

TEST REPORT

Product : TWS Capsule Wireless Speakers

Trade mark : MINISO

Model/Type reference : BS-7281

Serial Number : N/A

Report Number : EED32N80338501 FCC ID : 2ART4-BS-7281 Date of Issue : Jun. 25, 2021

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

MINISO Corporation

Room 2501, No. 486 Heye Square, Kangwang Middle Road, Liwan District, Guangzhou, Guangdong, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

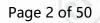
Frazer. Lo

Reviewed by:

Approved by:

David Wang

David Wang


David Wang

Check No.::7325100521

Contents			
			Page
1 CONTENTS	•••••	•••••	 2
2 VERSION			 3
3 TEST SUMMARY			 4
4 GENERAL INFORMATION			 5
4.1 CLIENT INFORMATION			
4.2 GENERAL DESCRIPTION OF E	UT		 5
4.2 Teat Configuration			7

4.3 DESCRIPTION OF SUPPORT UNITS	0
EST RESULTS AND MEASUREMENT DATA	12
5.1 ANTENNA REQUIREMENT	12
5.2 AC Power Line Conducted Emissions	13

J.Z ACT OWER LINE CONDUCTED LIVISSIONS	10
5.3 MAXIMUM CONDUCTED OUTPUT POWER	17
5.4 20DB EMISSION BANDWIDTH	18
5.5 CARRIER FREQUENCY SEPARATION	19
5.6 Number of Hopping Channel	20
5.7 TIME OF OCCUPANCY	21

5.8 BAND EDGE MEASUREMENTS	22
5.9 CONDUCTED SPURIOUS EMISSIONS	23
5.10 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	24
5.11 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS	26
6 APPENDIX A	42

6 APPENDIX A	42
7 PHOTOGRAPHS OF TEST SETUP	43
O DUOTOCDADUS OF FUT CONSTRUCTIONAL DETAILS	

2 Version

Version No.	Date	43	Description	(3)
00	Jun. 25, 2021		Original	(6)
			(3)	

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	PASS
Maximum Conducted Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	PASS
20dB Emission Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Carrier Frequency Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Number of Hopping Channels	nels 47 CFR Part 15, Subpart C Section 15.247 (a)(1)	
Time of Occupancy	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS
Band Edge Measurements	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
Restricted bands around fundamental frequency	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Model No.: BS-7281

There are four colors for model BS-7281, only the blue of model BS-7281 was tested. Their electrical circuit design, layout, components used and internal wiring are identical, except only the color is different.

4 General Information

4.1 Client Information

	Applicant:	MINISO Corporation	
	Address of Applicant:	Room 2501, No. 486 Heye Square, Kangwang Middle Road, Liwan District, Guangzhou, Guangdong, China	
Manufacturer:		Shenzhen Qiwei Electronic Technology Co., Ltd	
Address of Manufacturer:		16 / F, block C, Xixiang Central Avenue, Bao'an District, Shenzhen	
	Factory:	Dongguan China ETECH GROUPS CO.,LTD.	
Address of Factory:		Room 501,Building 6, No.2 Hong Jin Road, Li Zhou Jiao Village, Hongmei Town,Dongguan City	

4.2 General Description of EUT

Product Name:	TWS Capsule Wireless Speakers					
Model No.:	BS-7281	(41)				
Trade Mark:	MINISO	(0)				
Product Type:	☐ Mobile ☐ Portable ☐ Fix Location					
Operation Frequency:	2402MHz~2480MHz					
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)					
Modulation Type:	GFSK, π/4DQPSK, 8DPSK					
Number of Channel:	79					
Hopping Channel Type:	Adaptive Frequency Hopping systems	E Service Constitution of the Constitution of				
Antenna Type:	PCB antenna	(3)				
Antenna Gain:	2.71dBi	(0,)				
Power Supply:	DC 5V & DC 3.7V 300 mA (Li-on Rechargeable Battery)					
Test Voltage:	DC 5V					
Sample Received Date:	May. 12, 2021					
Sample tested Date:	May. 12, 2021 to May. 18, 2021					

Operation r	requency each						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

	75%		
Channel	Frequency		
The Lowest channel	2402MHz		
The Middle channel	2441MHz		
The Highest channel	2480MHz		

4.3 Test Configuration

EUT Test Software Settings	S:			
Software:	FCC_assist_1.0.2.2		-0-	-0.0
EUT Power Grade:	Default			
Use test software to set the lot transmitting of the EUT.	owest frequency, the middle	e frequency and the	e highest frequency keep	(6)
Mode	Channe	ıl	Frequency(MHz)
	CH0	/:3	2402	
DH1/DH3/DH5	CH39	(67)	2441	
	CH78		2480	
	CH0		2402	
2DH1/2DH3/2DH5	CH39		2441	13
	CH78	11	2480	600
	CH0		2402	
3DH1/3DH3/3DH5	CH39		2441	
	01170		0.400	

Operating Environment	:				
Radiated Spurious Emi	ssions:				
Temperature:	0℃~+45℃				
Humidity:	50~55 % RH		130		13
Atmospheric Pressure:	1010mbar		(62)		(6)
Conducted Emissions:					
Temperature:	0℃~+45℃				
Humidity:	50~55 % RH	20%			
Atmospheric Pressure:	1010mbar			(25)	
RF Conducted:					
Temperature:	0℃~+45℃				
Humidity:	50~55 % RH				-
Atmospheric Pressure:	1010mbar				(20)
1,000,000	Latter 1		1.00		1.672.7

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Notebook	DELL	D245DX2	CE&FCC	DELL
			25	
		(25)	(25)	(8
				100

4.6 Test Location

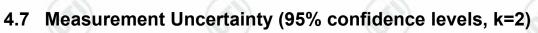
All tests were performed at:

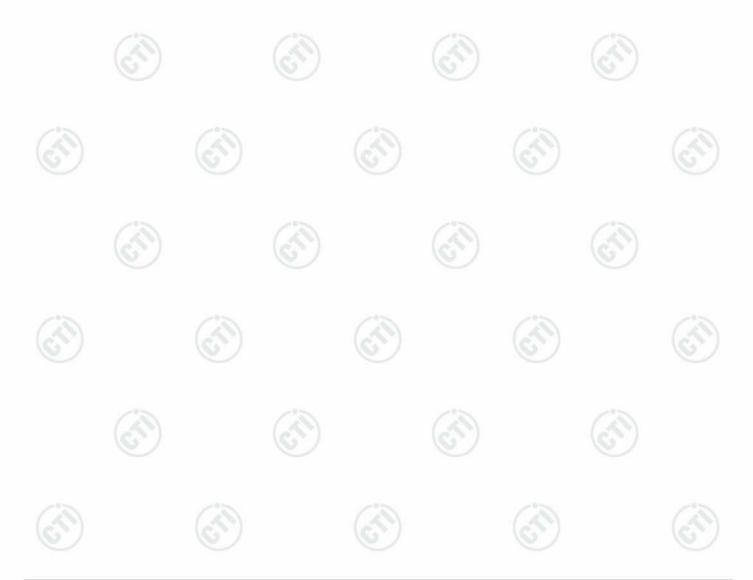
Centre Testing International Group Co., Ltd

