GFSK modulation type is the worst case
	Test Results:	Refer to Appendix A

Carrier Frequency Separation

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)						
Test Method:	ANSI C63.10:2013						
Test Setup:	Control Computer Power Supply Power Supply Table RF test System System Instrument Instrument						
	Remark: Offset=Cable loss+ attenuation factor.						
Test Procedure:	1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 5. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.						
Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.						
Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type						
Final Test Mode:	Through Pre-scan, find the GFSK modulation type is the worst case						
Test Results:	Refer to Appendix D						

5.5 Number of Hopping Channel

	1 22 32 32 32 32 32 32 32 32 32 32 32 32				
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)				
Test Method:	ANSI C63.10:2013				
Test Setup:	Control Control Congrutes Power port(s) Power port(s) Table RF test System System Instrument				
	Remark: Offset=Cable loss+ attenuation factor.				
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. 				
	 4. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto; Detector function = peak; Trace = max hold. 5. The number of hopping frequency used is defined as the number of total channel. 6. Record the measurement data in report. 				
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.				
Test Mode:	Hopping transmitting with all kind of modulation				
Test Results:	Refer to Appendix F				

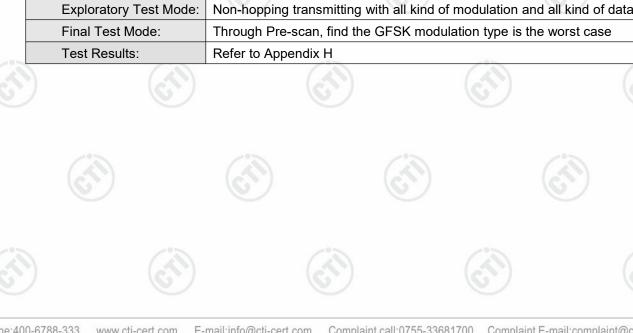


5.6 Time of Occupancy

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Control Pount Pount Pount TEMPERATURE CABRIET Table RF test System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results fo each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Limit:	The average time of occupancy on any channel shall not be greater than 0. seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
Test Results:	Refer to Appendix E

5.7 Band edge Measurements

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Computer Power Pool Power Pool Table RF test System System Instrument Table
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the GFSK modulation type is the worst case
Test Results:	Refer to Appendix G



Conducted Spurious Emissions 5.8

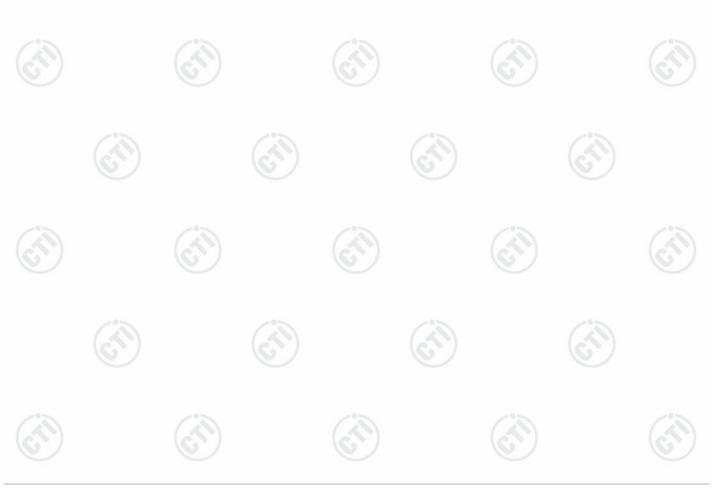
	Test Requirement:	47 CFR Part 15C Section 15.247 (d)					
	Test Method:	ANSI C63.10:2013					
	Test Setup:	Control Control Control Power Power Power Foot Attenuator Instrument Table RF test System France Instrument					
3		Remark: Offset=Cable loss+ attenuation factor.					
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. 					
	Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type					
	Final Test Mode:	Through Pre-scan, find the GFSK modulation type is the worst case					
	Test Results:	Refer to Appendix H					

