

Page 1 of 39

(1)	EST F	REPORT		
Product Trade mark Model/Type reference Serial Number Report Number FCC ID	Mouse : MINIS : K616A : N/A : EED32	Combos O	less Keyboard &	
Date of Issue Test Standards	: Jun. 23 : 47 CFF	3, 2022 R Part 15 Subpa	art C	
Test result	: PASS Prepa	red for:		
TE	, Guangz Prepa ng Intern ustrial Zo zhen, Gua L: +86-7	z hou, Guango ^{red by:} ational Grou	dong China p Co., Ltd. 70 District, ina	
Compiled by: Mark . c	hen.	Reviewed by:	Tom the	
Approved by: Approved by: Aaron Mark Cl	Ma	Date:	Tom Chen Jun. 23, 2022 Check No.:950620	0522
Report Seal				

1 Contents

3 TEST SUMMARY	
4 GENERAL INFORMATION	5
4.1 CLIENT INFORMATION 4.2 GENERAL DESCRIPTION OF EUT 4.3 TEST ENVIRONMENT 4.4 DESCRIPTION OF SUPPORT UNITS	5
5 TEST RESULTS AND MEASUREMENT DATA	
 5.1 ANTENNA REQUIREMENT	11 12 13 14 15 16 17 18
6 APPENDIX A	
7 PHOTOGRAPHS OF TEST SETUP	
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	

Page 3 of 39

2 Version

	Version No.		Date		Descriptio	on	
(S)	00	Ju	n. 23, 2022		Original		
	(St)			(Sta		(St)	

3 Test Summary

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	N/A
Maximum Conducted Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	PASS
20dB Emission Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Carrier Frequency Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Number of Hopping Channels	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Time of Occupancy	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS
Band Edge Measurements	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
Restricted bands around fundamental frequency	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information was/ were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

4

Report No. : EED32O80706901

S

Page 5 of 39

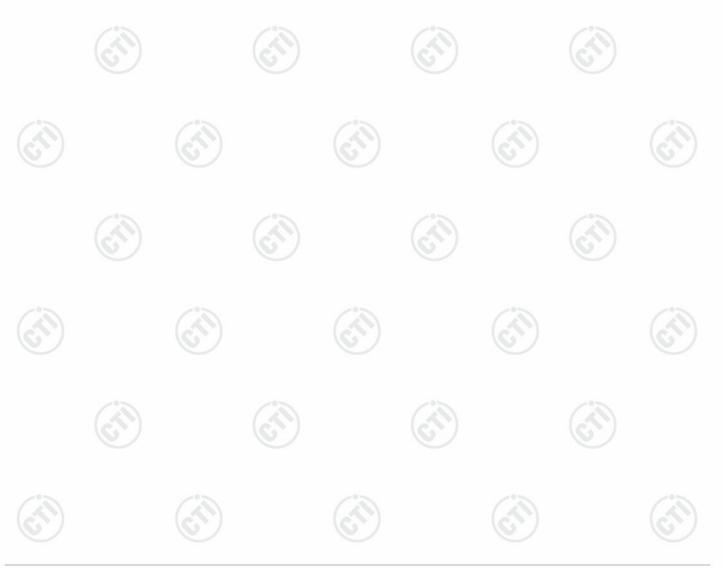
General Information

4.1 Client Information

Applicant:	MINISO Corporation
Address of Applicant:	Room 2501, No. 486 Heye Square, Kangwang Middle Road, Liwan District, Guangzhou, Guangdong China
Manufacturer:	Dongguan Eranode electronics limited
Address of Manufacturer:	building 2, No.17 DAHUAN Road, Dalingshan Town, Dongguan City, Guangdong Province
Factory:	Dongguan Eranode electronics limited
Address of Factory:	building 2, No.17 DAHUAN Road, Dalingshan Town, Dongguan City, Guangdong Province

4.2 General Description of EUT

Product Name:			Lightweight 2.4G	Wireless Key	/board & Mouse	Combos		
Model No.	.(EUT):		K616A	9	(e)		0	
Trade Mark:			MINISO					
Power Supply:			DC 1.5V					
Operation Frequency:			2400MHz - 2483.	5MHz	E C	(2)	2	
Modulation Technique:			Frequency Hoppin	ng Spread Sp	pectrum(FHSS)	6)	
Test Power Grade:			Default					
Test Software of EUT:			N/A					
Modulation Type:			GFSK	0	(2)	0		
Number of Channel:			16					
Hopping Channel Type:			Adaptive Frequency Hopping systems					
Antenna Type and Gain:			PCB Antenna, -1.52dBi					
Test Volta	ge:		DC 1.5V	1	1	13	S	
Sample R	eceived Date:		May 20, 2022	(6	S)	6	°)	
Sample te	sted Date:		May 20, 2022 to N	May 31, 2022		C		
Operation	Frequency eac	ch of chan	nel					
Channel	Frequency	Channe	I Frequency	Channel	Frequency	Channel	Frequency	
1	2402MHz	6	2428MHz	11	2454MHz	16	2480MHz	
2	2404MHz	7	2432MHz	12	2464MHz		e e	
3	2410MHz	8	2440MHz	13	2468MHz			
4	2412MHz	9	2448MHz	14	2470MHz	100		
5	2418MHz	10	2450MHz	15	2476MHz		9	