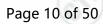
Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164







No.	Item	Measurement Uncertainty		
1	Radio Frequency	7.9 x 10 ⁻⁸		
	DE nover conducted	0.46dB (30MHz-1GHz)		
2	RF power, conducted	0.55dB (1GHz-18GHz)		
		3.3dB (9kHz-30MHz)		
2	Dedicted Counieur amierica test	4.3dB (30MHz-1GHz) 4.5dB (1GHz-18GHz)		
3	Radiated Spurious emission test			
(12)		3.4dB (18GHz-40GHz)		
1	Conduction emission	3.5dB (9kHz to 150kHz)		
4	Conduction emission	3.1dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	3.8%		
7	DC power voltages	0.026%		

4.8 Equipment List

/ 1/2/10/1								
Conducted disturbance Test								
Equipment	Manufacturer	Manufacturer Model No.		Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100435	04-15-2021	04-14-2022			
Temperature/ Humidity Indicator	Defu	TH128	/	(4 ¹)	(3			
LISN	R&S	ENV216	100098	03-04-2021	03-03-2022			
Barometer	changchun	DYM3	1188					

RF test system							
Equipment	Equipment Manufacturer		Manufacturer Mode No. Serial Number		Cal. Due date (mm-dd-yyyy)		
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-28-2020	12-27-2021		
Signal Generator	Keysight	N5182B	MY53051549	12-28-2020	12-27-2021		
Temperature/ Humidity Indicator	biaozhi	HM10 1804		06-29-2020	06-28-2021		
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002					
High-pass filter	MICRO- TRONICS	SPA-F-63029-4			<u>(1)</u>		
DC Power	Keysight	E3642A	MY56376072	12-28-2020	12-27-2021		
Power unit	R&S	OSP120	101374	12-28-2020	12-27-2021		
RF control unit	JS Tonscend	JS0806-2	158060006	12-28-2020	12-27-2021		
BT&WI-FI Automatic test software JS Tonsco		JS1120-3			(6		

3M Semi/full-anechoic Chamber							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022		
TRILOG Broadband Antenna	Schwarzbeck VULB9163 9163-6		9163-618	05-16-2021	05-15-2022		
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-15-2021	04-14-2024		
Receiver	R&S	ESCI7	100938-003	10-16-2020	10-15-2021		
Multi device Controller	maturo	NCD/070/10711 112					
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-29-2020	06-28-2021		
Cable line	Fulai(7M)	SF106	5219/6A		C ()		
Cable line	Fulai(6M)	л) SF106 5220/6A			<u> </u>		
Cable line	Fulai(3M)	SF106	5216/6A				
Cable line	Cable line Fulai(3M) SF106 5217/6A						

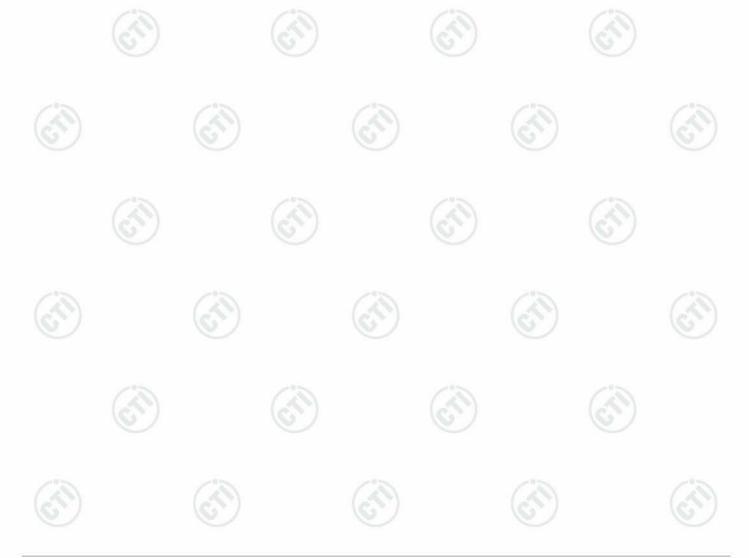
		3M full-anechoi			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software JS Tonscend		JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-04-2021	03-03-2022
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-04-2021	03-03-2022
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-04-2021	03-03-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-24-2021	04-23-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021
Preamplifier	EMCI	EMC001330	980563	04-15-2021	04-14-2022
Preamplifier	JS Tonscend	980380	EMC051845 SE	12-31-2020	12-30-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-16-2021	04-15-2022
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2021	04-09-2024
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001		<u> </u>
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		<u></u>
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	<u> </u>	/
Cable line	Times	EMC104-NMNM- 1000	SN160710	(E)	(6
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001		
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		<u> </u>
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

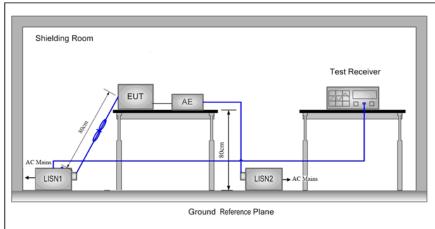

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna: Please see Internal photos

The antenna is PCB antenna. The best case gain of the antenna is 2.71dBi.

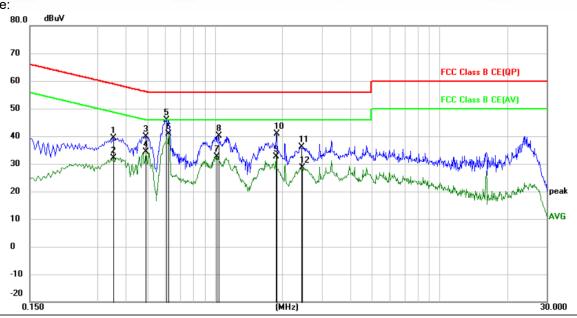


Test Requirement:	47 CFR Part 15C Section 15.207							
Test Method:	ANSI C63.10: 2013							
Test Frequency Range:	150kHz to 30MHz	75		100				
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sv	veep time=auto		(3)				
Limit:	Fragueray range (MIII-)	Limit (c	6					
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30 60 50							
	* Decreases with the logarithm of the frequency.							
Test Setup:								

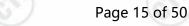
Test Procedure:

