

Page 1 of 50

TEST	REPORT

Product

FCC ID

Trade mark

Serial Number

Report Number

Date of Issue

Test result

Test Standards

Model/Type reference

Color Blocking Wireless Headset with Adjustable Headband

MINISO H10

- : H10
- : N/A
- : EED32O80429701
- : 2ART4-H10
- : Apr. 19, 2022
- : 47 CFR Part 15 Subpart C

PASS

Prepared for:

MINISO Corporation Room 2501, No.486 Heye Square, Kangwang Middle Road, Liwan District, Guangzhou, Guangdong, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:	mark. chen.	Reviewed by:	Aavon Ma	
SINTERNATIONAL	Mark Chen		Aaron Ma	
Approved by: G		Date:	Apr. 19, 2022	
Report Seal			Check No.::9	101250322

1 Contents

Page

			•
1 CONTENTS			2
2 VERSION			
3 TEST SUMMARY			
4 GENERAL INFORMATION	<u> </u>	<u> </u>	5
4.1 CLIENT INFORMATION			5
4.2 GENERAL DESCRIPTION OF EUT			5
4.3 TEST CONFIGURATION			
4.4 TEST ENVIRONMENT			
4.5 DESCRIPTION OF SUPPORT UNITS.		/	8
5 TEST RESULTS AND MEASUREME	ENT DATA		12
5.1 ANTENNA REQUIREMENT			12
5.2 MAXIMUM CONDUCTED OUTPUT P			
5.3 20DB EMISSION BANDWIDTH			14
5.4 CARRIER FREQUENCY SEPARATION	N		
5.5 NUMBER OF HOPPING CHANNEL 5.6 TIME OF OCCUPANCY			
5.7 BAND EDGE MEASUREMENTS			
5.8 CONDUCTED SPURIOUS EMISSION			
5.9 PSEUDORANDOM FREQUENCY HOP			
5.10 RADIATED SPURIOUS EMISSION 8			
6 APPENDIX A			38
7 PHOTOGRAPHS OF TEST SETUP.			
8 PHOTOGRAPHS OF EUT CONSTR			
8 PHOTOGRAPHS OF EUT CONSTR	UCTIONAL DETAILS		

2 Version

13	Version No	12	Date			Descriptio	on	12
(S)	00	A	pr. 19, 2022	6		Original		6
ľ	(K)		(A)		(ST)		(LA)	

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	N/A
Maximum Conducted Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	PASS
20dB Emission Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Carrier Frequency Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Number of Hopping Channels	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Time of Occupancy	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS
Band Edge Measurements	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
Restricted bands around fundamental frequency	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS

Remark: Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

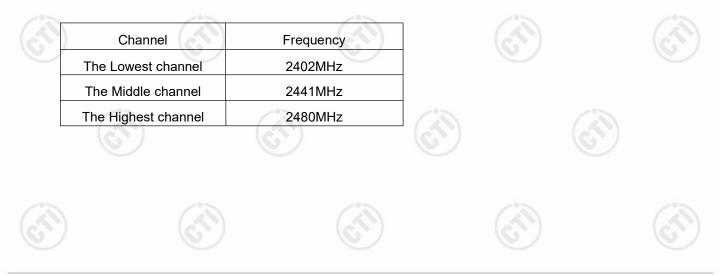
4 General Information

4.1 Client Information

Applicant:	MINISO Corporation
Address of Applicant:	Room 2501, No.486 Heye Square, Kangwang Middle Road, Liwan District, Guangzhou, Guangdong, China
Manufacturer:	KYM Technology Co.,Ltd
Address of Manufacturer:	1001-01, No.1, Kanghuai Industrial Park, No.60 Ping'an Road, Dafu Community, Guanlan Street, Longhua District, Shenzhen, China
Factory:	KYM Technology Co.,Ltd
Address of Factory:	1001-01, No.1, Kanghuai Industrial Park, No.60 Ping'an Road, Dafu Community, Guanlan Street, Longhua District, Shenzhen, China

4.2 General Description of EUT

~	Product Name:	Color Blocking Wireless Headset with Adjustable Headband	1
6	Model No.:	H10	(\sim)
9	Trade Mark:	MINISO	
	Product Type:	Portable	
	Operation Frequency:	2402MHz~2480MHz	
	Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)	
	Modulation Type:	GFSK, π/4DQPSK	
	Number of Channel:	79	
	Hopping Channel Type:	Adaptive Frequency Hopping systems	
	Antenna Type:	PCB Antenna	
9	Antenna Gain:	0dBi	0
	Power Supply:	Battery DC 3.7V	
	Test Voltage:	DC 3.7V	
	Sample Received Date:	Mar. 25, 2022	
	Sample tested Date:	Mar. 25, 2022 to Apr. 03, 2022	

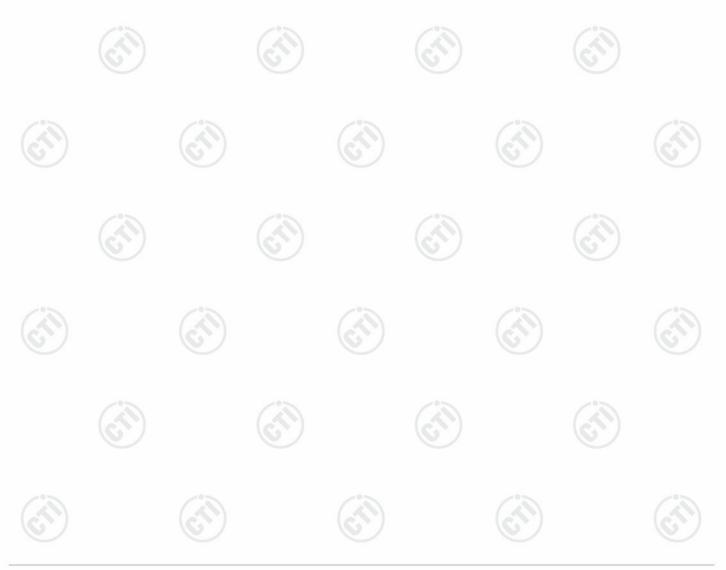


Page 6 of 50

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:



4.3 Test Configuration

EUT Test Software Setting	s:		
Software:	FCC_assist_1.0.2.2		
EUT Power Grade:	Class2 (Power level is built-in set par selected)	rameters and cannot be changed and	
Use test software to set the I transmitting of the EUT.	owest frequency, the middle frequency and the highest frequency keep		
Mode	Channel	Frequency(MHz)	
	СНО	2402	
DH1/DH3/DH5	CH39	2441	
	CH78	2480	
	СН0	2402	
2DH1/2DH3/2DH5	CH39	2441	
	CH78	2480	

4.4 Test Environment

1	16 M	((1.51	
C	Operating Environment	:				
F	Radiated Spurious Emi	ssions:				
Т	emperature:	22~25.0 °C				
F	lumidity:	50~55 % RH		(in)		12
А	Atmospheric Pressure:	1010mbar		(\mathcal{O})		6
C	Conducted Emissions:					
Т	emperature:	22~25.0 °C				
F	lumidity:	50~55 % RH	125		12	
Α	Atmospheric Pressure:	1010mbar	(\mathcal{A})			
F	RF Conducted:					
Т	emperature:	22~25.0 °C				
F	lumidity:	50~55 % RH				
Α	Atmospheric Pressure:	1010mbar				

4.5 Description of Support Units

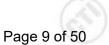
The EUT has been tested with associated equipment below. support equipment

1	Description	Manufacturer	Model No.	Certification	Supplied by
	Netbook	DELL	Latitude 3490	FCC&CE	СТІ

4.