4.3 Test Environment

Operating Environment	t:					
Radiated Spurious Emissions:						
Temperature:	22~25.0 °C				(à)	
Humidity:	50~55 % RH		(\mathcal{O})		6)	
Atmospheric Pressure:	1010mbar		\sim			
Conducted Emissions:	·					
Temperature:	22~25.0 °C	12		10		
Humidity:	50~55 % RH	(25)		(\mathcal{A})		
Atmospheric Pressure:	1010mbar	U		U		
RF Conducted:	·					
Temperature:	22~25.0 °C		- 0 -		-	
Humidity:	50~55 % RH					
Atmospheric Pressure:	1010mbar		0		0	
	Radiated Spurious Emi Temperature: Humidity: Atmospheric Pressure: Conducted Emissions: Temperature: Humidity: Atmospheric Pressure: RF Conducted: Temperature: Humidity: Atmospheric Pressure: RF Conducted: Temperature: Humidity:	Temperature:22~25.0 °CHumidity:50~55 % RHAtmospheric Pressure:1010mbarConducted Emissions:Temperature:22~25.0 °CHumidity:50~55 % RHAtmospheric Pressure:1010mbarRF Conducted:Temperature:22~25.0 °CHumidity:50~55 % RHAtmospheric Pressure:1010mbarHumidity:50~55 % RH	Radiated Spurious Emissions:Temperature:22~25.0 °CHumidity:50~55 % RHAtmospheric Pressure:1010mbarConducted Emissions:Temperature:22~25.0 °CHumidity:50~55 % RHAtmospheric Pressure:1010mbarRF Conducted:Temperature:22~25.0 °CHumidity:50~55 % RHAtmospheric Pressure:1010mbarRF Conducted:22~25.0 °CHumidity:50~55 % RH	Radiated Spurious Emissions:Temperature:22~25.0 °CHumidity:50~55 % RHAtmospheric Pressure:1010mbarConducted Emissions:Temperature:22~25.0 °CHumidity:50~55 % RHAtmospheric Pressure:1010mbarRF Conducted:1010mbarTemperature:22~25.0 °CHumidity:50~55 % RHAtmospheric Pressure:1010mbarRF Conducted:22~25.0 °CHumidity:50~55 % RH	Radiated Spurious Emissions:Temperature:22~25.0 °CHumidity:50~55 % RHAtmospheric Pressure:1010mbarConducted Emissions:Temperature:22~25.0 °CHumidity:50~55 % RHAtmospheric Pressure:1010mbarRF Conducted:22~25.0 °CTemperature:22~25.0 °CHumidity:50~55 % RHAtmospheric Pressure:1010mbarRF Conducted:22~25.0 °CHumidity:50~55 % RH	

Page 6 of 39

Page 7 of 39

4.4 Description of Support Units

The EUT has been tested independently

4.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 3368385

No tests were sub-contracted.

FCC Designation No.: CN1164

4.6 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2		0.46dB (30MHz-1GHz)	
2	RF power, conducted	0.55dB (1GHz-40GHz)	
6		3.3dB (9kHz-30MHz)	
3	Dedicted Sourious emission test	4.3dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)	
		3.4dB (18GHz-40GHz)	
4	Conduction emission	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	
$\langle \rangle$	(25)		

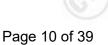
4.7 Equipment List

RF test system								
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-24-2021	12-23-2022			
Signal Generator	Keysight	N5182B	MY53051549	12-24-2021	12-23-2022			
Signal Generator	Agilent	N5181A	MY46240094	12-24-2021	12-23-2022			
DC Power	Keysight	E3642A	MY56376072	12-24-2021	12-23-2022			
Power unit	R&S	OSP120	101374	12-24-2021	12-23-2022			
RF control unit	JS Tonscend	JS0806-2	158060006	12-24-2021	12-23-2022			
Communication test set	R&S	CMW500	120765	08-04-2021	08-03-2022			
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611 879	12-24-2021	12-23-2022			
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-23-2021	06-22-2022			
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518	(C)				

	3M Semi-an	echoic Chamber (2)	- Radiated distu	rbance Test		
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date	
3M Chamber & Accessory Equipment	TDK	SAC-3		05/24/2019 05-22-2022	05/23/2022 05-21-2025	
Receiver	R&S	ESCI7	100938-003	10/14/2021	10/13/2022	
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/23/2019 05-21-2022	05/22/2022 05-20-2023	
Multi device Controller	maturo	NCD/070/10711112		- 0		
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-17-2021	04-16-2024	
Microwave Preamplifier	Agilent	8449B	3008A02425	06/23/2021	06/22/2022	

Page 9 of 39

		(\mathcal{A})	(1)	6	12
		3M full-anechoi	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		- 0
Receiver	Keysight	N9038A	MY57290136	03-01-2022	02-28-2023
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-23-2022	02-22-2023
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-23-2022	02-22-2023
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	orn Antenna Schwarzbeck BBHA 91		9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	04-20-2022	04-19-2023
Preamplifier	EMCI	EMC001330	980563	04-01-2022	03-31-2023
Preamplifier	JS Tonscend	980380	EMC051845SE	12-24-2021	12-23-2022
Communication test set	R&S	CMW500	102898	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2022	04-10-2023
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM-2.50M	394812-0001		
Cable line	Times	SFT205-NMSM-2.50M	394812-0002		(2
Cable line	Times	SFT205-NMSM-2.50M	394812-0003		
Cable line	Times	SFT205-NMSM-2.50M	393495-0001		
Cable line	Times	EMC104-NMNM-1000	SN160710	(<u>()</u>
Cable line	Times	SFT205-NMSM-3.00M	394813-0001		
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	(1)	(đ
Cable line	Times	HF160-KMKM-3.00M	393493-0001		



5 Test results and Measurement Data

5.1 Antenna Requirement

	Standard require	ement:	47 CFR	Part 15C Sec	tion 15.203 /2	247(c)		
)	15.203 requireme An intentional rad responsible party antenna that uses so that a broken a electrical connect 15.247(b) (4) requ The conducted ou antennas with dire section, if transmi power from the in (b)(2), and (b)(3)	iator sha shall be a uniqu antenna o or is prol uirement utput pov ectional of tting anto tentional of this se	used with the coupling to can be replachibited. : ver limit spect gains that do ennas of direct	the device. The o the intention ced by the us cified in parago o not exceed (ectional gain g all be reduced	e use of a pe nal radiator, th ser, but the us graph (b) of th 6 dBi. Except greater than 6 below the sta	rmanently atta ne manufactur se of a standar is section is b as shown in p dBi are used ated values in	ached antenn er may desig rd antenna ja ased on the paragraph (c) , the conduct paragraphs	a or of an n the unit ck or use of of this ed output (b)(1),
	EUT Antenna:	o abi.	Please s	ee Internal pl	notos			
	The antenna is Po	CB anter	nna. The bes	st case gain o	f the antenna	is -1.52dBi.		