5.9 Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

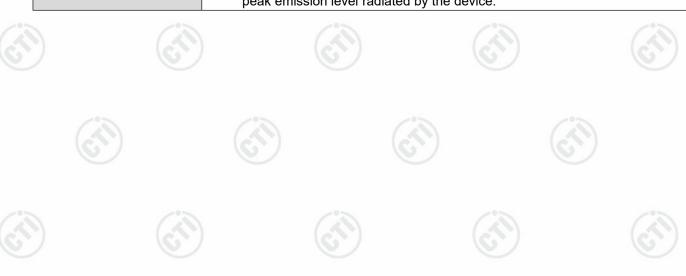

EUT Pseudorandom Frequency Hopping Sequence

Hopping Mechanism

M906 family use adaptive frequency hopping. There are at 16 radio non-overlap channels (above 20dBc) in the 2.4GHz ISM band. The channel transmission bandwidth is about 4MHz. We can allocate 20 non-overlap channels between 2402MHz to 2480MHz. Like AFH of Bluetooth, M906 provide smart channel selection algorithm to avoid radio interference from other 2.4GHz devices.

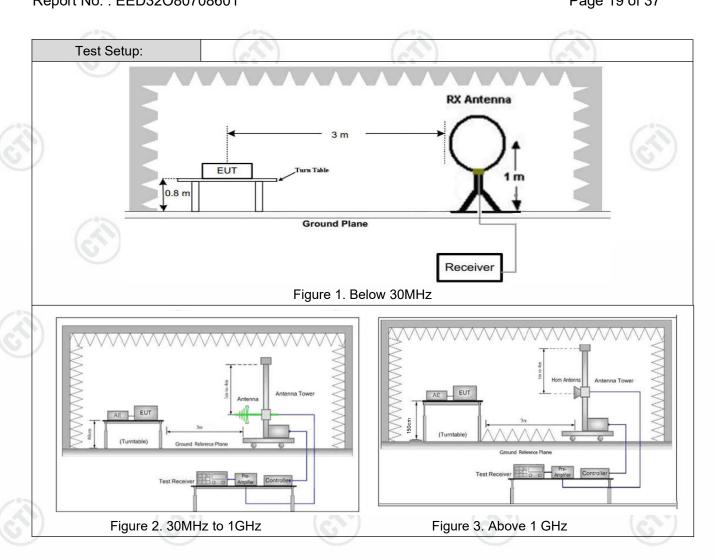
The system will generate a pseudorandom ordered list base on:

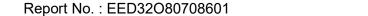
- 1) A 8 bit factory ID(8 bit)
- 2) A 6 bit set number ID(6 bit)



Report No. : EED32O80708601 Page 18 of 37

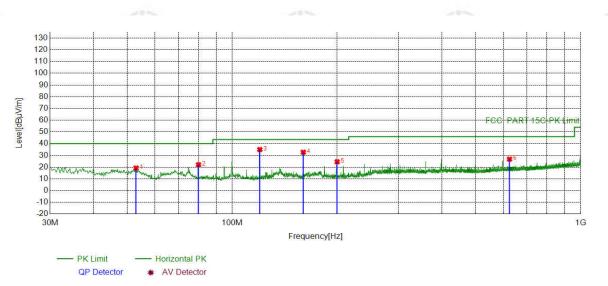
5.10 Radiated Spurious Emission & Restricted bands