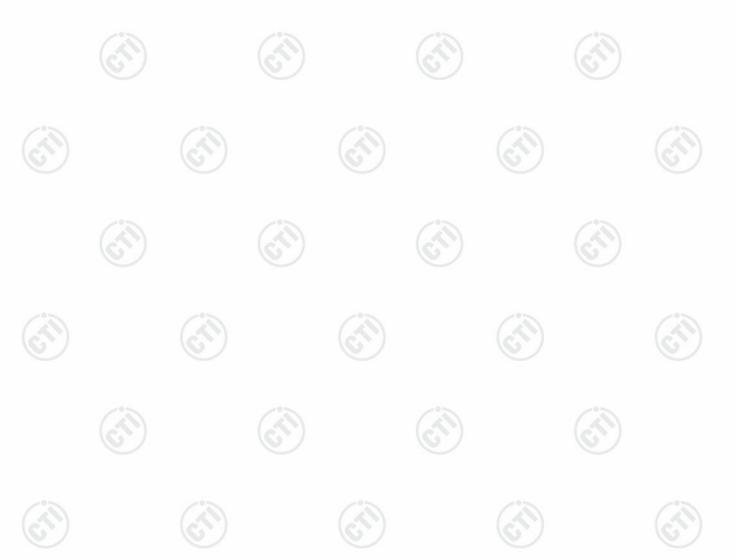
4.6 Test Location

All tests were performed at:


Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted.

FCC Designation No.: CN1164



4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	PE newer conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
	(SS) (SS)	3.3dB (9kHz-30MHz)
2	Dedicted Spurious emission test	4.3dB (30MHz-1GHz)
3 Radiated Spuriou	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

4.8 Equipment List

RF test system								
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-24-2021	12-23-2022			
Signal Generator	Keysight	N5182B	MY53051549	12-24-2021	12-23-2022			
Signal Generator	Agilent	N5181A	MY46240094	12-24-2021	12-23-2022			
Spectrum Analyzer	R&S	FSV40	101200	08-26-2021	08-25-2022			
DC Power	Keysight	E3642A	MY56376072	12-24-2021	12-23-2022			
Power unit	R&S	OSP120	101374	12-24-2021	12-23-2022			
RF control unit	JS Tonscend	JS0806-2	158060006	12-24-2021	12-23-2022			
Communication test set	R&S	CMW500	120765	08-04-2021	08-03-2022			
high-low temperature test chamber	emperature test Dong Guang Qin		QZ20150611879	12-24-2021	12-23-2022			
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-24-2021	06-23-2022			
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518					

	3M Semi-ar	echoic Chamber (2)	- Radiated distu	rbance Test		
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date	
3M Chamber & Accessory Equipment	ток	SAC-3		05/24/2019	05/23/2022	
Receiver R&S		ESCI7	100938-003	10/14/2021	10/13/2022	
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/23/2019	05/22/2022	
Multi device Controller	maturo	NCD/070/10711112	$(\underline{\circ})$	(ć	9 -	
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024	
Spectrum Analyzer	R&S	FSP40	100416	04/29/2021	04/28/2022	
Microwave Preamplifier	Agilent	8449B	3008A02425	06/23/2021	06/22/2022	

		3M full-anechoi	o Chambar		-
		3WI TUII-anechoi	c Champer	Cal. Date	Cal. Due date
Equipment	Manufacturer	Model No.	Serial Number	(mm-dd-yyyy)	(mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-01-2022	02-28-2023
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-23-2022	02-22-2023
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-23-2022	02-22-2023
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	05-20-2021	05-19-2022
Preamplifier	EMCI	EMC001330	980563	04-15-2021	04-14-2022
Preamplifier	JS Tonscend	980380	EMC051845SE	12-24-2021	12-23-2022
Communication test set	R&S	CMW500	102898	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-16-2021	04-15-2022
Fully Anechoic Chamber	TDK	FAC-3	(4)	01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM-2.50M	394812-0001		
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	~~~	
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	(S)-	(6
Cable line	Times	SFT205-NMSM-2.50M	393495-0001		
Cable line	Times	EMC104-NMNM-1000	SN160710		-
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	(3)
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		
Cable line	Times	SFT205-NMSM-7.00M	394815-0001		
Cable line	Times	HF160-KMKM-3.00M	393493-0001	6)	(6

5 Test results and Measurement Data

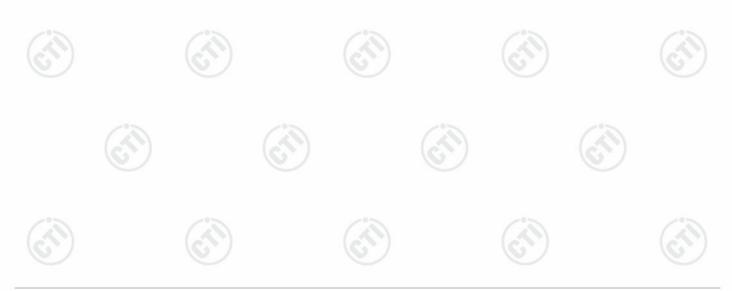
5.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)						
15.203 requirement:							
responsible party shall be u antenna that uses a unique so that a broken antenna c	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(b) (4) requirement:						
antennas with directional g section, if transmitting ante power from the intentional	er limit specified in paragraph (b) of this section is based on the use of ains that do not exceed 6 dBi. Except as shown in paragraph (c) of this ennas of directional gain greater than 6 dBi are used, the conducted output radiator shall be reduced below the stated values in paragraphs (b)(1), ction, as appropriate, by the amount in dB that the directional gain of the						
EUT Antenna:	Please see Internal photos						

The antenna is PCB antenna. The best case gain of the antenna is 0dBi.


5.2 Maximum Conducted Output Power

	Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)
	Test Method:	ANSI C63.10:2013
	Test Setup:	Control Computer Supply Fourer Supply Table RF test System Instrument
	Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
	Limit:	21dBm
2	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
3	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
	Test Results:	Refer to Appendix A
	S	

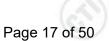


5.3 20dB Emission Bandwidth

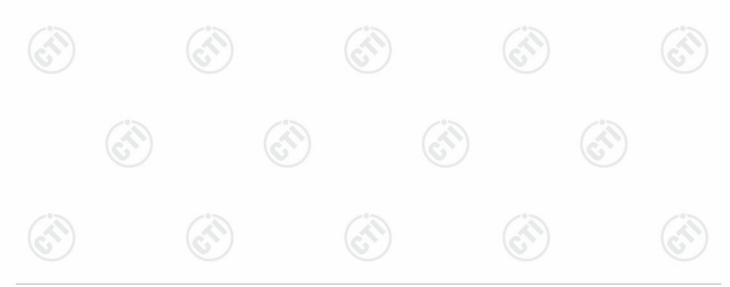
	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
<u> </u>	Test Setup:	RF test Control Control Power Supply Table RF test System Instrument
(N)	Test Procedure:	 Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
	Limit:	Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. 4. Measure and record the results in the test report.
~		
<u></u>	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSM modulation type, 2-DH5 of data type is the worst case of π /4DQPSM modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
	Test Results:	Refer to Appendix A
	G	

5.4 Carrier Frequency Separation

••••	eannoi i requeiley	
	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
٢	Test Setup:	Control Control Computer Power Power Supply TemPERATURE CABINET Table
		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
	Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.
	Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
C	Test Results:	Refer to Appendix A