Page 11 of 39

5.2 Maximum Conducted Output Power

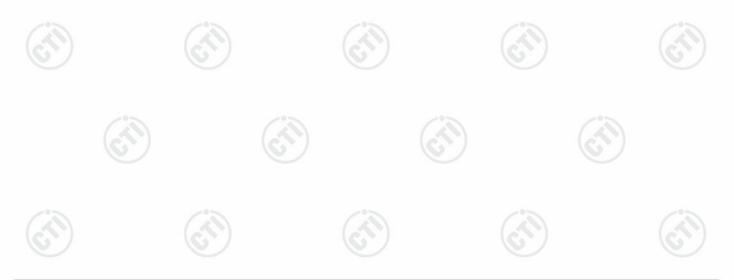
•							
	Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)					
	Test Method:	ANSI C63.10:2013					
Š	Test Setup:	RF test Sweety Power Sweety Table RF test System Instrument Sweety Table RF test System Instrument					
	Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.					
-0-	Limit:	21dBm					
~	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type					
2	Final Test Mode:	Through Pre-scan, find the GFSK modulation type is the worst case.					
	Test Results:	Refer to Appendix A					

5.3 20dB Emission Bandwidth

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
	Test Setup:	Control Computer Control Computer Power Supply Table RF test System Instrument
~		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
	Limit:	NA
S.	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the GFSK modulation type is the worst case.
	Test Results:	Refer to Appendix A

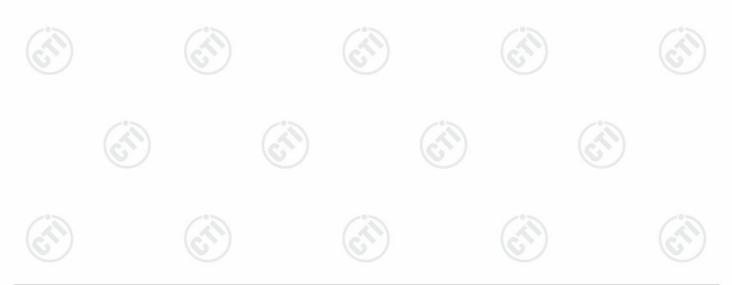
Page 13 of 39

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
2 2.3	Test Setup:	Centrel Composition Supply Power Supply TEMPERATURE CABNET RF test System Instrument
	Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
		 Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
	Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.
	Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the GFSK modulation type is the worst case.



5.5 Number of Hopping Channel

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
6	Test Setup:	Control Control Control Power Supply TemPERATURE CABNET Table
(Å		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function.
3		 4. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto Detector function = peak; Trace = max hold. 5. The number of hopping frequency used is defined as the number of total channel.
~		6. Record the measurement data in report.
	Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
	Test Mode:	Hopping transmitting with all kind of modulation
	Test Results:	Refer to Appendix A



Page 15 of 39

5.6 Time of Occupancy

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
Ś	Test Setup:	Control Control Control Poorer Supph TempeRature CABNET Table
10		Remark: Offset=Cable loss+ attenuation factor.
۲ ۲	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
	Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
	Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
	Test Results:	Refer to Appendix A

Test Requirement:	47 CFR Part 15C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013						
Test Setup:	Control Computer Computer Power Supply Table RF test System Instrument						
	Remark: Offset=Cable loss+ attenuation factor.						
Test Procedure:	 Set to the maximum power setting and enable the EUT transmicontinuously. Set RBW = 100 kHz, VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report. 						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type						
Final Test Mode:	Through Pre-scan, find the GFSK modulation type is the worst case.						
Test Results:	Refer to Appendix A						

Page 17 of 39

5.8	Conducted Spuriou	us Emissions					
	Test Requirement:	47 CFR Part 15C Section 15.247 (d)					
	Test Method:	ANSI C63.10:2013					
3	Test Setup:	Control Computer Power Power					
Š	Remark: Offset=Cable loss+ attenuation factor. Test Procedure: 1. The RF output of EUT was connected to the spectrum analyse.						
		 cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmontance continuously. 3. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. Harmonics / spurs must be at least 20 dB down from the highest emissilevel within the authorized band as measured with a 100kHz RBW. 4. Measure and record the results in the test report. 5. The RF fundamental frequency should be excluded against the limit line the operating frequency band. 					
	Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type					
	Final Test Mode:	Through Pre-scan, find the GFSK modulation type is the worst case.					
	Test Results:	Refer to Appendix A					

5.9 Pseudorandom Frequency Hopping Sequence

Test Requirement:

47 CFR Part 15C Section 15.247 (a)(1) requirement: Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25

kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

Hopping Mechanism

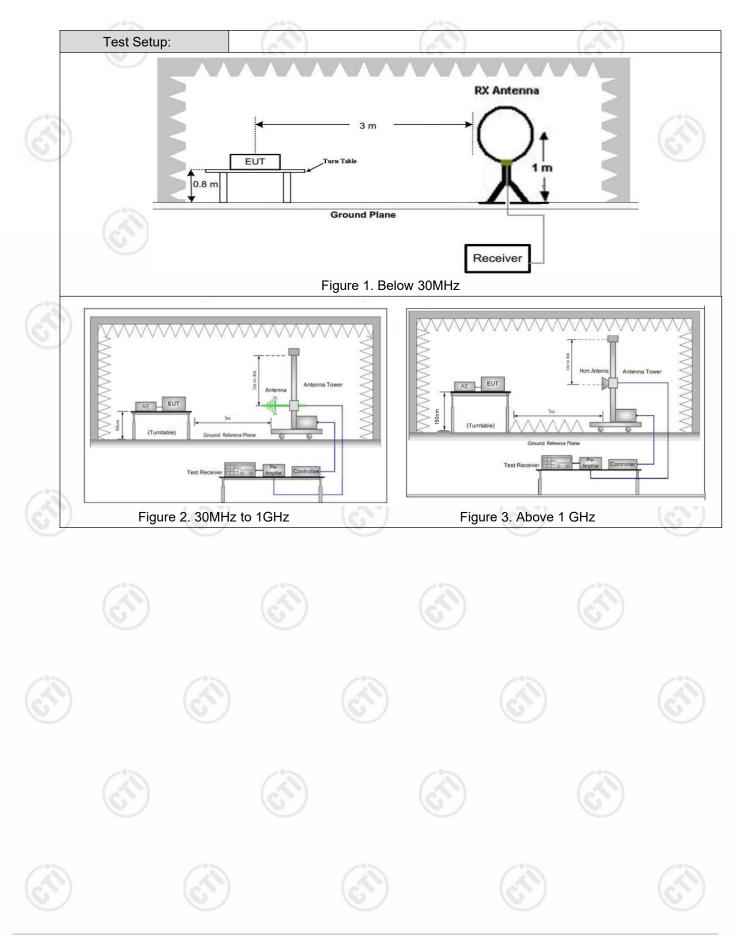
K616A family use adaptive frequency hopping. There are at 16 radio non-overlap channels (above 20dBc) in the 2.4GHz ISM band. The channel transmission bandwidth is about 4MHz. We can allocate 20 non-overlap channels between 2402MHz to 2480MHz. Like AFH of Bluetooth, K616A provide smart channel selection algorithm to avoid radio interference from other 2.4GHz devices.