Test Requireme	nt: 47 CFR Part 15C Secti	on 15.209 and 15	5.205								
Test Method:	ANSI C63.10: 2013										
Test Site:	Measurement Distance	leasurement Distance: 3m (Semi-Anechoic Chamber)									
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark						
	0.009MHz-0.090MH	z Peak	10kHz	30kHz	Peak						
	0.009MHz-0.090MH	z Average	10kHz	30kHz	Average						
	0.090MHz-0.110MH	z Quasi-peak	10kHz	30kHz	Quasi-peak						
	0.110MHz-0.490MH	z Peak	10kHz	30kHz	Peak						
	0.110MHz-0.490MH	z Average	10kHz	30kHz	Average						
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak						
	30MHz-1GHz	Peak	100 kH	z 300kHz	Peak						
	Above 4015	Peak	1MHz	3MHz	Peak						
	Above 1GHz	Peak	1MHz	10kHz	Average						
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)						
	0.009MHz-0.490MHz	2400/F(kHz)	-	(C)	300						
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30						
	1.705MHz-30MHz	30	-	-	30						
	30MHz-88MHz	100	40.0	Quasi-peak	3						
	88MHz-216MHz	150	43.5	Quasi-peak	3						
	216MHz-960MHz	200	46.0	Quasi-peak	3						
	960MHz-1GHz	500	54.0	Quasi-peak	3						
	Above 1GHz	500	54.0	Average	3						
	Note: 15.35(b), Unless emissions is 20dE applicable to the peak emission lev	3 above the maxing above the maxing a sequipment under	mum permi test. This p	tted average	emission limit						

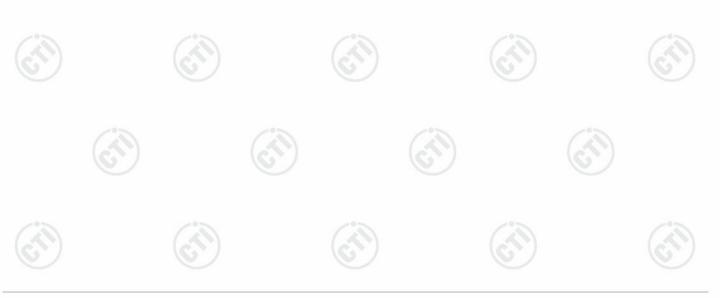


Report No. : EED32O80708601 Page 20 of 37

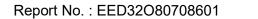
Test Procedure:	meters above the was rotated 360 radiation. 2) Above 1G: The meters above the was rotated 360 radiation. Note: For the radiation. Note: For the radiation. Note: For the radiation of emissions at oriented for material to be higher or the emission are maximum signal which maximized for maximum end 1 m to 4 m about the emission are maximum end 1 m to 4 m about the EUT was seantenna, which tower. c. The antenna here ground to detern horizontal and measurement. d. For each susperant the test frequer meter and then the area the test frequer meter) and the degrees to find ender the emission limit specified, for the EUT in (2441MHz), the margin would be average methon great the EUT in (2441MHz), the h. The radiation measurement in the radiation measurement.	the ground at a 3 meter second degrees to determine the control of the EUT was placed on the ground at a 3 meter second degrees to determine the diadated emission test above surement antenna away from the each frequency of signification with the emissions. The meal of the emissions and the emissions shall be restricted by the ground or reference to the ground or reference to the ground or reference to the ground or the emissions shall be restricted by the ground or the top the emissions of the emission of	e top of a rotating table 1.5 mi-anechoic camber. The table e position of the highest ve 1GHz: om each area of the EUT at the specified measurement at antenna aimed at the source cant emissions, with polarization asurement antenna may have nding on the radiation pattern of nission source for receiving the antenna elevation shall be that asurement antenna elevation d to a range of heights of from e ground plane. e interference-receiving of a variable-height antenna eter to four meters above the of the field strength. Both e antenna are set to make the vas arranged to its worst case ats from 1 meter to 4 meters (for antenna was tuned to heights 1 d from 0 degrees to 360 of Detect Function and Specified mode was 10dB lower than the ped and the peak values of the missions that did not have 10dB sing peak, quasi-peak or aported in a data sheet. 2MHz),the middle channel d-z) ned in X, Y, Z axis positioning
	worst case.		nxis positioning which it is the ncies measured was complete.
Exploratory Test Mode:			of modulation and all kind of
Final Test Mode:	data type		pe and GFSK modulation with
	adapter VSD05001 Pretest the EUT at scan, the worst cas	20VU was the worst case	below 1GHz part, through pre-
Test Results:	Pass	•	