- The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

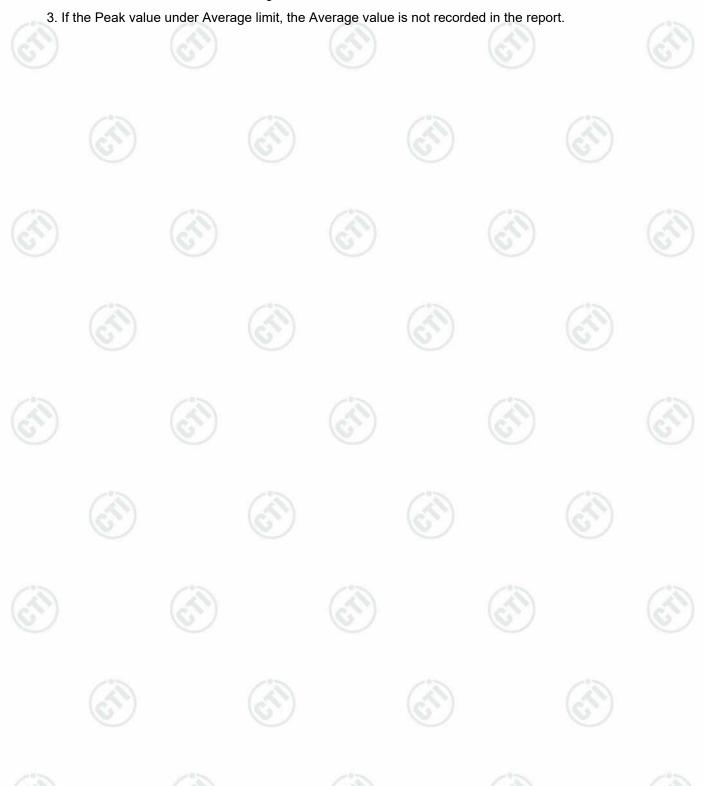
Hotline: 400-6788-333 www.cti-cert.com



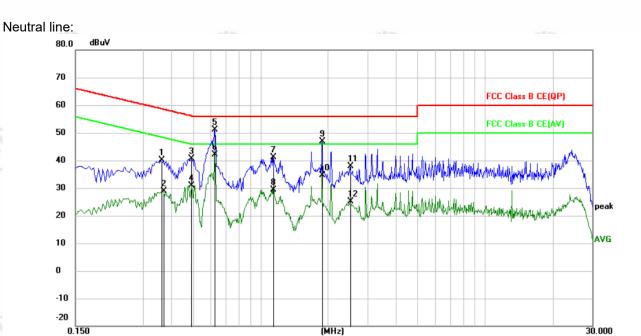
	5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement.
Exploratory Test Mo	Non-hopping transmitting mode with all kind of modulation and all kind of data type at the lowest, middle, high channel.
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation at the lowest channel is the worst case. Only the worst case is recorded in the report.
Test Results:	Pass


Measurement Data

Live line:


MHz dBuV dB dBuV dB uV dB Detector Comment 1 0.3525 29.47 10.02 39.49 58.90 -19.41 peak 2 0.3525 22.15 10.02 32.17 48.90 -16.73 AVG 3 0.4920 29.97 9.95 39.92 56.13 -16.21 peak 4 0.4920 24.39 9.95 34.34 46.13 -11.79 AVG 5 0.6090 35.83 10.05 45.88 56.00 -10.12 peak 6 * 0.6225 30.75 10.03 40.78 46.00 -5.22 AVG 7 1.0184 22.90 9.83 32.73 46.00 -13.27 AVG 8 1.0410 30.26 9.83 40.09 56.00 -15.91 peak 9 1.8780 30.98 9.79 40.77 56.00 -15.23 peak 10	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
2 0.3525 22.15 10.02 32.17 48.90 -16.73 AVG 3 0.4920 29.97 9.95 39.92 56.13 -16.21 peak 4 0.4920 24.39 9.95 34.34 46.13 -11.79 AVG 5 0.6090 35.83 10.05 45.88 56.00 -10.12 peak 6 * 0.6225 30.75 10.03 40.78 46.00 -5.22 AVG 7 1.0184 22.90 9.83 32.73 46.00 -13.27 AVG 8 1.0410 30.26 9.83 40.09 56.00 -15.91 peak 9 1.8735 22.79 9.79 32.58 46.00 -13.42 AVG 10 1.8780 30.98 9.79 40.77 56.00 -15.23 peak 11 2.4224 26.35 9.79 36.14 56.00 -19.86 peak			MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
3 0.4920 29.97 9.95 39.92 56.13 -16.21 peak 4 0.4920 24.39 9.95 34.34 46.13 -11.79 AVG 5 0.6090 35.83 10.05 45.88 56.00 -10.12 peak 6 * 0.6225 30.75 10.03 40.78 46.00 -5.22 AVG 7 1.0184 22.90 9.83 32.73 46.00 -13.27 AVG 8 1.0410 30.26 9.83 40.09 56.00 -15.91 peak 9 1.8735 22.79 9.79 32.58 46.00 -13.42 AVG 10 1.8780 30.98 9.79 40.77 56.00 -15.23 peak 11 2.4224 26.35 9.79 36.14 56.00 -19.86 peak	1		0.3525	29.47	10.02	39.49	58.90	-19.41	peak	
4 0.4920 24.39 9.95 34.34 46.13 -11.79 AVG 5 0.6090 35.83 10.05 45.88 56.00 -10.12 peak 6 * 0.6225 30.75 10.03 40.78 46.00 -5.22 AVG 7 1.0184 22.90 9.83 32.73 46.00 -13.27 AVG 8 1.0410 30.26 9.83 40.09 56.00 -15.91 peak 9 1.8735 22.79 9.79 32.58 46.00 -13.42 AVG 10 1.8780 30.98 9.79 40.77 56.00 -15.23 peak 11 2.4224 26.35 9.79 36.14 56.00 -19.86 peak	2		0.3525	22.15	10.02	32.17	48.90	-16.73	AVG	
5 0.6090 35.83 10.05 45.88 56.00 -10.12 peak 6 * 0.6225 30.75 10.03 40.78 46.00 -5.22 AVG 7 1.0184 22.90 9.83 32.73 46.00 -13.27 AVG 8 1.0410 30.26 9.83 40.09 56.00 -15.91 peak 9 1.8735 22.79 9.79 32.58 46.00 -13.42 AVG 10 1.8780 30.98 9.79 40.77 56.00 -15.23 peak 11 2.4224 26.35 9.79 36.14 56.00 -19.86 peak	3		0.4920	29.97	9.95	39.92	56.13	-16.21	peak	
6 * 0.6225 30.75 10.03 40.78 46.00 -5.22 AVG 7 1.0184 22.90 9.83 32.73 46.00 -13.27 AVG 8 1.0410 30.26 9.83 40.09 56.00 -15.91 peak 9 1.8735 22.79 9.79 32.58 46.00 -13.42 AVG 10 1.8780 30.98 9.79 40.77 56.00 -15.23 peak 11 2.4224 26.35 9.79 36.14 56.00 -19.86 peak	4		0.4920	24.39	9.95	34.34	46.13	-11.79	AVG	
7 1.0184 22.90 9.83 32.73 46.00 -13.27 AVG 8 1.0410 30.26 9.83 40.09 56.00 -15.91 peak 9 1.8735 22.79 9.79 32.58 46.00 -13.42 AVG 10 1.8780 30.98 9.79 40.77 56.00 -15.23 peak 11 2.4224 26.35 9.79 36.14 56.00 -19.86 peak	5		0.6090	35.83	10.05	45.88	56.00	-10.12	peak	
8 1.0410 30.26 9.83 40.09 56.00 -15.91 peak 9 1.8735 22.79 9.79 32.58 46.00 -13.42 AVG 10 1.8780 30.98 9.79 40.77 56.00 -15.23 peak 11 2.4224 26.35 9.79 36.14 56.00 -19.86 peak	6	*	0.6225	30.75	10.03	40.78	46.00	-5.22	AVG	
9 1.8735 22.79 9.79 32.58 46.00 -13.42 AVG 10 1.8780 30.98 9.79 40.77 56.00 -15.23 peak 11 2.4224 26.35 9.79 36.14 56.00 -19.86 peak	7		1.0184	22.90	9.83	32.73	46.00	-13.27	AVG	
10 1.8780 30.98 9.79 40.77 56.00 -15.23 peak 11 2.4224 26.35 9.79 36.14 56.00 -19.86 peak	8		1.0410	30.26	9.83	40.09	56.00	-15.91	peak	
11 2.4224 26.35 9.79 36.14 56.00 -19.86 peak	9		1.8735	22.79	9.79	32.58	46.00	-13.42	AVG	
· · · · · · · · · · · · · · · · · · ·	10		1.8780	30.98	9.79	40.77	56.00	-15.23	peak	
12 2.4360 18.83 9.79 28.62 46.00 -17.38 AVG	11		2.4224	26.35	9.79	36.14	56.00	-19.86	peak	
	12		2.4360	18.83	9.79	28.62	46.00	-17.38	AVG	