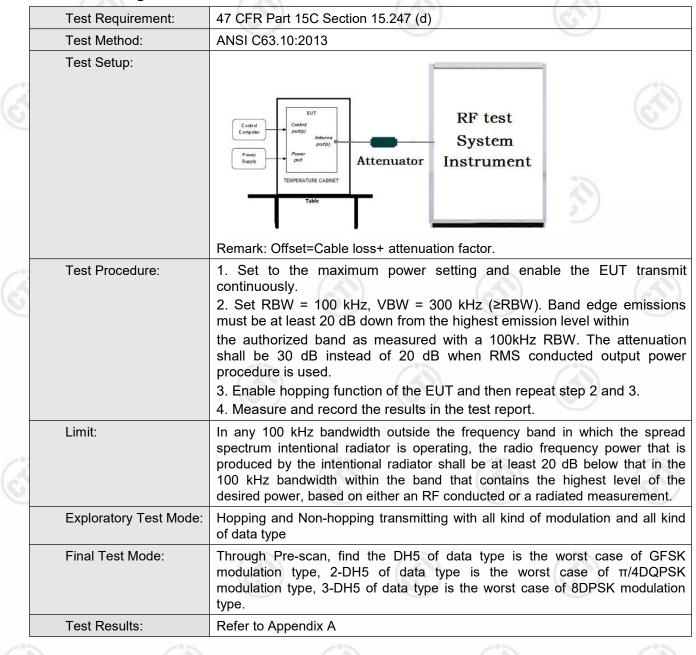

5.5 Number of Hopping Channel

		$(\mathscr{A}^{\mathbb{N}})$ $(\mathscr{A}^{\mathbb{N}})$ $(\mathscr{A}^{\mathbb{N}})$					
	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)					
	Test Method:	ANSI C63.10:2013					
Š	Test Setup:	Control Contro					
		Remark: Offset=Cable loss+ attenuation factor.					
S)	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by R cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transm continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequence 					
		band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto; Detector function = peak; Trace = max hold.					
Ś		5. The number of hopping frequency used is defined as the number of total channel.6. Record the measurement data in report.					
	Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.					
	Test Mode:	Hopping transmitting with all kind of modulation					
	Test Results:	Refer to Appendix A					



5.6 Time of Occupancy

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	RF test Corted Control Con
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
Test Results:	Refer to Appendix A
G	



5.7 Band edge Measurements

5.8 Conducted Spurious Emissions

	Test Requirement:	47 CFR Part 15C Section 15.247 (d)	G
	Test Method:	ANSI C63.10:2013	
	Test Setup:	Control Composer Composer Power Supply TemPERATURE CABINET	RF test System Instrument
		Remark: Offset=Cable loss+ attenua	tion factor.
CTT CTT	Test Procedure:	 cable and attenuator. The path loss of measurement. 2. Set to the maximum power secontinuously. 3. Set RBW = 100 kHz, VBW = 3000 harmonics / spurs must be at least level within the authorized band as m 4. Measure and record the results in 5. The RF fundamental frequency sh the operating frequency band. 	the test report. Nould be excluded against the limit line in
Ś	Limit:	spectrum intentional radiator is oper produced by the intentional radiator 100 kHz bandwidth within the band	he frequency band in which the spread rating, the radio frequency power that is shall be at least 20 dB below that in the d that contains the highest level of the an RF conducted or a radiated
	Exploratory Test Mode:	Non-hopping transmitting with all kine	d of modulation and all kind of data type
	Final Test Mode:	modulation type, 2-DH5 of data t modulation type, 3-DH5 of data type	data type is the worst case of GFSK ype is the worst case of π /4DQPSK is the worst case of 8DPSK modulation
		type.	

Page 20 of 50

5.9 Pseudorandom Frequency Hopping Sequence

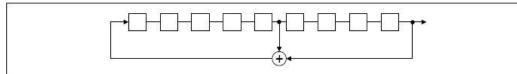
Test Requirement:

47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.


Compliance for section 15.247(a)(1)

According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a ninestage shift register whose 5th and 9th stage

outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

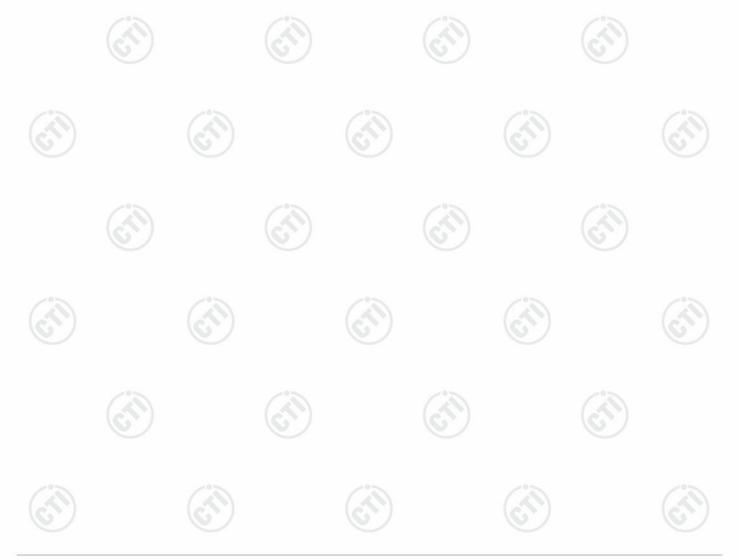
A 1997

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of F	'seudorandom Fre	equency	Hopping Sec	quence as follow:			
20 62 46 77	7	64	8 73		16:75	1	
Each frequency	used equally on t	he avera	age by each t	ransmitter.			
bandwidths that		ping cha	annel bandw	receivers are designed to the set of any Blueton nais.			
Compliance for	r section 15.247(g	g)					
				etooth system trans data and the short b			

Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom

Report No. : EED32O80429701


Page 21 of 50

hopping frequency system.

Compliance for section 15.247(h)

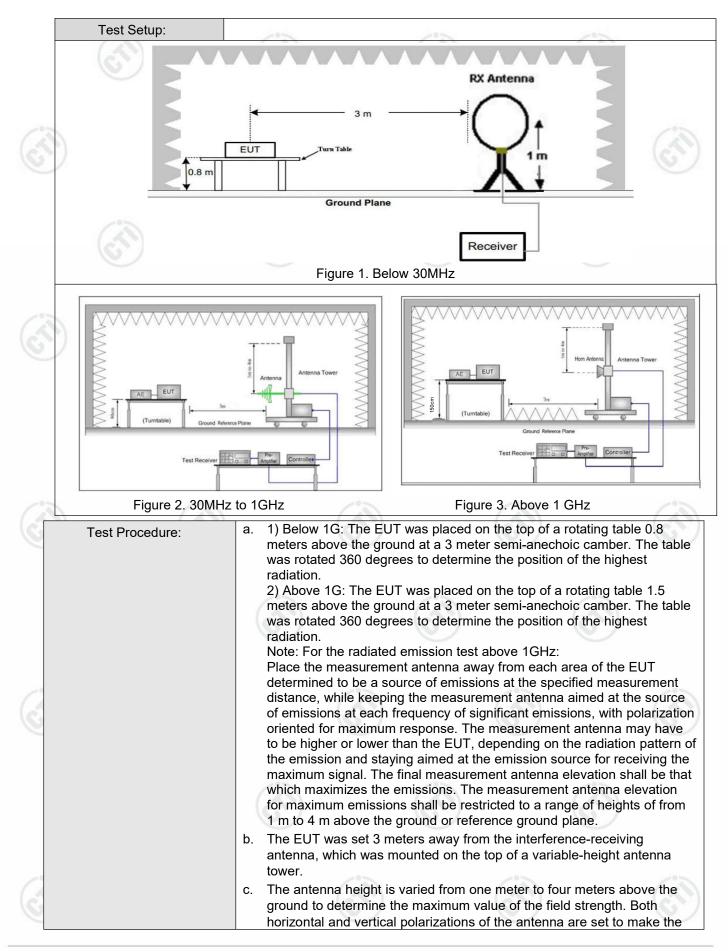
According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