The system will generate a pseudorandom ordered list base on:

1) A 8 bit factory ID(8 bit)

2) A 6 bit set number ID(6 bit)

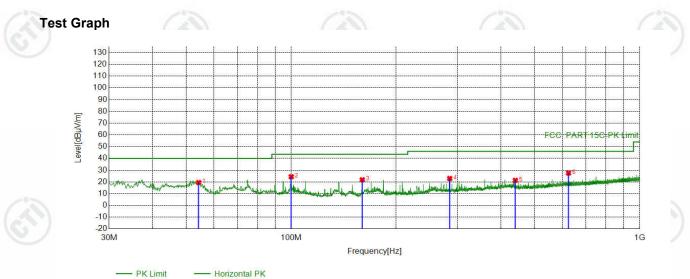
Page 19 of 39


5.10 Radiated Spurious Emission & Restricted bands

	Test Requirement:	47 CFR Part 15C Section	on 15.209 and 15	.205					
15	Test Method:	ANSI C63.10: 2013							
	Test Site:	Measurement Distance	: 3m (Semi-Anecl	noic Chaml	per)	(2)	•)		
	Receiver Setup:	Frequency	Detector	RBW	VBW	Remark			
		0.009MHz-0.090MH	z Peak	10kHz	30kHz	Peak	1		
		0.009MHz-0.090MH	z Average	10kHz	30kHz	Average	1		
		0.090MHz-0.110MH	z Quasi-peak	10kHz	30kHz	Quasi-peak]		
		0.110MHz-0.490MH	z Peak	10kHz	30kHz	Peak]		
		0.110MHz-0.490MH	z Average	10kHz	30kHz	Average]		
		0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak]		
		30MHz-1GHz	Peak	100 kH	z 300kHz	Peak	1		
6			Peak	1MHz	3MHz	Peak	2		
		Above 1GHz	Peak	1MHz	10kHz	Average			
	Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (n			
		0.009MHz-0.490MHz	2400/F(kHz)	-	6	300			
		0.490MHz-1.705MHz	24000/F(kHz)	-		30			
		1.705MHz-30MHz	30	-	-	30			
100		30MHz-88MHz	100	40.0	Quasi-peak	3	2		
		88MHz-216MHz	150	43.5	Quasi-peak	eak 3			
		216MHz-960MHz	200	46.0	Quasi-peak	3	1		
		960MHz-1GHz	500	54.0	Quasi-peak	3			
		Above 1GHz	500	54.0	Average	3			
		Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.							

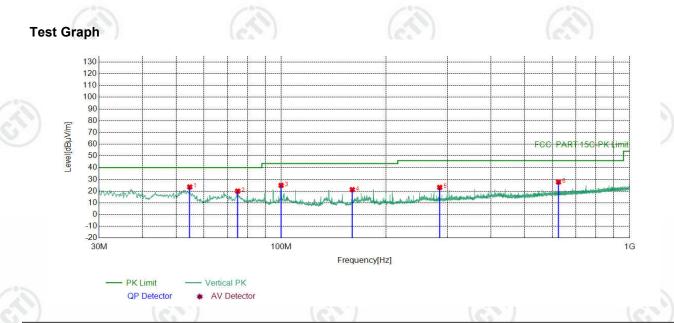
Page 20 of 39

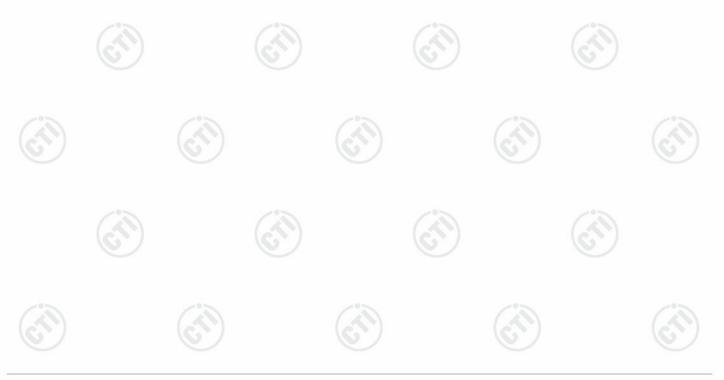
Test Procedure:	 meters above the was rotated 360 radiation. 2) Above 1G: T meters above the was rotated 360 radiation. Note: For the radiation. Note: For the radiation. Note: For the radiation. Note: For the radiation of emissions at oriented for maters above the emission are maximum signate which maximized for maximum end to be higher or the emission are maximum signate. b. The EUT was sea antenna, which tower. c. The antenna he ground to detern horizontal and we measurement. d. For each susper and then the are the test frequern meter) and the degrees to find e. The test-received Bandwidth with f. If the emission limit specified, the EUT would be margin would be average methor g. Test the EUT in (2441MHz), the h. The radiation material for the radiation material to the test for the for the test for the for	b) degrees to determine the the EUT was placed on the the ground at a 3 meter sem b) degrees to determine the adiated emission test above surement antenna away from the a source of emissions at keeping the measurement at each frequency of significa- ximum response. The meas lower than the EUT, depend of staying aimed at the emi- al. The final measurement at es the emissions. The meas missions shall be restricted ve the ground or reference et 3 meters away from the was mounted on the top of eight is varied from one met mine the maximum value of vertical polarizations of the stenna was tuned to heights acy of below 30MHz, the an rotatable table was turned for the maximum reading. er system was set to Peak I Maximum Hold Mode. level of the EUT in peak mo- hen testing could be stopped reported. Otherwise the emi- e re-tested one by one using a specified and then repo- tion the lowest channel (2402N Highest channel (2480MHz reasurements are performe mode, and found the X ax	ti-anechoic camber. The table position of the highest top of a rotating table 1.5 hi-anechoic camber. The table position of the highest a 1GHz: m each area of the EUT the specified measurement antenna aimed at the source int emissions, with polarization surement antenna may have ding on the radiation pattern of ssion source for receiving the intenna elevation shall be that surement antenna elevation to a range of heights of from ground plane. interference-receiving a variable-height antenna ter to four meters above the f the field strength. Both antenna are set to make the s arranged to its worst case a from 1 meter to 4 meters (for tenna was tuned to heights 1 from 0 degrees to 360 Detect Function and Specified ode was 10dB lower than the ed and the peak values of the issions that did not have 10dB ng peak, quasi-peak or orted in a data sheet. MHz),the middle channel
Exploratory Test Mode:		nitting mode with all kind of	
	data type		
Final Test Mode:			elow 1GHz part, through pre-
		e was the lowest channel.	
	Only the worst case	was recorded in the report	
Test Results:	Pass		