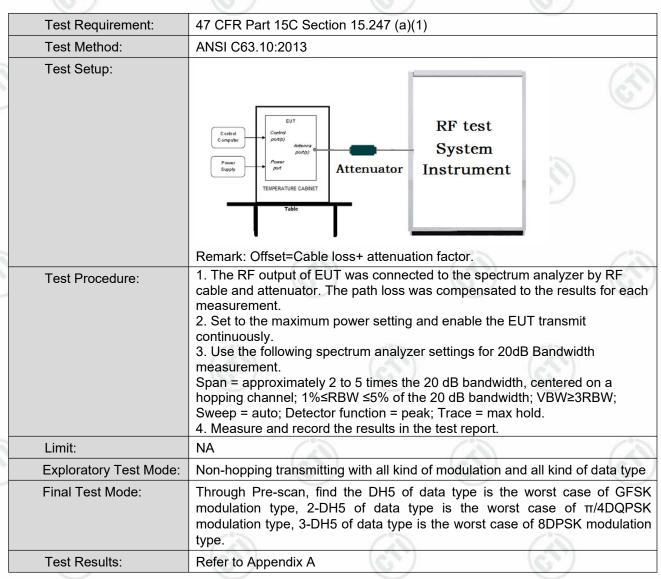
Remark:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

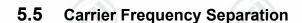
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.3615	30.23	10.01	40.24	58.69	-18.45	peak	
2	0.3704	18.88	10.00	28.88	48.49	-19.61	AVG	
3	0.4920	30.77	9.95	40.72	56.13	-15.41	peak	
4	0.4920	21.03	9.95	30.98	46.13	-15.15	AVG	
5	0.6270	41.22	10.02	51.24	56.00	-4.76	peak	
6 *	0.6270	32.02	10.02	42.04	46.00	-3.96	AVG	
7	1.1400	31.36	9.82	41.18	56.00	-14.82	peak	
8	1.1400	19.48	9.82	29.30	46.00	-16.70	AVG	
9	1.8825	37.14	9.79	46.93	56.00	-9.07	peak	
10	1.8825	24.83	9.79	34.62	46.00	-11.38	AVG	
11	2.5035	28.03	9.79	37.82	56.00	-18.18	peak	
12	2.5035	15.28	9.79	25.07	46.00	-20.93	AVG	

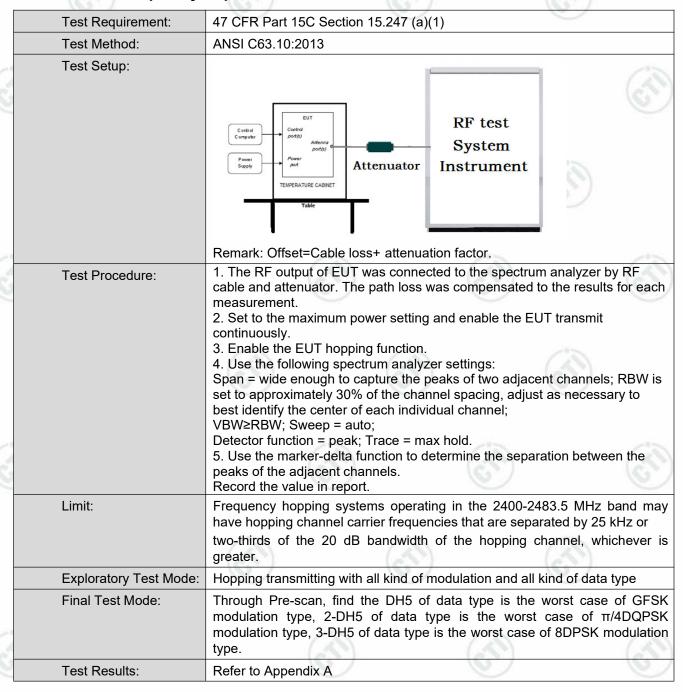
Remark:

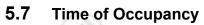
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	RF test Computer Power portey Power portey Power portey Table Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
Limit:	21dBm
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Test Results:	Refer to Appendix A

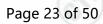






	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)						
	Test Method:	ANSI C63.10:2013						
1000 P	Test Setup:	Control Computer Control Contr						
		Remark: Offset=Cable loss+ attenuation factor.						
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. 						
		 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto; Detector function = peak; Trace = max hold. 5. The number of hopping frequency used is defined as the number of total channel. 6. Record the measurement data in report. 						
	Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.						
	Test Mode:	Hopping transmitting with all kind of modulation						
	Test Results:	Refer to Appendix A						
- 4								

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)						
Test Method:	ANSI C63.10:2013						
Test Setup:	Control Computer Power port Attenuator Table RF test System System Instrument						
	Remark: Offset=Cable loss+ attenuation factor.						
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 						
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.						
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.						
Test Results:	Refer to Appendix A						



5.8 **Band edge Measurements**

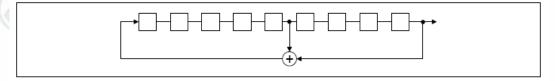
Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Computer Control Computer Power porte) Power port Table RF test System Instrument Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Test Results:	Refer to Appendix A

	Test Requirement:	47 CFR Part 15C Section 15.247 (d)						
Ī	Test Method:	ANSI C63.10:2013						
	Test Setup:	Control Computer Power Power Pot Attenuator Control System Fower Power Pot Attenuator Table RF test System Instrument						
		Remark: Offset=Cable loss+ attenuation factor.						
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. 						
	Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type						
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.						
	Test Results:	Refer to Appendix A						
-	1 127.30.1	1831 1831 183						

47 CFR Part 15C Section 15.247 (a)(1), (h) requirement: **Test Requirement:**

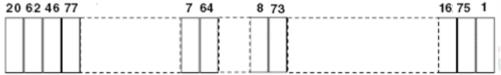
The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.