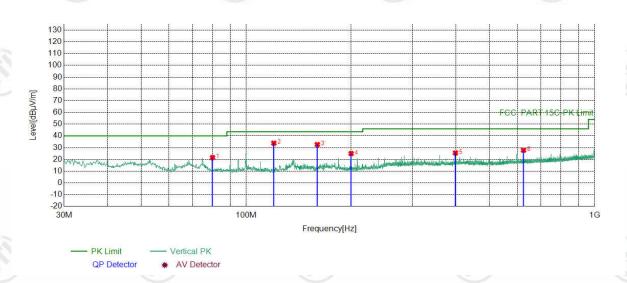


Page 21 of 37


Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel was recorded in the report.


Test Graph


	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
ď	1	52.9913	-17.57	36.83	19.26	40.00	20.74	PASS	Horizontal	PK
	2	80.0570	-22.55	44.60	22.05	40.00	17.95	PASS	Horizontal	PK
	3	120.0250	-20.08	55.07	34.99	43.50	8.51	PASS	Horizontal	PK
	4	159.9930	-21.15	53.89	32.74	43.50	10.76	PASS	Horizontal	PK
	5	200.0580	-17.84	42.42	24.58	43.50	18.92	PASS	Horizontal	PK
	6	625.0575	-8.44	35.29	26.85	46.00	19.15	PASS	Horizontal	PK

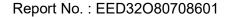
Suspect	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	80.0570	-22.55	44.09	21.54	40.00	18.46	PASS	Vertical	PK		
2	120.0250	-20.08	53.94	33.86	43.50	9.64	PASS	Vertical	PK		
3	159.9930	-21.15	53.84	32.69	43.50	10.81	PASS	Vertical	PK		
4	200.0580	-17.84	42.85	25.01	43.50	18.49	PASS	Vertical	PK		
5	398.6369	-12.97	38.49	25.52	46.00	20.48	PASS	Vertical	PK		
6	625.0575	-8.44	36.28	27.84	46.00	18.16	PASS	Vertical	PK		

Radiated Spurious Emission above 1GHz:

_		10.4		18.4		10.4			18.4	
	Mode:		2.4G Transmitting		Channel: 2402 MHz					
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Š	1	1208.4208	0.82	42.20	43.02	74.00	30.98	PASS	Horizontal	PK
	2	1749.0749	3.11	39.91	43.02	74.00	30.98	PASS	Horizontal	PK
	3	4813.1209	-16.23	68.23	52.00	74.00	22.00	PASS	Horizontal	PK
	4	6809.2540	-12.36	53.57	41.21	74.00	32.79	PASS	Horizontal	PK
	5	9616.4411	-7.40	49.88	42.48	74.00	31.52	PASS	Horizontal	PK
	6	14306.7538	-0.33	48.02	47.69	74.00	26.31	PASS	Horizontal	PK
	7	1223.8224	0.86	41.69	42.55	74.00	31.45	PASS	Vertical	PK
	8	1871.6872	3.82	39.93	43.75	74.00	30.25	PASS	Vertical	PK
	9	4803.1202	-16.23	68.75	52.52	74.00	21.48	PASS	Vertical	AV
	10	7396.2931	-11.52	52.65	41.13	74.00	32.87	PASS	Vertical	PK
	11	9935.4624	-7.13	49.31	42.18	74.00	31.82	PASS	Vertical	PK
	12	14235.7491	-0.80	47.52	46.72	74.00	27.28	PASS	Vertical	PK