During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel was recorded in the report.

Page 22 of 39


Susp	ected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	54.2524	-17.74	37.21	19.47	40.00	20.53	PASS	Horizontal	PK
2	100.0410	-18.40	42.82	24.42	43.50	19.08	PASS	Horizontal	PK
3	159.9930	-21.15	42.97	21.82	43.50	21.68	PASS	Horizontal	PK
4	285.0385	-15.83	38.77	22.94	46.00	23.06	PASS	Horizontal	PK
5	439.9630	-12.01	33.36	21.35	46.00	24.65	PASS	Horizontal	PK
6	625.0575	-8.44	35.97	27.53	46.00	18.47	PASS	Horizontal	PK



Page 23 of 39

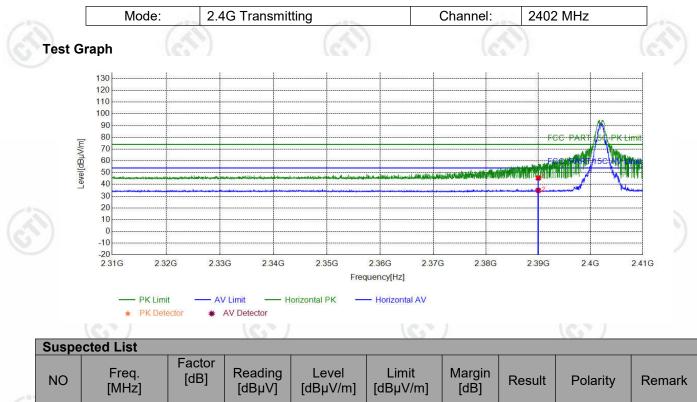
2	Suspected List									_
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	54.6405	-17.79	41.35	23.56	40.00	16.44	PASS	Vertical	PK
	2	75.0125	-21.68	41.72	20.04	40.00	19.96	PASS	Vertical	PK
	3	99.9440	-18.41	43.32	24.91	43.50	18.59	PASS	Vertical	PK
	4	159.9930	-21.15	42.41	21.26	43.50	22.24	PASS	Vertical	PK
	5	285.0385	-15.83	39.03	23.20	46.00	22.80	PASS	Vertical	PK
	6	625.0575	-8.44	36.24	27.80	46.00	18.20	PASS	Vertical	PK

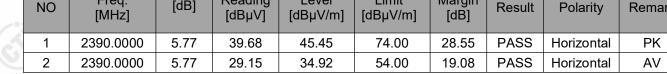
Radiated Spurious Emission above 1GHz:

	Mode:	V	2.4G Tra	ansmitting		Channel:	2402 Mł	Ηz	V	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Ś	1	1150.4150	0.82	41.23	42.05	74.00	31.95	PASS	Horizontal	PK
2	2	1782.0782	3.22	40.08	43.30	74.00	30.70	PASS	Horizontal	PK
	3	4805.1203	-16.23	70.32	54.09	74.00	19.91	PASS	Horizontal	PK
	4	4805.1203	-16.23	62.80	46.57	54.00	7.43	PASS	Horizontal	AV
	5	7207.2805	-11.83	74.90	63.07	74.00	10.93	PASS	Horizontal	PK
	6	7208.2806	-11.83	61.99	50.16	54.00	3.84	PASS	Horizontal	AV
	7	10728.5152	-6.40	50.95	44.55	74.00	29.45	PASS	Horizontal	PK
	8	13793.7196	-1.64	49.90	48.26	74.00	25.74	PASS	Horizontal	PK
	9	1209.4209	0.82	41.24	42.06	74.00	31.94	PASS	Vertical	PK
2	10	1660.8661	2.69	40.67	43.36	74.00	30.64	PASS	Vertical	PK
	11	4803.1202	-16.23	65.74	49.51	74.00	24.49	PASS	Vertical	PK
-	12	7205.2804	-11.83	69.48	57.65	74.00	16.35	PASS	Vertical	PK
	13	7207.2805	-11.83	54.38	42.55	54.00	11.45	PASS	Vertical	AV
	14	9811.4541	-7.34	50.86	43.52	74.00	30.48	PASS	Vertical	PK
	15	12654.6436	-4.54	50.37	45.83	74.00	28.17	PASS	Vertical	PK
		67		67		S.	/		(C)	