The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1)

According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a ninestage shift register whose 5th and 9th stage


outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

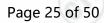
- · Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

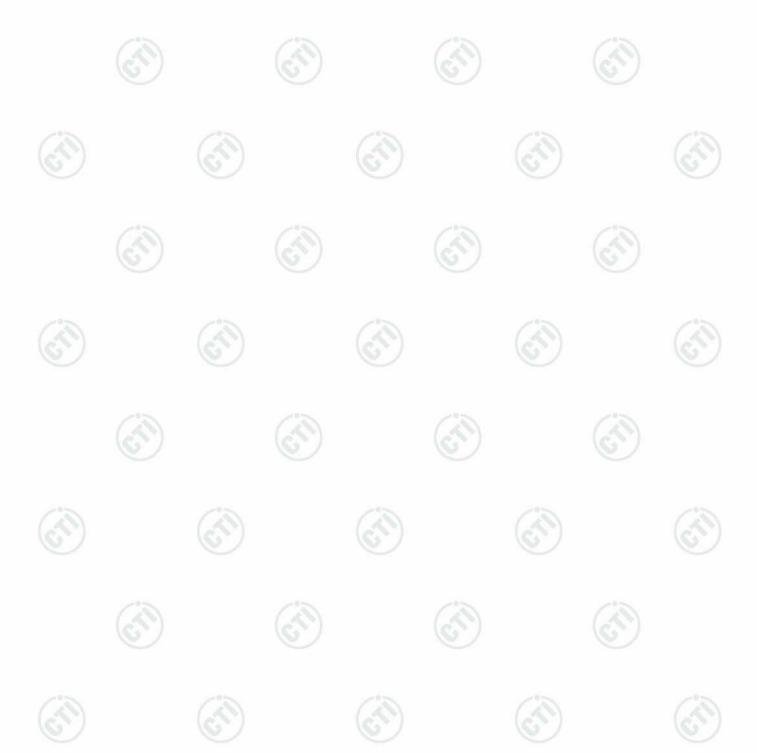
An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.


Compliance for section 15.247(g)

According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the



pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205								
Test Method:	ANSI C63.10: 2013											
Test Site:	Measurement Distance	Measurement Distance: 3m (Semi-Anechoic Chamber)										
Receiver Setup:	Frequency	20	Detector	RBW	VBW	Remark						
	0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak						
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average						
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	30kHz	Quasi-peak						
	0.110MHz-0.490MH	z	Peak	10kHz	30kHz	Peak						
	0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average						
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak						
	30MHz-1GHz		Peak	100 kH	z 300kHz	Peak						
	Above 1015	10	Peak	1MHz	3MHz	Peak						
	Above 1GHz		Peak	1MHz	10kHz	Average						
Limit:	Fredliency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measuremer distance (m						
	0.009MHz-0.490MHz	2	400/F(kHz)	-	- /15	300						
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-(3)	30						
	1.705MHz-30MHz		30	-	16	30						
	30MHz-88MHz		100	40.0	Quasi-peak	3						
	88MHz-216MHz		150	43.5	Quasi-peak	3						
	216MHz-960MHz	10	200	46.0	Quasi-peak	3						
	960MHz-1GHz	1	500	54.0	Quasi-peak	3						
	Above 1GHz	Above 1GHz 50		54.0	Average	3						
	Note: 15.35(b), Unless emissions is 20df applicable to the peak emission lev	3 ab equi	ove the maxin	num permi test. This p	tted average	emission limit						

Test Setup:

Report No.: EED32N80338501

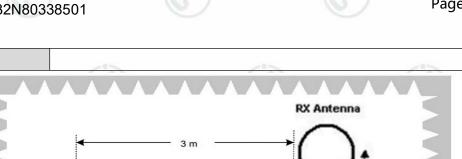
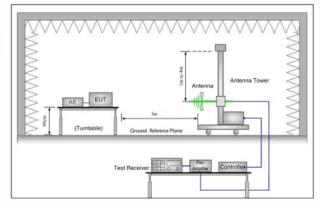



Figure 1. Below 30MHz

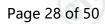
EUT

Ground Reference Plane
Test Receiver

Figure 2. 30MHz to 1GHz

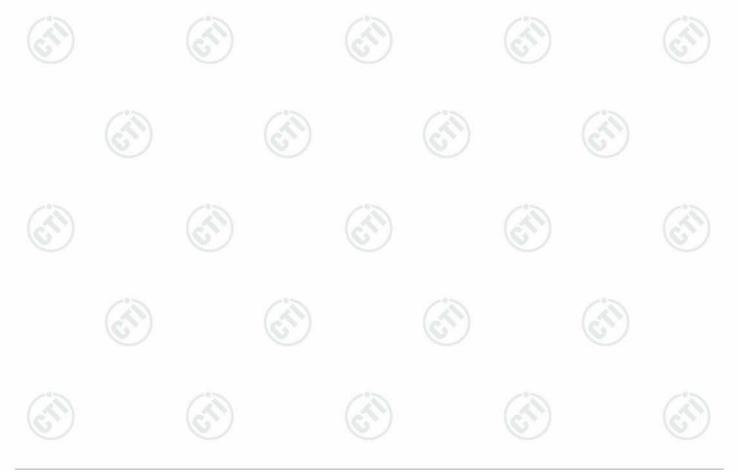
Figure 3. Above 1 GHz

Receiver


Test Procedure:

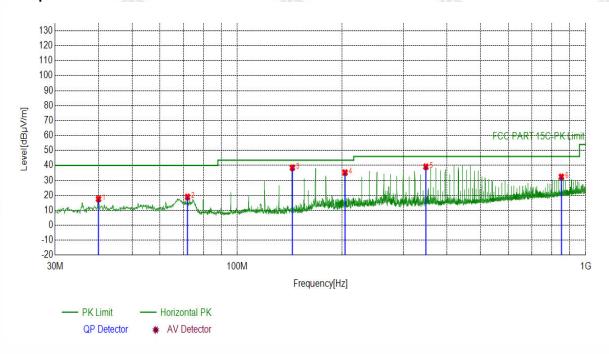
- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