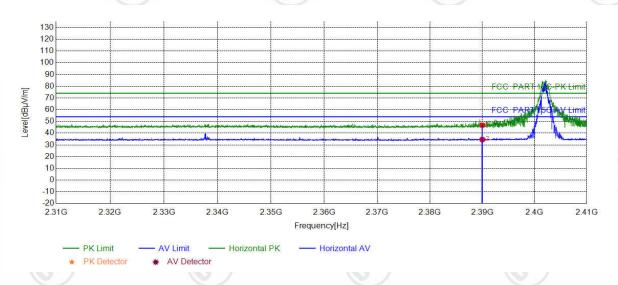
Mode	:	2.4G Transmitting			Channel:	2440 MHz			
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1225.0225	0.87	40.69	41.56	74.00	32.44	PASS	Horizontal	PK
2	1666.8667	2.72	40.47	43.19	74.00	30.81	PASS	Horizontal	PK
3	3812.0541	-19.22	56.70	37.48	74.00	36.52	PASS	Horizontal	PK
4	4879.1253	-16.21	69.32	53.11	74.00	20.89	PASS	Horizontal	PK
5	4880.1253	-16.21	50.78	34.57	54.00	19.43	PASS	Horizontal	PK
6	7319.2880	-11.66	54.31	42.65	74.00	31.35	PASS	Horizontal	PK
7	10694.5130	-6.48	51.36	44.88	74.00	29.12	PASS	Vertical	PK
8	1148.2148	0.83	42.01	42.84	74.00	31.16	PASS	Vertical	PK
9	1991.8992	4.51	42.82	47.33	74.00	26.67	PASS	Vertical	PK
10	3994.0663	-18.90	57.67	38.77	74.00	35.23	PASS	Vertical	AV
11	4879.1253	-16.21	64.93	48.72	74.00	25.28	PASS	Vertical	PK
12	7176.2784	-11.78	53.57	41.79	74.00	32.21	PASS	Vertical	PK
13	11750.5834	-6.18	51.58	45.40	74.00	28.60	PASS	Vertical	PK

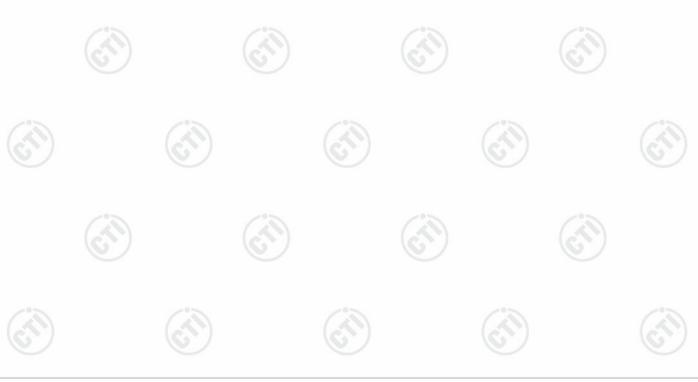
Report No.: EED32O80708601


/ 2 1							/ 4 %		
Mode:		2.4G Transmitting			Channel:	2480 MHz		(6)	
NO	Freq. [MHz]	Factor [dB]	Reading [dB μ V]	Level [dB µ V/m]	Limit [dB µ V/m]	Margin [dB]	Result	Polarity	Remark
1	1226.2226	0.87	41.09	41.96	74.00	32.04	PASS	Horizontal	PK
2	1966.6967	4.38	40.47	44.85	74.00	29.15	PASS	Horizontal	PK
3	3854.0569	-19.16	56.67	37.51	74.00	36.49	PASS	Horizontal	PK
4	4974.1316	-15.92	64.61	48.69	74.00	25.31	PASS	Horizontal	PK
5	6694.2463	-12.50	53.24	40.74	74.00	33.26	PASS	Horizontal	PK
6	9849.4566	-7.23	50.84	43.61	74.00	30.39	PASS	Horizontal	PK
7	1177.4177	0.81	41.67	42.48	74.00	31.52	PASS	Vertical	PK
8	1990.8991	4.50	42.65	47.15	74.00	26.85	PASS	Vertical	PK
9	3186.0124	-20.39	65.59	45.20	74.00	28.80	PASS	Vertical	PK
10	4961.1307	-15.97	62.76	46.79	74.00	27.21	PASS	Vertical	PK
11	6070.2047	-13.09	54.15	41.06	74.00	32.94	PASS	Vertical	PK
12	9214.4143	-7.89	51.68	43.79	74.00	30.21	PASS	Vertical	PK