	Mode:	U	2.4G Tra	ansmitting		Channel:	2440 MHz			
1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1175.8176	0.81	41.45	42.26	74.00	31.74	PASS	Horizontal	PK
2	2	1747.2747	3.10	40.41	43.51	74.00	30.49	PASS	Horizontal	PK
	3	4868.1245	-16.21	66.73	50.52	74.00	23.48	PASS	Horizontal	PK
	4	7321.2881	-11.65	68.10	56.45	74.00	17.55	PASS	Horizontal	PK
	5	7321.2881	-11.65	57.61	45.96	54.00	8.04	PASS	Horizontal	AV
	6	10300.4867	-6.46	51.16	44.70	74.00	29.30	PASS	Horizontal	PK
	7	14390.7594	1.07	47.29	48.36	74.00	25.64	PASS	Horizontal	PK
	8	1175.8176	0.81	41.45	42.26	74.00	31.74	PASS	Horizontal	PK
-01	9	1148.2148	0.83	41.50	42.33	74.00	31.67	PASS	Vertical	PK
1	10	1738.8739	3.07	39.72	42.79	74.00	31.21	PASS	Vertical	PK
9	11	4879.1253	-16.21	72.64	56.43	74.00	17.57	PASS	Vertical	PK
	12	4880.1253	-16.21	60.39	44.18	54.00	9.82	PASS	Vertical	AV
	13	7319.2880	-11.66	66.72	55.06	74.00	18.94	PASS	Vertical	PK
	14	7320.2880	-11.65	56.22	44.57	54.00	9.43	PASS	Vertical	AV
	15	10885.5257	-6.35	51.06	44.71	74.00	29.29	PASS	Vertical	PK
	16	13755.7170	-1.69	49.43	47.74	74.00	26.26	PASS	Vertical	PK

	Mode:	J	2.4G Transmitting			Channel:	2480 MHz		U	
- 10	NO	Freq. [MHz]	Factor [dB]	Reading [dB µ V]	Level [dB µ V/m]	Limit [dB µ V/m]	Margin [dB]	Result	Polarity	Remark
5	1	1157.0157	0.82	41.01	41.83	74.00	32.17	PASS	Horizontal	PK
2	2	1739.4739	3.07	39.50	42.57	74.00	31.43	PASS	Horizontal	PK
	3	4959.1306	-15.98	71.50	55.52	74.00	18.48	PASS	Horizontal	PK
	4	4960.1307	-15.97	59.89	43.92	54.00	10.08	PASS	Horizontal	AV
	5	7441.2961	-11.34	67.90	56.56	74.00	17.44	PASS	Horizontal	PK
	6	7442.2962	-11.33	55.79	44.46	54.00	9.54	PASS	Horizontal	AV
	7	10805.5204	-6.24	50.97	44.73	74.00	29.27	PASS	Horizontal	PK
	8	14410.7607	1.07	47.62	48.69	74.00	25.31	PASS	Horizontal	PK
	9	1196.8197	0.80	40.88	41.68	74.00	32.32	PASS	Vertical	PK
2	10	1639.8640	2.55	40.17	42.72	74.00	31.28	PASS	Vertical	PK
G	11	4961.1307	-15.97	67.01	51.04	74.00	22.96	PASS	Vertical	PK
-	12	7398.2932	-11.51	53.41	41.90	74.00	32.10	PASS	Vertical	PK
	13	10284.4856	-6.56	51.01	44.45	74.00	29.55	PASS	Vertical	PK
	14	14247.7499	-0.73	47.25	46.52	74.00	27.48	PASS	Vertical	PK


Remark:


- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

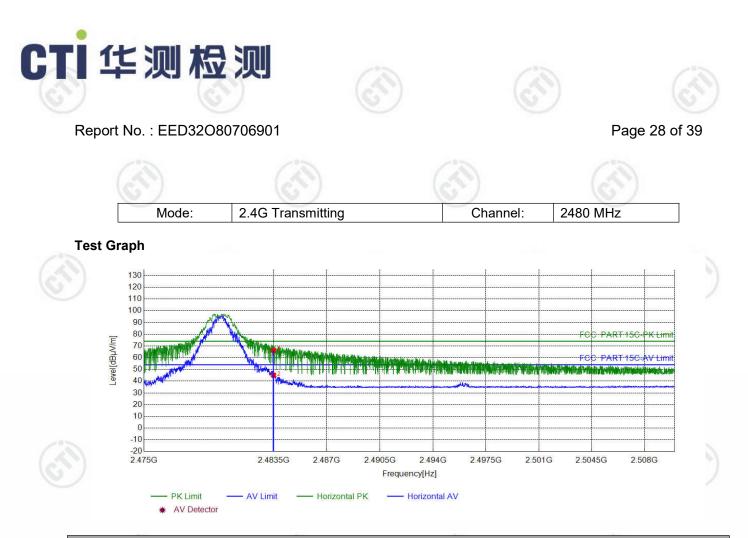
Page 26 of 39

Restricted bands:

Mode: 2.4G Transmitting Channel: 2402 MHz

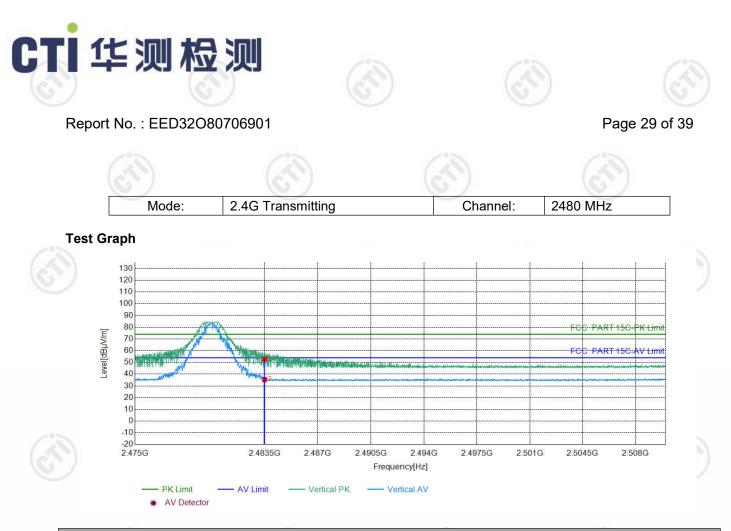
Test Graph 130 120 110 100 90 FCC PART 18C-PK Limit 80 Level[dBµV/m] 70 60 AV Limi FCC PAR 50 AWAN 40 30 20 10 0 -10 -20 2.31G 2.32G 2.33G 2.34G 2.35G 2.36G 2.37G 2.38G 2.39G 2.4G 2.41G Frequency[Hz] - Vertical PK - PK Limit - AV Limit - Vertical AV -. PK Detector * AV Detector