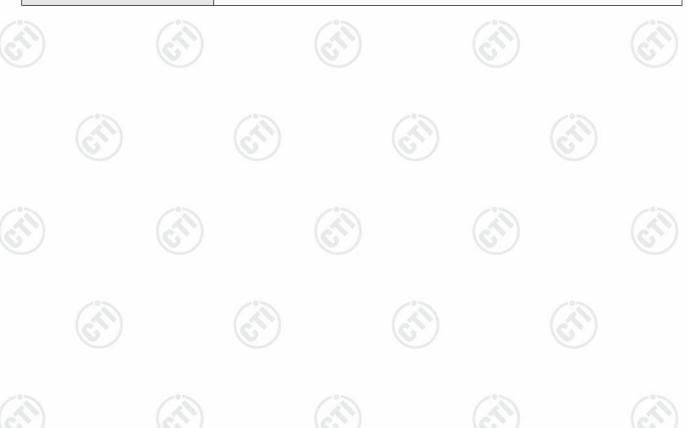
Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

5.10 Radiated Spurious Emission & Restricted bands

	Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
	Test Method:	ANSI C63.10: 2013								
	Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
2	Receiver Setup:	Frequency		Detector	RBW	VBW	Remark			
		0.009MHz-0.090MH	z	Peak	10kHz	: 30kHz	Peak			
-		0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average			
		0.090MHz-0.110MH	z	Quasi-peak	10kHz	: 30kHz	Quasi-peak			
		0.110MHz-0.490MH	z	Peak	10kHz	30kHz	Peak			
		0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average			
		0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak			
		30MHz-1GHz		Peak	100 kH	z 300kHz	Peak			
				Peak	1MHz	3MHz	Peak			
		Above 1GHz		Peak	1MHz	10kHz	Average			
	Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measuremen distance (m)			
		0.009MHz-0.490MHz	24	400/F(kHz)	-	-	300			
		0.490MHz-1.705MHz	24	000/F(kHz)	-	-73	30			
		1.705MHz-30MHz		30	-	<u>(C)</u>	30			
		30MHz-88MHz		100	40.0	Quasi-peak	3			
		88MHz-216MHz		150	43.5	Quasi-peak	3			
2		216MHz-960MHz		200	46.0	Quasi-peak	3			
8		960MHz-1GHz	P)	500	54.0	Quasi-peak	3			
-		Above 1GHz	/	500	54.0	Average	3			
		Note: 15.35(b), Unless emissions is 20df applicable to the peak emission lev	3 abo equij	ove the maxin	num permi est. This p	tted average	emission limit			

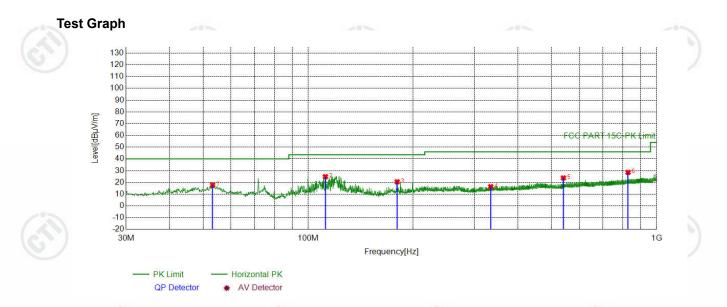


Page 23 of 50



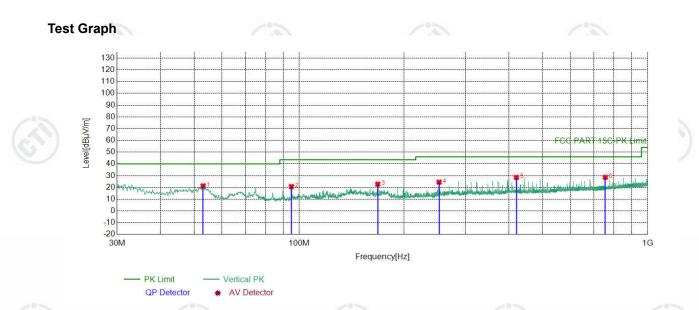
Report No. : EED32O80429701

	measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	 Test the EUT in the lowest channel (2402MHz), the middle channel (2441MHz), the Highest channel (2480MHz)
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case.
	Pretest the EUT at Transmitting mode, For below 1GHz part, through pre- scan, the worst case is the lowest channel.
	Only the worst case is recorded in the report.
Test Results:	Pass



Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of DH5 for GFSK was recorded in the report.


Suspect	ed List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	53.1853	-17.60	35.41	17.81	40.00	22.19	PASS	Horizontal	PK
2	112.0702	-18.73	43.65	24.92	43.50	18.58	PASS	Horizontal	PK
3	180.0740	-19.81	40.36	20.55	43.50	22.95	PASS	Horizontal	PK
4	334.1254	-14.59	30.96	16.37	46.00	29.63	PASS	Horizontal	PK
5	540.0770	-10.03	33.88	23.85	46.00	22.15	PASS	Horizontal	PK
6	828.0988	-6.11	34.70	28.59	46.00	17.41	PASS	Horizontal	PK

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	52.9913	-17.57	38.96	21.39	40.00	18.61	PASS	Vertical	PK
2	94.9965	-19.27	39.96	20.69	43.50	22.81	PASS	Vertical	PK
3	168.0448	-20.59	43.39	22.80	43.50	20.70	PASS	Vertical	PK
4	252.0552	-16.52	41.08	24.56	46.00	21.44	PASS	Vertical	PK
5	420.0760	-12.50	41.08	28.58	46.00	17.42	PASS	Vertical	PK
6	756.1176	-6.94	35.58	28.64	46.00	17.36	PASS	Vertical	PK

Radiated Spurious Emission above 1GHz:

	Mode	:	GI	SK Transmit	ting		Channel:		2402 MHz	2
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1	1249.6250	0.93	41.85	42.78	74.00	31.22	Pass	Н	PK
2	2	2021.7022	4.62	40.43	45.05	74.00	28.95	Pass	Н	PK
9	3	4804.1203	-16.23	60.47	44.24	74.00	29.76	Pass	Н	PK
	4	7206.2804	-11.83	59.05	47.22	74.00	26.78	Pass	Н	PK
	5	9607.4405	-7.37	54.91	47.54	74.00	26.46	Pass	Н	PK
	6	14389.7593	1.05	47.46	48.51	74.00	25.49	Pass	Н	PK
	7	1207.8208	0.82	42.15	42.97	74.00	31.03	Pass	V	PK
Ī	8	1926.4926	4.17	40.46	44.63	74.00	29.37	Pass	V	PK
	9	4804.1203	-16.23	61.78	45.55	74.00	28.45	Pass	V	PK
	10	7206.2804	-11.83	58.89	47.06	74.00	26.94	Pass	V	PK
1	11	9608.4406	-7.37	61.71	54.34	74.00	19.66	Pass	V	PK
Ś	12	9609.4406	-7.37	52.57	45.20	54.00	8.80	Pass	V	AV
2	13	15325.8217	-0.33	49.41	49.08	74.00	24.92	Pass	V	PK