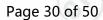

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the

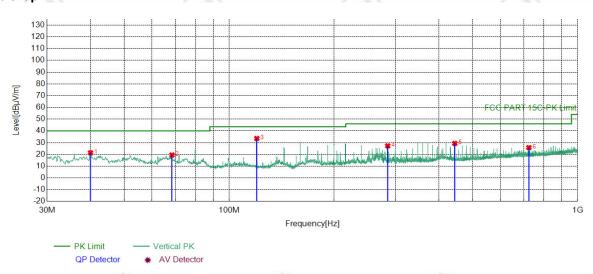
	measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	 f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz)
	 The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case.
	Pretest the EUT at Transmitting mode, For below 1GHz part, through prescan, the worst case is the lowest channel. Only the worst case is recorded in the report.
Test Results:	Pass
Tost results.	1 400

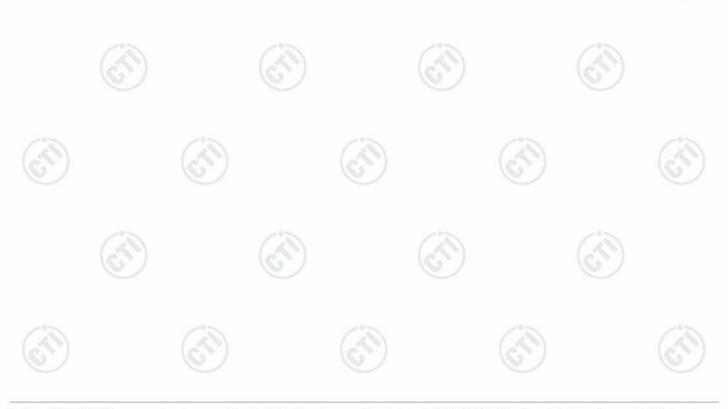


Radiated Spurious Emission below 1GHz:


During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of DH5 for GFSK was recorded in the report.

Test Graph


Suspected	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dB μ V]	Level [dB μ V/m]	Limit [dB µ V/m]	Margin [dB]	Result	Polarity	Remark			
1	39.9920	-18.03	35.63	17.60	40.00	22.40	PASS	Horizontal	PK			
2	72.0052	-21.15	40.07	18.92	40.00	21.08	PASS	Horizontal	PK			
3	143.986	-21.87	60.34	38.47	43.50	5.03	PASS	Horizontal	PK			
4	204.035	-17.74	52.98	35.24	43.50	8.26	PASS	Horizontal	PK			
5	347.997	-14.14	53.27	39.13	46.00	6.87	PASS	Horizontal	PK			
6	852.060	-5.57	37.98	32.41	46.00	13.59	PASS	Horizontal	PK			



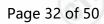
Test Graph

Suspecte	Suspected List												
NO	Freq.	Factor	Reading	Level	Limit	Margin	.	Polarity					
NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result		Remark				
1	39.9920	-18.03	39.41	21.38	40.00	18.62	PASS	Vertical	PK				
2	68.5129	-20.46	39.96	19.50	40.00	20.50	PASS	Vertical	PK				
3	120.025	-20.08	53.66	33.58	43.50	9.92	PASS	Vertical	PK				
4	285.038	-15.83	43.11	27.28	46.00	18.72	PASS	Vertical	PK				
5	444.037	-11.89	41.25	29.36	46.00	16.64	PASS	Vertical	PK				
6	724.589	-7.38	33.17	25.79	46.00	20.21	PASS	Vertical	PK				

Radiated Spurious Emission above 1GHz:

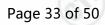
Mode:			GFSK Transmitting			Channel:		2402 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dB µV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2127.5128	4.58	45.84	50.42	74.00	23.58	PASS	Н	PK
2	3992.0661	-18.91	60.30	41.39	74.00	32.61	PASS	н	PK
3	4801.1201	-16.23	66.04	49.81	74.00	24.19	PASS	Н	PK
4	7050.2700	-11.70	55.42	43.72	74.00	30.28	PASS	Н	PK
5	9602.4402	-7.35	60.20	52.85	74.00	21.15	PASS	Н	PK
6	14391.7595	1.08	49.61	50.69	74.00	23.31	PASS	Н	PK
7	1876.2876	3.85	41.50	45.35	74.00	28.65	Pass	V	PK
8	4267.0845	-17.49	65.24	47.75	74.00	26.25	Pass	V	PK
9	5313.1542	-14.77	59.07	44.30	74.00	29.70	Pass	V	PK
10	7740.3160	-11.18	56.05	44.87	74.00	29.13	Pass	V	PK
11	9601.4401	-7.35	57.40	50.05	74.00	23.95	Pass	V	PK
12	14392.7595	1.10	50.18	51.28	74.00	22.72	Pass	V	PK

Mode:			GFSK Transmitting			Channel:		2441 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dB µV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1929.4929	4.18	42.90	47.08	74.00	26.92	PASS	Н	PK
2	3897.0598	-19.10	57.58	38.48	74.00	35.52	PASS	Н	PK
3	4879.1253	-16.21	67.36	51.15	74.00	22.85	PASS	Н	PK
4	7425.2950	-11.40	54.26	42.86	74.00	31.14	PASS	Н	PK
5	9758.4506	-7.52	59.91	52.39	74.00	21.61	PASS	Н	PK
6	14368.7579	0.70	50.14	50.84	74.00	23.16	PASS	Н	PK
7	1895.8896	4.00	42.43	46.43	74.00	27.57	Pass	V	PK
8	3985.0657	-18.92	65.14	46.22	74.00	27.78	Pass	V	PK
9	4879.1253	-16.21	63.15	46.94	74.00	27.06	Pass	V	PK
10	7773.3182	-11.29	54.22	42.93	74.00	31.07	Pass	V	PK
11	9758.4506	-7.52	55.18	47.66	74.00	26.34	Pass	V	PK
12	14405.7604	1.14	49.42	50.56	74.00	23.44	Pass	V	PK



Mode:			GFSK Transmitting			Channel:		2480 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dB µV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2038.7039	4.68	42.39	47.07	74.00	26.93	PASS	Н	PK
2	3993.0662	-18.90	61.08	42.18	74.00	31.82	PASS	Н	PK
3	4957.1305	-15.98	67.61	51.63	74.00	22.37	PASS	Н	PK
4	7583.3056	-11.20	54.93	43.73	74.00	30.27	PASS	Н	PK
5	9913.4609	-7.09	57.72	50.63	74.00	23.37	PASS	Н	PK
6	14329.7553	0.05	50.65	50.70	74.00	23.30	PASS	Н	PK
7	2028.9029	4.65	41.92	46.57	74.00	27.43	Pass	V	PK
8	3984.0656	-18.92	63.84	44.92	74.00	29.08	Pass	V	PK
9	4957.1305	-15.98	61.89	45.91	74.00	28.09	Pass	V	PK
10	6653.2436	-12.64	57.10	44.46	74.00	29.54	Pass	V	PK
11	9914.4610	-7.09	55.39	48.30	74.00	25.70	Pass	V	PK
12	14331.7555	0.09	51.05	51.14	74.00	22.86	Pass	V	PK