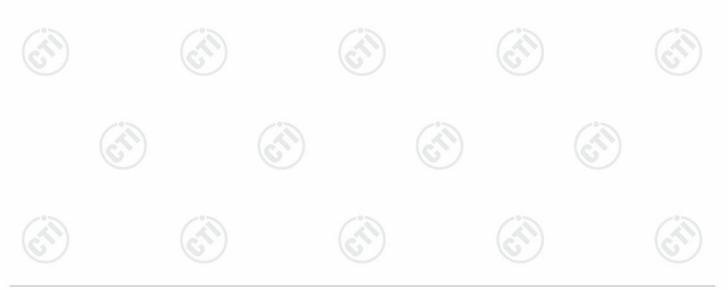
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	40.04	45.81	74.00	28.19	PASS	Vertical	PK
2	2390.0000	5.77	28.85	34.62	54.00	19.38	PASS	Vertical	AV



Page 27 of 39

	Suspe	Ispected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	2483.5000	6.57	59.63	66.20	74.00	7.80	PASS	Horizontal	PK	
1	2	2483.5000	6.57	38.51	45.08	54.00	8.92	PASS	Horizontal	AV	
\sim	°)		3		(6)		(c	(\mathcal{S})		(\mathcal{C})	



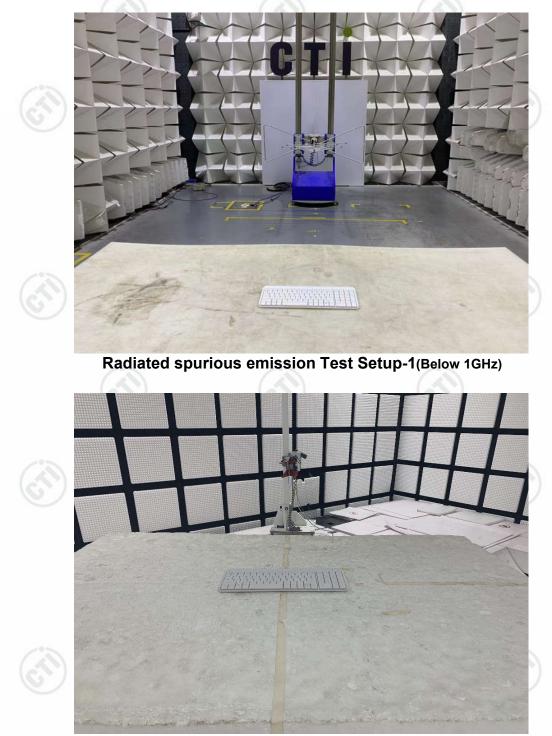

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	46.35	52.92	74.00	21.08	PASS	Vertical	PK
2	2483.5000	6.57	28.82	35.39	54.00	18.61	PASS	Vertical	AV