	Mode	:		GFSK Transmi	tting		Channel:		2441 MHz	2
	NO	Freq. [MHz]	Factor [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1293.6294	1.04	42.29	43.33	74.00	30.67	Pass	Н	PK
	2	1735.2735	3.06	41.13	44.19	74.00	29.81	Pass	Н	PK
1	3	4882.1255	-16.21	l 61.80	45.59	74.00	28.41	Pass	Н	PK
1	4	7323.2882	-11.65	5 55.57	43.92	74.00	30.08	Pass	Н	PK
5	5	9763.4509	-7.50	56.98	49.48	74.00	24.52	Pass	Н	PK
	6	14356.7571	0.50	47.90	48.40	74.00	25.60	Pass	Н	PK
	7	1381.4381	1.33	42.06	43.39	74.00	30.61	Pass	V	PK
	8	1781.6782	3.22	41.65	44.87	74.00	29.13	Pass	V	PK
	9	4882.1255	-16.21	l 62.68	46.47	74.00	27.53	Pass	V	PK
	10	7323.2882	-11.65	5 58.43	46.78	74.00	27.22	Pass	V	PK
	11	9764.4510	-7.50	61.47	53.97	74.00	20.03	Pass	V	PK
	12	9764.4510	-7.50	52.23	44.73	54.00	9.27	Pass	V	AV
4	13	14370.7581	0.73	48.00	48.73	74.00	25.27	Pass	V	PK
0			0	/		/	0	1		

CTI华测检测 Report No. : EED32O80429701

Page 28 of 50

	Mode	:		GFSK Transmit	ting		Channel:		2480 MHz	<u> </u>
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1343.6344	1.20	41.26	42.46	74.00	31.54	Pass	Н	PK
- 0	2	1885.8886	3.92	40.35	44.27	74.00	29.73	Pass	Н	PK
2	3	4960.1307	-15.97	62.37	46.40	74.00	27.60	Pass	Н	PK
2	4	7440.2960	-11.34	55.27	43.93	74.00	30.07	Pass	Н	PK
	5	9919.4613	-7.10	56.18	49.08	74.00	24.92	Pass	Н	PK
	6	14374.7583	0.80	48.86	49.66	74.00	24.34	Pass	Н	PK
	7	1264.4264	0.97	41.66	42.63	74.00	31.37	Pass	V	PK
	8	2105.1105	4.82	40.33	45.15	74.00	28.85	Pass	V	PK
	9	4960.1307	-15.97	59.69	43.72	74.00	30.28	Pass	V	PK
	10	7440.2960	-11.34	58.29	46.95	74.00	27.05	Pass	V	PK
	11	9919.4613	-7.10	64.45	57.35	74.00	16.65	Pass	V	PK
	12	9920.4614	-7.10	54.79	47.69	54.00	6.31	Pass	V	AV
3	13	15375.8251	0.24	49.05	49.29	74.00	24.71	Pass	V	PK

Mode	:		π/4DQPSK Tra	nsmitting		Channel:		2402 MHz	2
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1352.6353	1.23	41.12	42.35	74.00	31.65	Pass	н	PK
2	1884.2884	3.91	39.92	43.83	74.00	30.17	Pass	Н	PK
3	4804.1203	-16.23	61.39	45.16	74.00	28.84	Pass	н	PK
4	7206.2804	-11.83	57.09	45.26	74.00	28.74	Pass	н	PK
5	9607.4405	-7.37	57.00	49.63	74.00	24.37	Pass	н	PK
6	13673.7116	-1.73	49.17	47.44	74.00	26.56	Pass	н	PK
7	1152.4152	0.82	41.77	42.59	74.00	31.41	Pass	V	PK
8	1699.0699	2.93	40.89	43.82	74.00	30.18	Pass	V	PK
9	4804.1203	-16.23	61.83	45.60	74.00	28.40	Pass	V	PK
10	7206.2804	-11.83	58.98	47.15	74.00	26.85	Pass	V	PK
11	9608.4406	-7.37	61.70	54.33	74.00	19.67	Pass	V	PK
12	14867.7912	-0.22	48.58	48.36	74.00	25.64	Pass	V	PK

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

CTI 华**测** 检测 Report No. : EED32080429701

Mode: π/4DQPSK Transmitting Channel: 2441 MHz Factor Freq. Reading Level Limit [dB] NO Margin [dB] Result Polarity Remark [MHz] [dBµV] [dBµV/m] [dBµV/m] 1 1216.0216 0.84 42.01 42.85 74.00 31.15 Pass Н PK 2 1761.0761 3.15 40.16 43.31 74.00 30.69 Pass Н ΡK 61.78 74.00 4882.1255 -16.21 45.57 28.43 Н ΡK 3 Pass 54.50 74.00 Н 4 7323.2882 -11.65 42.85 31.15 Pass PΚ 5 9763.4509 -7.50 56.89 49.39 74.00 24.61 Pass Н ΡK 6 14399.7600 1.22 47.98 49.20 74.00 24.80 Pass Н ΡK 7 1161.8162 0.82 41.99 42.81 74.00 31.19 Pass V PΚ 4.22 V 8 1937.0937 40.14 44.36 74.00 ΡK 29.64 Pass 4882.1255 -16.21 61.40 45.19 74.00 V ΡK 9 28.81 Pass 10 7323.2882 -11.65 57.28 45.63 74.00 28.37 Pass V ΡK 11 -7.50 74.00 V 9764.4510 62.86 55.36 18.64 ΡK Pass -7.50 54.00 7.29 V 12 9764.4510 54.21 46.71 Pass AV 13 Pass V PK 15364.8243 0.12 49.15 49.27 74.00 24.73

Mode	:		π/4DQPSK Tra	insmitting		Channel:		2480 MHz		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1188.8189	0.81	41.29	42.10	74.00	31.90	Pass	н	PK	
2	1779.0779	3.21	40.60	43.81	74.00	30.19	Pass	Н	PK	
3	4960.1307	-15.97	61.68	45.71	74.00	28.29	Pass	н	PK	
4	7439.2960	-11.34	53.61	42.27	74.00	31.73	Pass	Н	PK	
5	9920.4614	-7.10	55.86	48.76	74.00	25.24	Pass	Н	PK	
6	14361.7575	0.59	48.29	48.88	74.00	25.12	Pass	Н	PK	
7	1235.6236	0.89	41.78	42.67	74.00	31.33	Pass	V	PK	
8	1821.8822	3.44	40.90	44.34	74.00	29.66	Pass	V	PK	
9	4960.1307	-15.97	7 58.85	42.88	74.00	31.12	Pass	V	PK	
10	5760.1840	-13.71	58.27	44.56	74.00	29.44	Pass	V	PK	
11	7440.2960	-11.34	56.93	45.59	74.00	28.41	Pass	V	PK	
12	9919.4613	-7.10	61.33	54.23	74.00	19.77	Pass	V	PK	

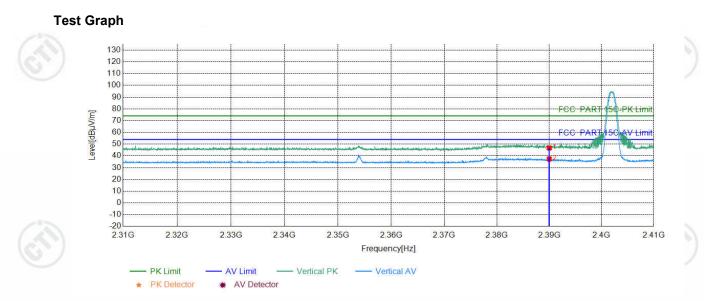
Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

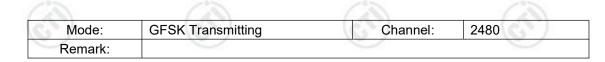
Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