Mode:			π/4DQPSK Transmitting			Channel:		2402 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dB µV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1687.2687	2.86	42.74	45.60	74.00	28.40	PASS	Н	PK
2	3991.0661	-18.91	61.90	42.99	74.00	31.01	PASS	Н	PK
3	4801.1201	-16.23	66.82	50.59	74.00	23.41	PASS	Н	PK
4	7024.2683	-11.76	54.86	43.10	74.00	30.90	PASS	Н	PK
5	9602.4402	-7.35	59.75	52.40	74.00	21.60	PASS	Н	PK
6	14373.7583	0.78	49.18	49.96	74.00	24.04	PASS	Н	PK
7	2025.5026	4.63	41.68	46.31	74.00	27.69	Pass	V	PK
8	3996.0664	-18.90	65.44	46.54	74.00	27.46	Pass	V	PK
9	4801.1201	-16.23	63.42	47.19	74.00	26.81	Pass	V	PK
10	7077.2718	-11.63	55.35	43.72	74.00	30.28	Pass	V	PK
11	9602.4402	-7.35	58.42	51.07	74.00	22.93	Pass	V	PK
12	14389.7593	1.05	49.79	50.84	74.00	23.16	Pass	V	PK



Mode:			π/4D	QPSK Trans	mitting	Channel:		2441 MH	Z
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dB µV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1980.4981	4.45	42.24	46.69	74.00	27.31	PASS	Н	PK
2	3994.0663	-18.90	61.96	43.06	74.00	30.94	PASS	Н	PK
3	4879.1253	-16.21	67.48	51.27	74.00	22.73	PASS	Н	PK
4	7009.2673	-11.80	55.35	43.55	74.00	30.45	PASS	Н	PK
5	9758.4506	-7.52	58.49	50.97	74.00	23.03	PASS	Н	PK
6	14322.7549	-0.06	51.13	51.07	74.00	22.93	PASS	Н	PK
7	1745.2745	3.09	41.98	45.07	74.00	28.93	Pass	V	PK
8	4255.0837	-17.58	67.06	49.48	74.00	24.52	Pass	V	PK
9	4879.1253	-16.21	62.09	45.88	74.00	28.12	Pass	V	PK
10	6318.2212	-12.91	56.51	43.60	74.00	30.40	Pass	V	PK
11	9758.4506	-7.52	58.55	51.03	74.00	22.97	Pass	V	PK
12	14354.7570	0.47	50.80	51.27	74.00	22.73	Pass	V	PK

Mode:			π/4D	QPSK Trans	mitting	Channel:		2480 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dB µV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1985.4986	4.47	42.33	46.80	74.00	27.20	PASS	Н	PK
2	3990.0660	-18.91	62.09	43.18	74.00	30.82	PASS	Н	PK
3	4957.1305	-15.98	67.85	51.87	74.00	22.13	PASS	Н	PK
4	7207.2805	-11.83	55.24	43.41	74.00	30.59	PASS	Н	PK
5	9914.4610	-7.09	58.29	51.20	74.00	22.80	PASS	Н	PK
6	14382.7589	0.93	49.84	50.77	74.00	23.23	PASS	Н	PK
7	1937.4937	4.22	41.74	45.96	74.00	28.04	Pass	V	PK
8	4257.0838	-17.57	64.30	46.73	74.00	27.27	Pass	V	PK
9	4957.1305	-15.98	61.25	45.27	74.00	28.73	Pass	V	PK
10	7009.2673	-11.80	55.15	43.35	74.00	30.65	Pass	V	PK
11	9914.4610	-7.09	55.17	48.08	74.00	25.92	Pass	V	PK
12	14302.7535	-0.39	51.69	51.30	74.00	22.70	Pass	V	PK

NAl			0.0	DOI/ T	:44:	01		2402 MH I=	
Mode:			8D	PSK Transm	itting	Channel:		2402 MH	Z
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dB μV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2129.9130	4.55	44.55	49.10	74.00	24.90	PASS	Н	PK
2	3989.0659	-18.91	61.76	42.85	74.00	31.15	PASS	Н	PK
3	4801.1201	-16.23	66.11	49.88	74.00	24.12	PASS	Н	PK
4	7407.2938	-11.48	55.14	43.66	74.00	30.34	PASS	Н	PK
5	9602.4402	-7.35	59.49	52.14	74.00	21.86	PASS	Н	PK
6	13111.6741	-3.61	53.10	49.49	74.00	24.51	PASS	Н	PK
7	2043.7044	4.69	42.13	46.82	74.00	27.18	Pass	V	PK
8	4252.0835	-17.61	65.86	48.25	74.00	25.75	Pass	V	PK
9	4801.1201	-16.23	63.07	46.84	74.00	27.16	Pass	V	PK
10	6906.2604	-11.83	55.69	43.86	74.00	30.14	Pass	V	PK
11	9602.4402	-7.35	58.79	51.44	74.00	22.56	Pass	V	PK
12	14325.7551	-0.01	50.65	50.64	74.00	23.36	Pass	V	PK

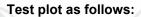
Mode:			8DI	PSK Transm	itting	Channel:		2441 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dB µV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2017.1017	4.61	43.20	47.81	74.00	26.19	PASS	Н	PK
2	3984.0656	-18.92	60.34	41.42	74.00	32.58	PASS	Н	PK
3	4879.1253	-16.21	67.77	51.56	74.00	22.44	PASS	Н	PK
4	6946.2631	-11.83	55.10	43.27	74.00	30.73	PASS	Н	PK
5	9758.4506	-7.52	59.63	52.11	74.00	21.89	PASS	Н	PK
6	14389.7593	1.05	49.55	50.60	74.00	23.40	PASS	Н	PK
7	2132.5133	4.53	45.87	50.40	74.00	23.60	Pass	V	PK
8	4261.0841	-17.54	65.17	47.63	74.00	26.37	Pass	V	PK
9	4879.1253	-16.21	62.03	45.82	74.00	28.18	Pass	V	PK
10	5986.1991	-13.05	57.19	44.14	74.00	29.86	Pass	V	PK
11	9758.4506	-7.52	59.41	51.89	74.00	22.11	Pass	V	PK
12	14317.7545	-0.15	51.35	51.20	74.00	22.80	Pass	V	PK