Remark:

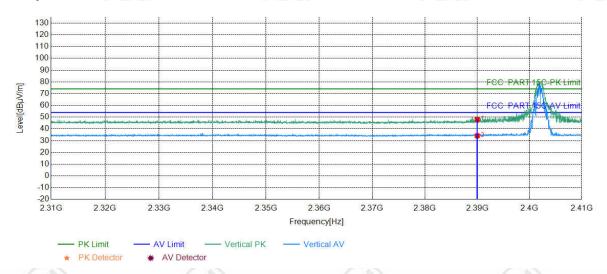
- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

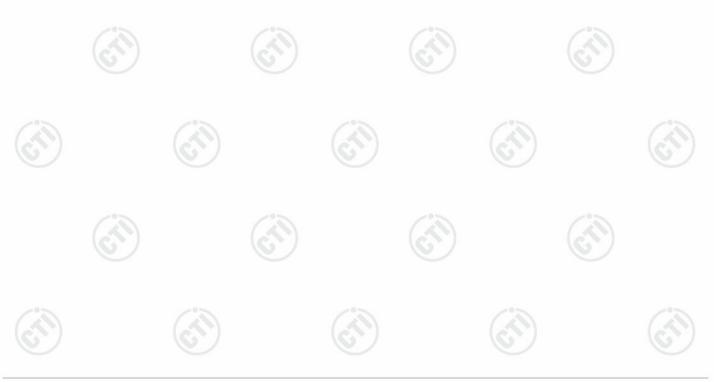




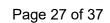
Restricted bands:

	Suspected List									
2.0	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390.0000	5.77	41.04	46.81	74.00	27.19	PASS	Horizontal	PK
	2	2390.0000	5.77	28.83	34.60	54.00	19.40	PASS	Horizontal	AV

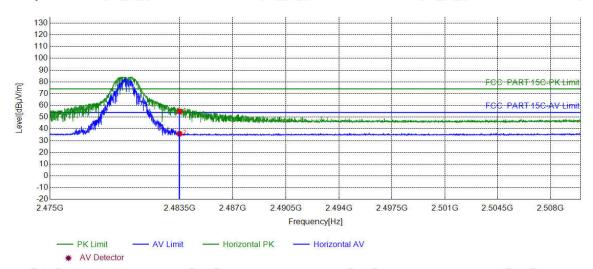




Mode:	Mode: 2.4G Transmitting		2402 MHz		
Remark:					



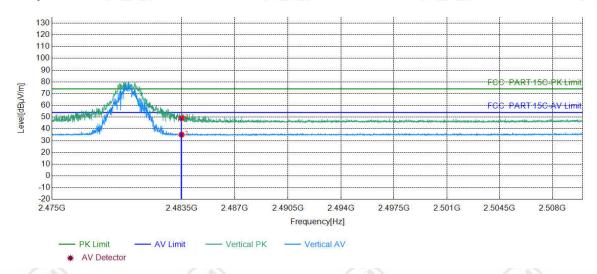
	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390.0000	5.77	42.15	47.92	74.00	26.08	PASS	Vertical	PK
1	2	2390.0000	5.77	28.40	34.17	54.00	19.83	PASS	Vertical	AV





Mode:	2.4G Transmitting	Channel:	2480 MHz
Remark:			

Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2483.5000	6.57	48.25	54.82	74.00	19.18	PASS	Horizontal	PK	
2	2483.5000	6.57	29.32	35.89	54.00	18.11	PASS	Horizontal	AV	



Mode:	2.4G Transmitting	Channel:	2480 MHz		
Remark:					

	Suspe	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
0 :	1	2483.5000	6.57	28.53	35.10	54.00	18.90	PASS	Vertical	AV	
	2	2483.5000	6.57	42.59	49.16	74.00	24.84	PASS	Vertical	PK	

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

6 Appendix A