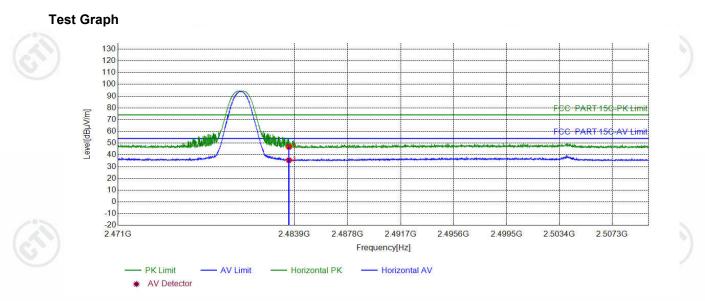
2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

	Mode:		SK Transm	itting		Channel:	2402	2	
	Remark:								
Test (Graph								
	130								
	110								
	90							Δ	
								CC PART 15C-PK Li	
<u>)</u>	European 200	الله وروست والاروان	nt. At the ans to bin the second	and the second		and the second sec	F	CC PART 50 AV Li	mit
	ق 40 30			·····			**************************************	manual hain	
	30	1	1						
	20								
	20 10 0								
	20 10 -10 -20	2G 2.33	G 234G	2 35G	236G 237	G 238G	2.39G	2.4G	2.41G
	20 10 0 -10	2G 2.33	G 2.34G	2.35G Free	2.36G 2.37 juency[Hz]	G 2.38G	2.39G	2.4G	2.41G
	20 10 -10 -20 2.31G 2.32 	t <u> </u>	/ Limit —— H	Free		G 2.38G	2.39G	2.4G	2.41G
	20 10 0 -10 -20 2.31G 2.32	t <u> </u>		Free	quency[Hz]	G 2.38G	2.39G	2.4G	2.41G
Suspe	20 10 -10 -20 2.31G 2.32 	t <u> </u>	/ Limit —— H	Free	quency[Hz]	G 2.38G	2.39G	2.4G	2.416
Suspe	20 10 0 -10 -20 2.31G 2.32 → PK Limi ★ PK Dete	t <u> </u>	/ Limit —— H	Free	quency[Hz]	G 2.38G	2.39G	2.4G Polarity	2.41G
<pre></pre>	20 10 0 -10 -20 2.31G 2.32 → PK Limi ★ PK Dete ected List Freq.	t — Av	AV Detector	Free orizontal PK	uency[Hz] Horizontal AV Limit	Margin			
NO	20 10 0 -10 -20 2.31G 2.32 — PK Limi * PK Dete ected List Freq. [MHz]	t — Al ector * Factor [dB]	AV Detector Reading [dBµV]	Free orizontal PK Level [dBµV/m]	Horizontal AV	Margin [dB]	Result	Polarity	Remark
NO 1	20 10 0 -10 -231G 2.32 → PK Limit ★ PK Dete ected List Freq. [MHz] 2390.0000	Factor [dB]	/ Limit — H AV Detector Reading [dBμV] 40.50	Free orizontal PK Level [dBµV/m] 46.27	Limit [dBµV/m] 74.00	Margin [dB] 27.73	Result	Polarity Horizontal	Remark



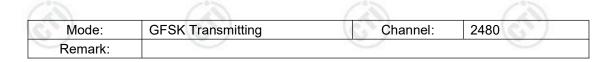
NO	Freq. [MHz]	[dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1 2	2390.0000	5.77	40.98	46.75	74.00	27.25	PASS	Vertical	PK
2 2	2390.0000	5.77	31.60	37.37	54.00	16.63	PASS	Vertical	AV

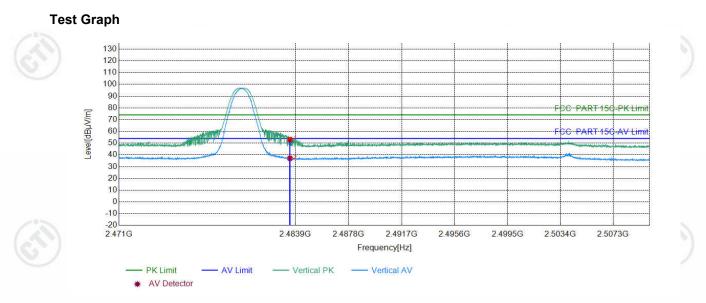




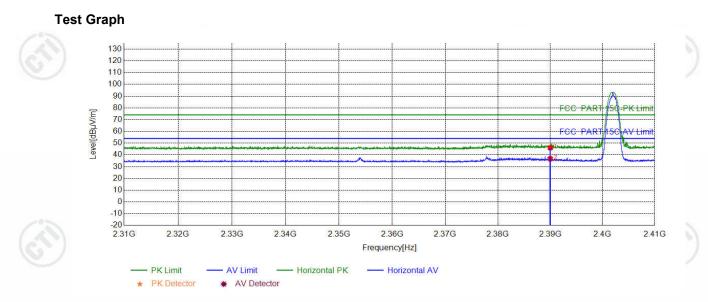
Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

	[MHz]		[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polarity	Remark
1 24	183.5000	6.57	40.20	46.77	74.00	27.23	PASS	Horizontal	PK
2 24	483.5000	6.57	28.89	35.46	54.00	18.54	PASS	Horizontal	AV

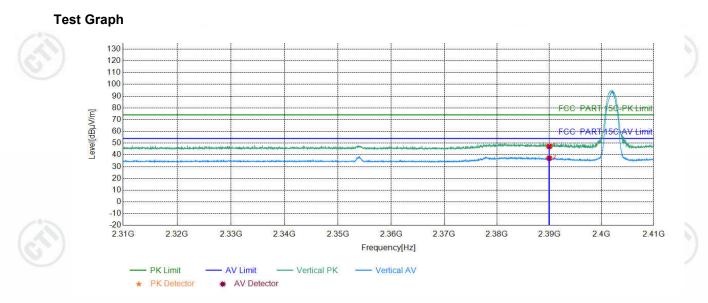




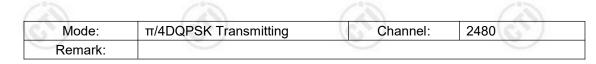
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	46.39	52.96	74.00	21.04	PASS	Vertical	PK
2	2483.5000	6.57	30.51	37.08	54.00	16.92	PASS	Vertical	AV

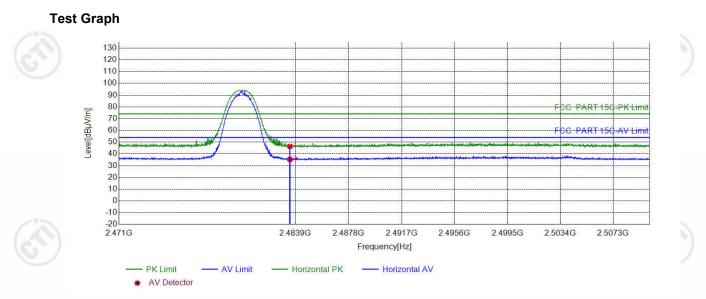


	[MHz]		[dBµV]	[dBµV/m]	[dBµV/m]	Margin [dB]	Result	Polarity	Remark
1 23	90.0000	5.77	40.32	46.09	74.00	27.91	PASS	Horizontal	PK
2 23	90.0000	5.77	30.96	36.73	54.00	17.27	PASS	Horizontal	AV

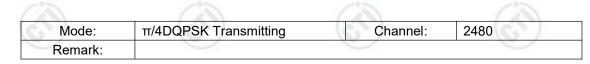


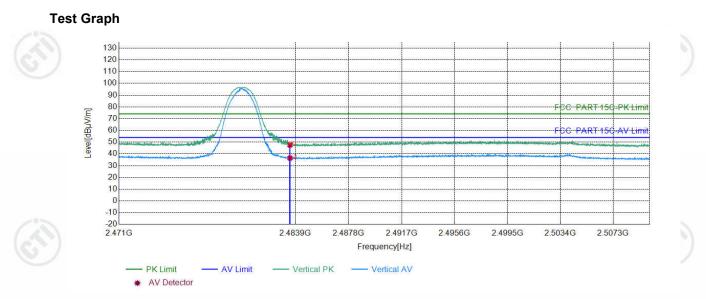
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	41.43	47.20	74.00	26.80	PASS	Vertical	PK
2	2390.0000	5.77	31.36	37.13	54.00	16.87	PASS	Vertical	AV