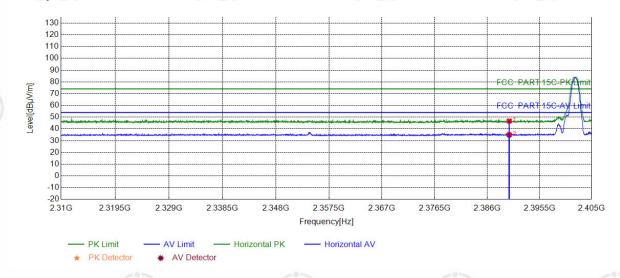
Page 35 of 50

Mode:			8DI	PSK Transm	itting	Channel:		2480 MH	Z
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dB µV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1836.4836	3.55	41.77	45.32	74.00	28.68	PASS	Н	PK
2	4260.0840	-17.55	60.23	42.68	74.00	31.32	PASS	Н	PK
3	4957.1305	-15.98	67.92	51.94	74.00	22.06	PASS	Н	PK
4	7042.2695	-11.72	54.31	42.59	74.00	31.41	PASS	Н	PK
5	9913.4609	-7.09	57.70	50.61	74.00	23.39	PASS	Н	PK
6	14404.7603	1.15	50.34	51.49	74.00	22.51	PASS	Н	PK
7	1964.8965	4.37	42.72	47.09	74.00	26.91	Pass	V	PK
8	4257.0838	-17.57	64.90	47.33	74.00	26.67	Pass	V	PK
9	4957.1305	-15.98	62.03	46.05	74.00	27.95	Pass	V	PK
10	6656.2438	-12.63	55.37	42.74	74.00	31.26	Pass	V	PK
11	9914.4610	-7.09	55.67	48.58	74.00	25.42	Pass	V	PK
12	13713.7142	-1.75	52.43	50.68	74.00	23.32	Pass	V	PK

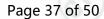
Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.



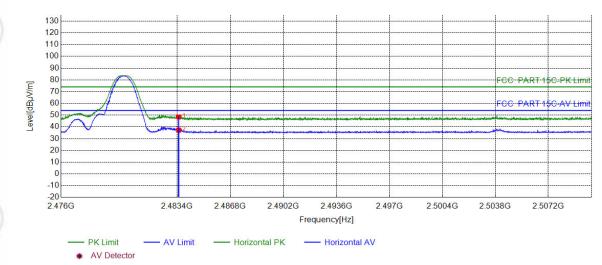


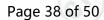
Restricted bands:


Mode:	GFSK Transmitting	Channel:	2402 MHz
Remark:			

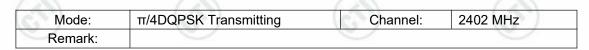
Test Graph

5	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390.0000	5.77	40.92	46.69	74.00	27.31	PASS	Horizontal	PK
	2	2390.0000	5.77	29.20	34.97	54.00	19.03	PASS	Horizontal	AV

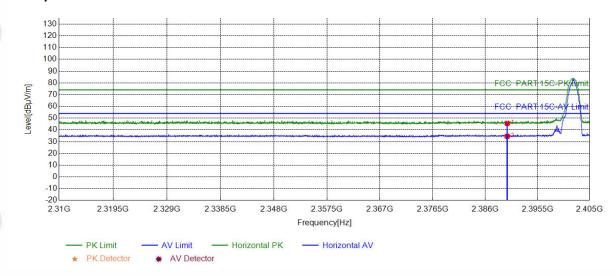


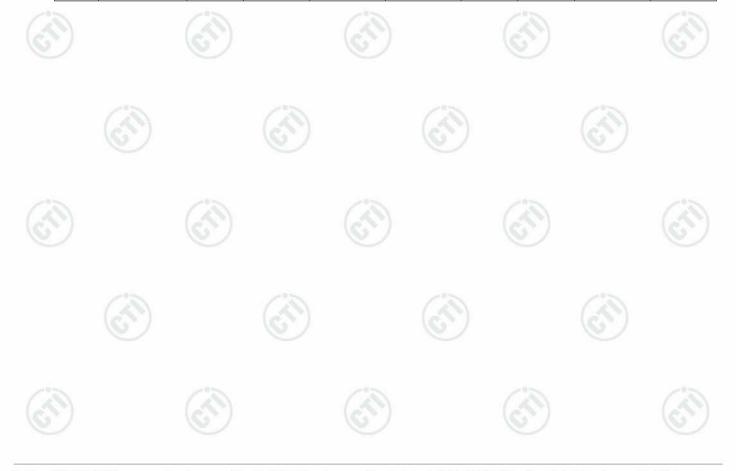


Test Graph



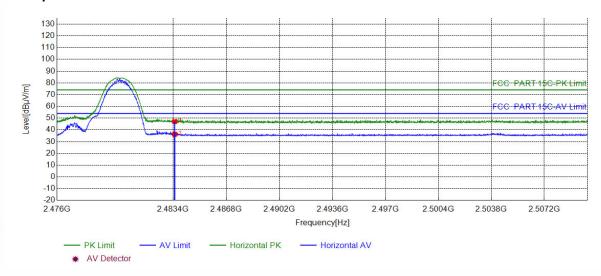
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	41.91	48.48	74.00	25.52	PASS	Horizontal	PK
2	2483.5000	6.57	30.69	37.26	54.00	16.74	PASS	Horizontal	AV





Test Graph

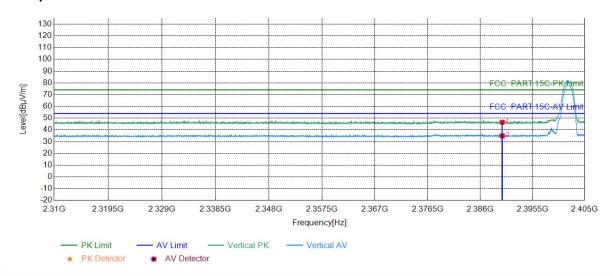
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	39.79	45.56	74.00	28.44	PASS	Horizontal	PK
2	2390.0000	5.77	28.79	34.56	54.00	19.44	PASS	Horizontal	AV



Mode:	π/4DQPSK Transmitting	Channel:	2480 MHz
Remark:			

Test Graph

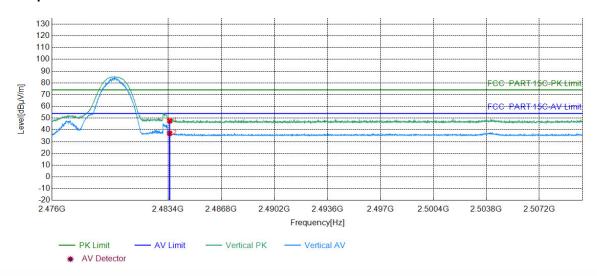
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	40.57	47.14	74.00	26.86	PASS	Horizontal	PK
2	2483.5000	6.57	29.71	36.28	54.00	17.72	PASS	Horizontal	AV





Test Graph

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	40.82	46.59	74.00	27.41	PASS	Horizontal	PK
2	2390.0000	5.77	29.15	34.92	54.00	19.08	PASS	Horizontal	AV



Mode:	8DPSK Transmitting	Channel:	2480 MHz	
Remark:				

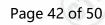
Test Graph

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	41.11	47.68	74.00	26.32	PASS	Horizontal	PK
2	2483.5000	6.57	30.51	37.08	54.00	16.92	PASS	Horizontal	AV

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor


Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

6 Appendix A

Refer to Appendix: Bluetooth Classic of EED32N80338501