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor



Page 31 of 39

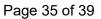
7 PHOTOGRAPHS OF TEST SETUP

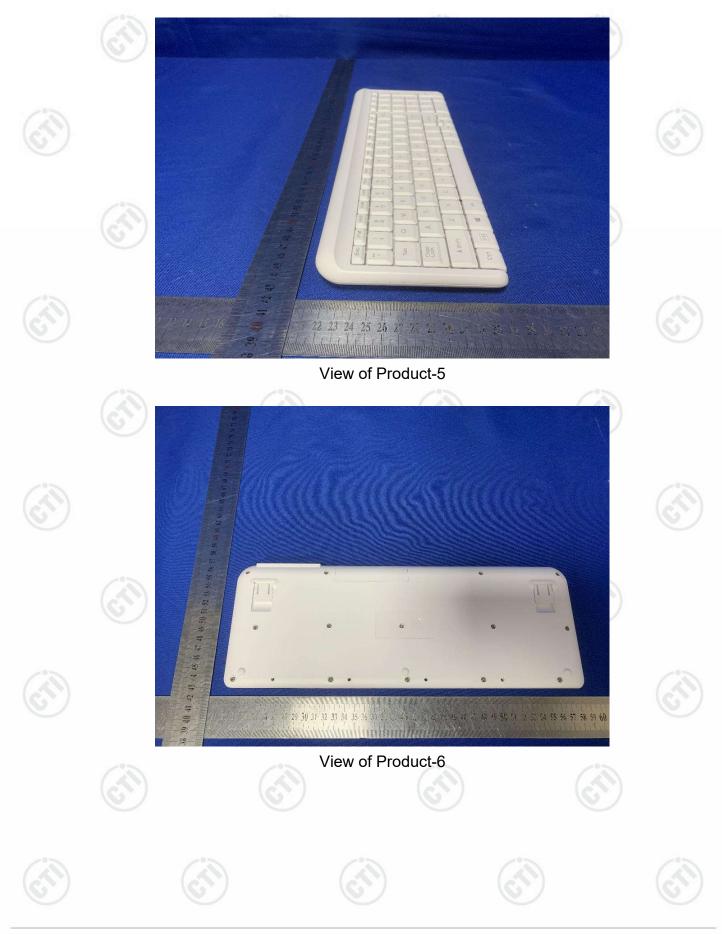
Test model No.:K616A

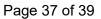
Page 32 of 39

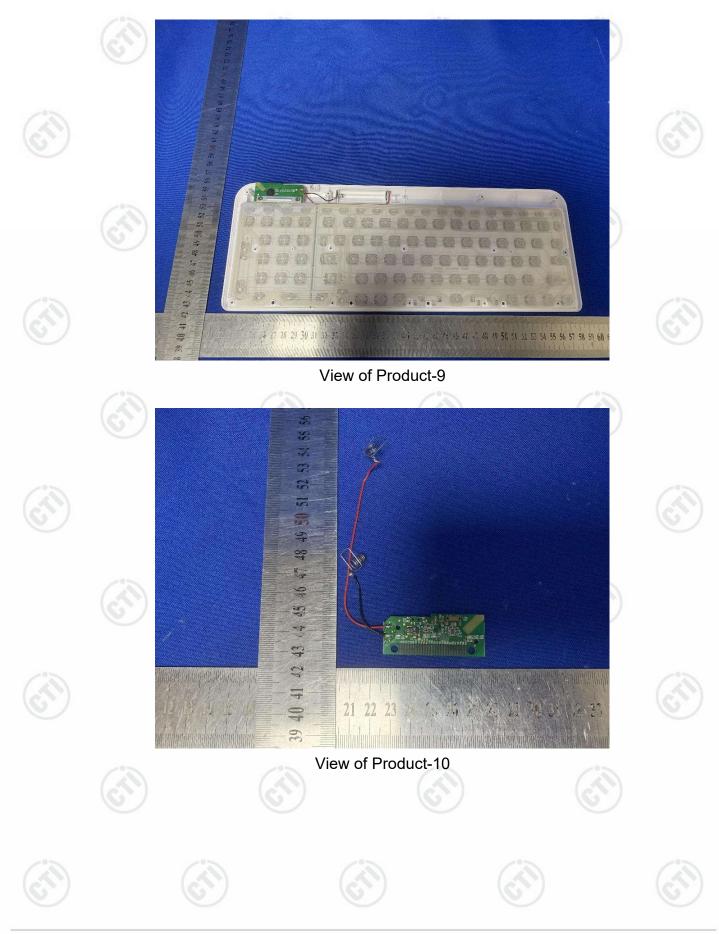
Page 33 of 39

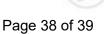
PHOTOGRAPHS OF EUT Constructional Details Test model No.: K616A -3 27 48 29 30 31 32 33 34 35 36 37 30 View of Product-1 2 22 30 31 32 33 34 35 View of Product-2 Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

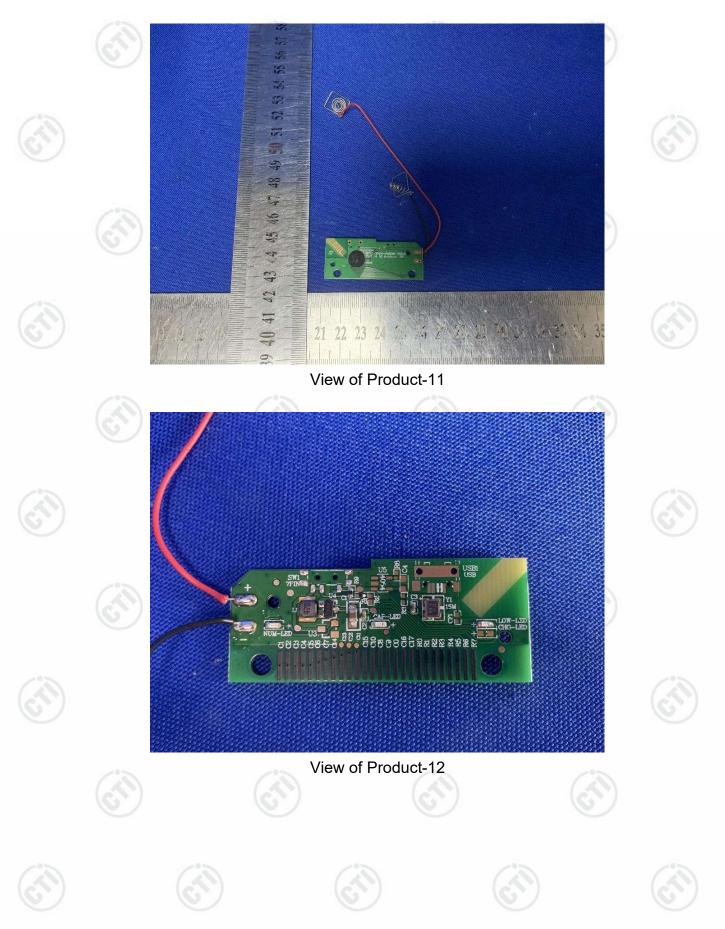


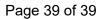


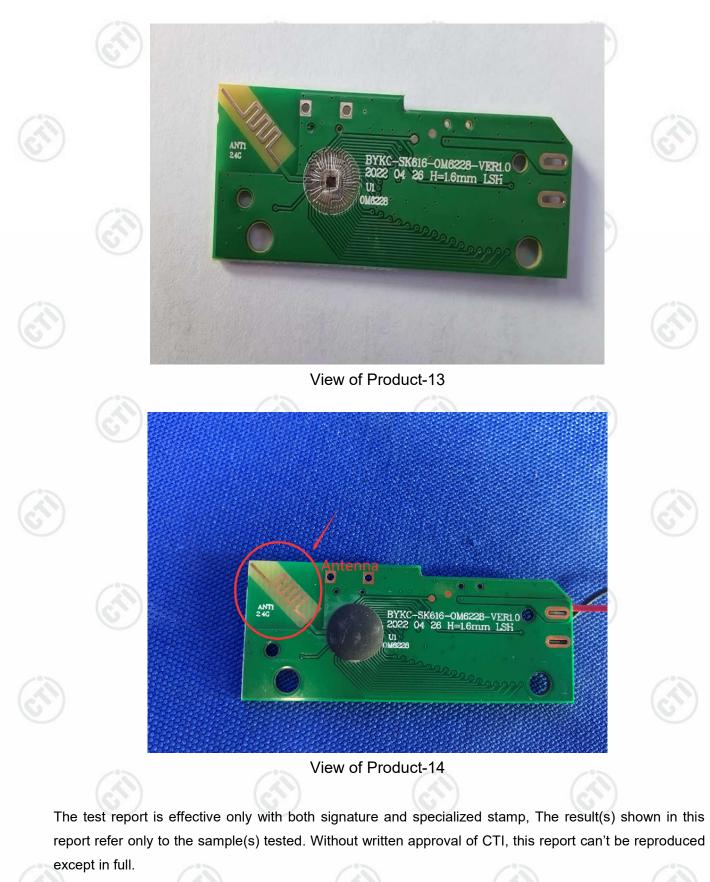












*** End of Report ***