1 2483.5000 6.	0.67 00.00						
	6.57 39.82	46.39	74.00	27.61	PASS	Horizontal	PK
2 2483.5000 6.	6.57 28.78	35.35	54.00	18.65	PASS	Horizontal	AV





Suspe NO	ected List Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	40.95	47.52	74.00	26.48	PASS	Vertical	PK
2	2483.5000	6.57	29.90	36.47	54.00	17.53	PASS	Vertical	AV
5)		(r)		61)	6	5)		(\mathcal{C})

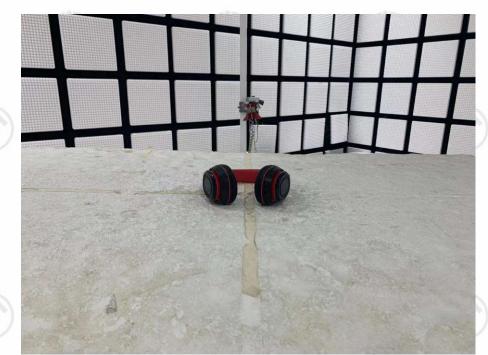
Note: The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading - Correct Factor Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor

Page 38 of 50

6 Appendix A

Refer to Appendix: Bluetooth Classic of EED32O80429701

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

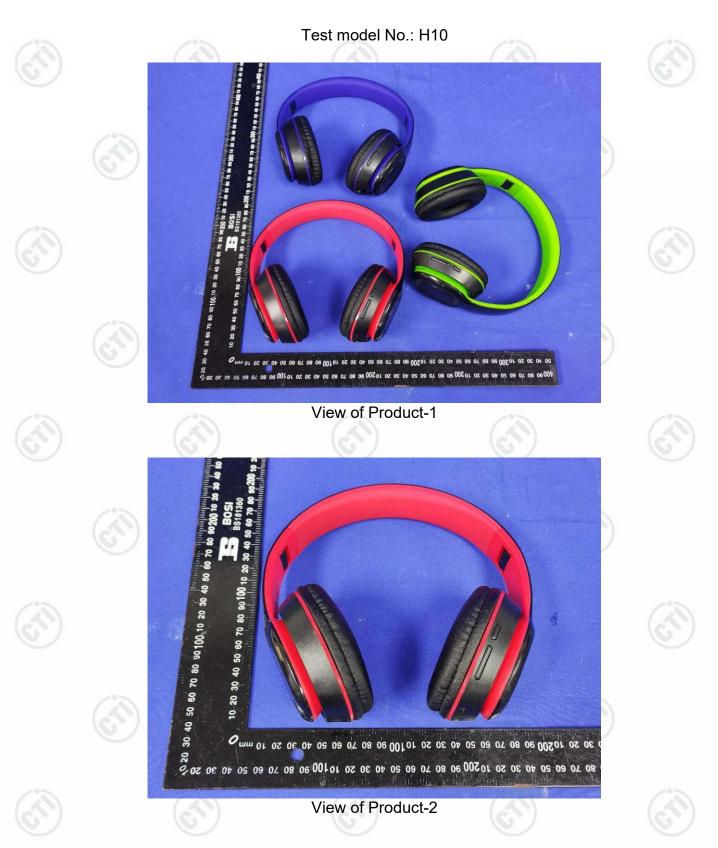

Page 39 of 50

7 PHOTOGRAPHS OF TEST SETUP

Test model No.:H10

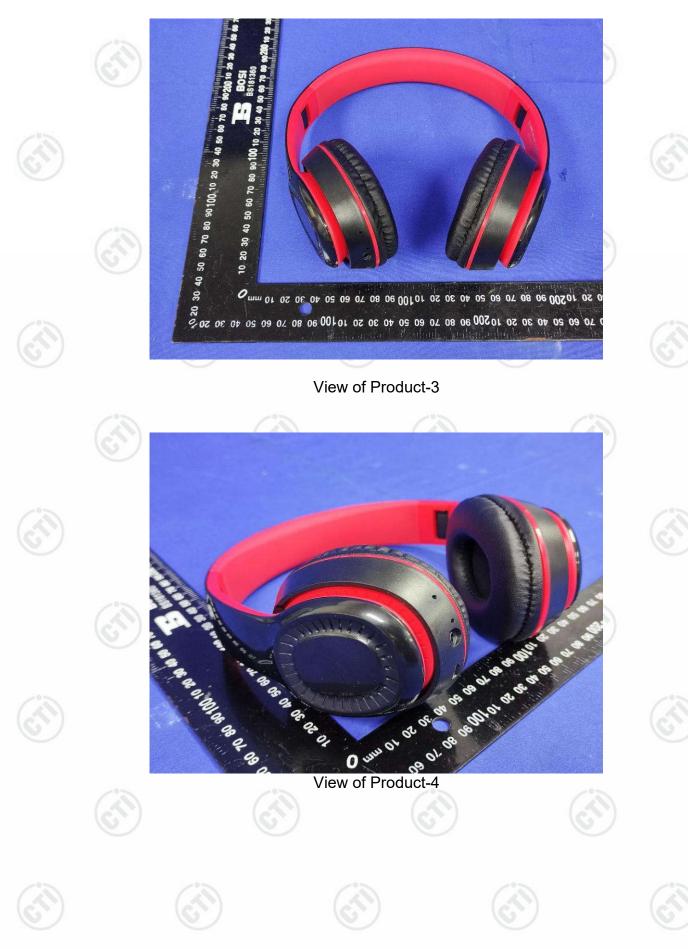
Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

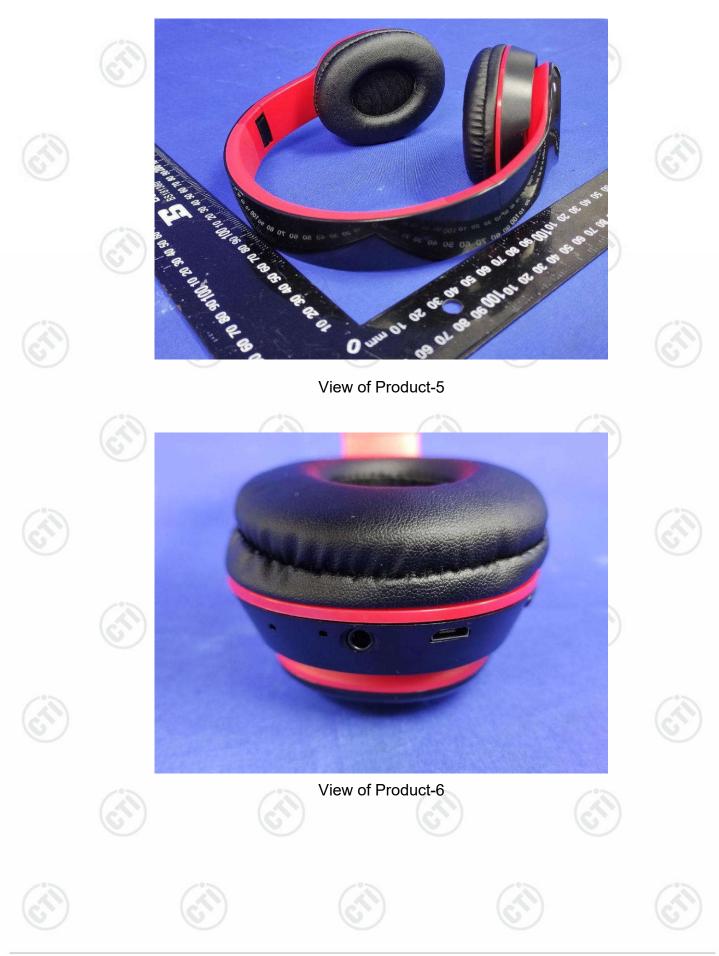


Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

8 PHOTOGRAPHS OF EUT Constructional Details

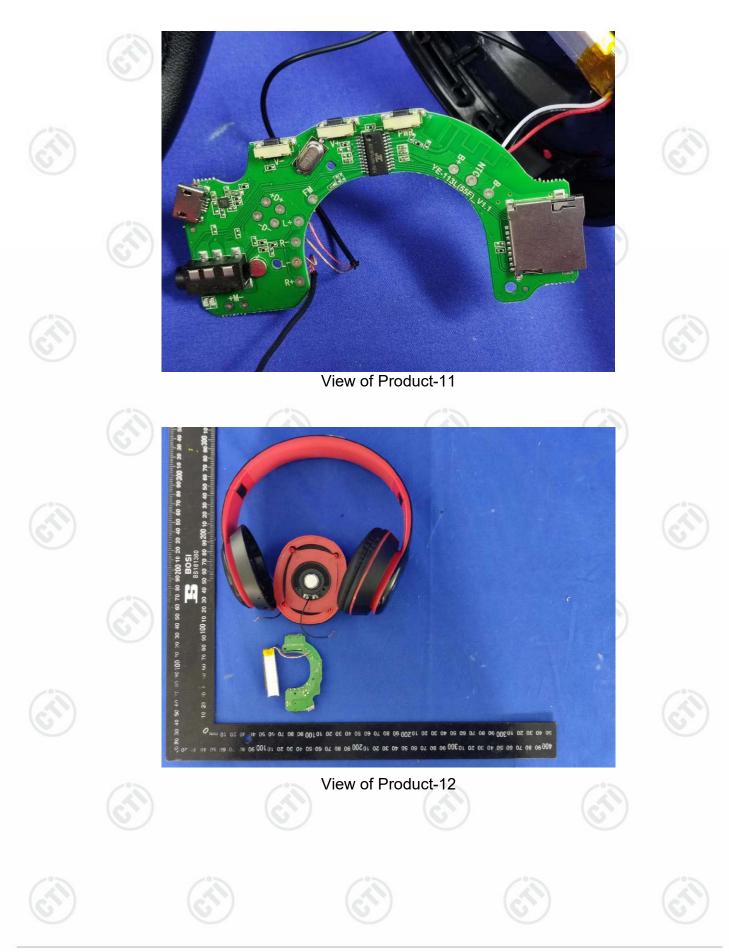


Page 42 of 50

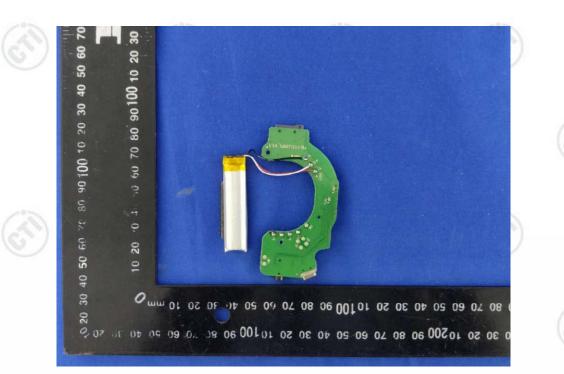


Page 43 of 50

Page 44 of 50



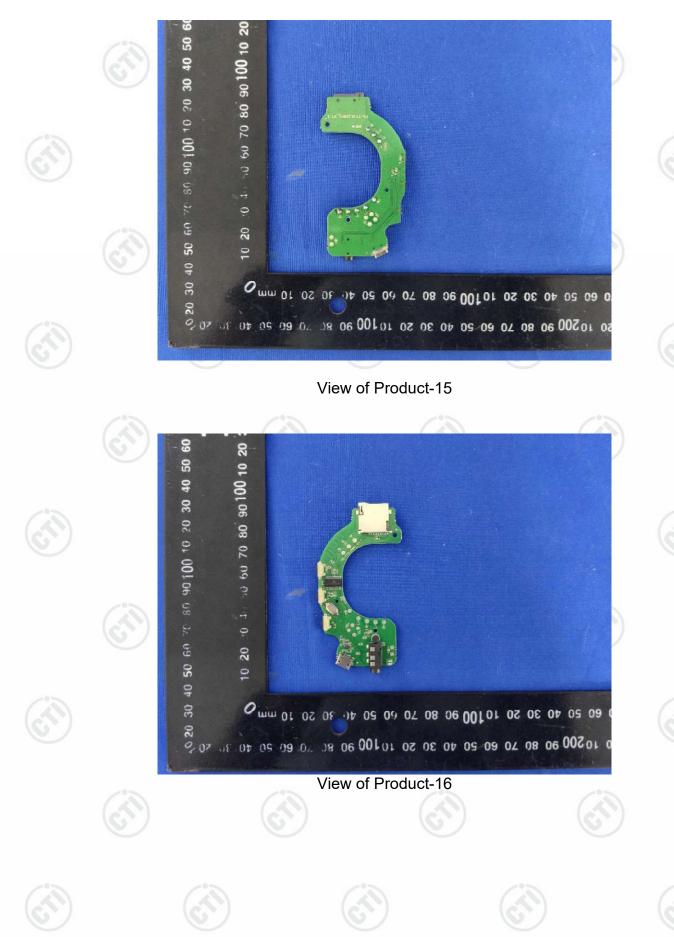
Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com



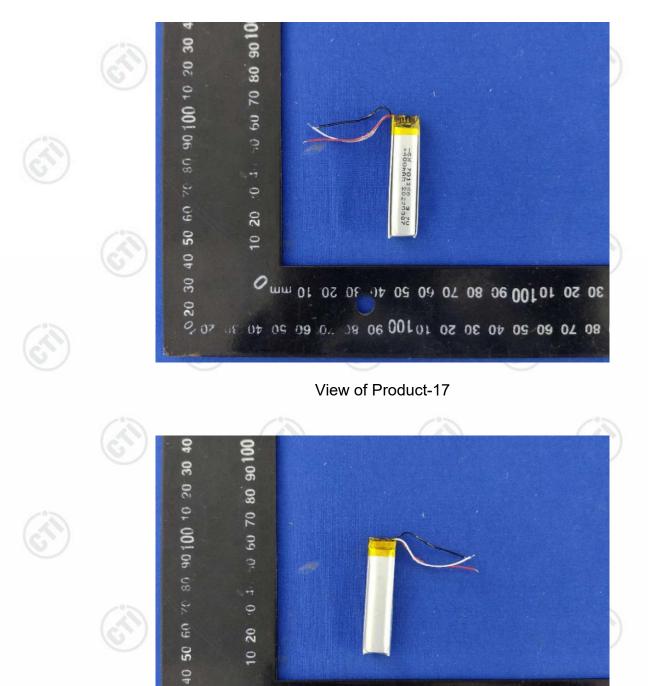
Page 47 of 50

View of Product-13

View of Product-14



Page 48 of 50


30

20

Page 49 of 50

View of Product-18

00 80 20 60 20 40 30 50 10100 30 86 10 60 20 40 30 50 90

40 30 50 10100 30 80 20 60 20 40 30 50 10 mm

