	TEST REPC	ORT			
FCC ID	2ARRB-MB250				
Test Report No:	TCT210722E014				
Date of issue:	Aug. 13, 2021				
Testing laboratory:	SHENZHEN TONGCE TES	STING LAB			
Testing location/ address:		Fuqiao 5th Industrial Zone, Fuhai Izhen, Guangdong, 518103, People's			
Applicant's name::	Meizhou Guo Wei Electroni	cs Co., Ltd			
Address:	AD1 Section, Economic Development Area, Dongsheng Industrial District, Meizhou, Guangdong, China				
Manufacturer's name :	Meizhou Guo Wei Electronics Co., Ltd				
Address:	AD1 Section, Economic Development Area, Dongsheng Industrial District, Meizhou, Guangdong, China				
Standard(s):	FCC CFR Title 47 Part 15 S FCC KDB 558074 D01 15.2 ANSI C63.10:2013				
Test item description :	MOTO BUDS				
Trade Mark:	Motorola				
Model/Type reference :	MOTO BUDS 250, MOTO E	BUDS 150			
Rating(s):	Rechargeable Li-ion Battery	y DC 3.7V			
Date of receipt of test item	Jul. 22, 2021				
Date (s) of performance of test:	See dates for each test cas	e S			
Tested by (+signature) :	Brave Zeng	Branc. Leng.			
Check by (+signature) :	Beryl Zhao				
Approved by (+signature):	Tomsin	Tomsin si			
General disclaimer:					

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT通测检测 TESTING CENTRE TECHNOLOGY

	duct Informatio					
1.1. EUT desc	ription					3
	list					
1.3. Operation	Frequency					3
2. Test Result	Summary					4
	ormation					
3.1. Test envi	ronment and mod	e				5
3.2. Description	on of Support Uni	ts				5
4. Facilities an	d Accreditation	าร				6
4.1. Facilities	(<u>,C)</u>		(\mathbf{c})		(\mathbf{c})	6
4.2. Location						6
4.3. Measuren	nent Uncertainty					6
5. Test Results	s and Measurer	ment Data				
5.1. Antenna r	equirement					7
5.2. Conducte	d Emission					8
5.3. Conducte	d Output Power					12
	Bandwidth					
5.5. Power Sp	ectral Density					14
5.6. Conducte	d Band Edge and	Spurious En	nission M	easureme	nt	15
5.7. Radiated	Spurious Emissio	on Measurem	ent			17
Appendix A: T	est Result of Co	onducted T	est			
Appendix B: P	hotographs of	Test Setup				
	hotographs of	-				
S I I I I I I I I I I I I I I I I I I I						

1. General Product Information

1.1. EUT description

Test item description:	MOTO BUDS		
Model/Type reference:	MOTO BUDS 250		
Sample Number	TCT210722E005-0101		
Bluetooth Version:	V5.0 (This report is for BLE)		
Operation Frequency:	2402MHz~2480MHz		
Channel Separation:	2MHz	(\mathcal{C})	
Data Rate:	LE 1M PHY, LE 2M PHY		
Number of Channel:	40		
Modulation Type:	GFSK		
Antenna Type:	Internal Antenna		
Antenna Gain:	-2dBi	(\mathbf{c})	$\langle \mathcal{C} \rangle$

Rating(s) Rechargeable Li-ion Battery DC 3.7V Remark: /

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s)	list	
No.	Model No.	Tested with
1	MOTO BUDS 250	\boxtimes
2	MOTO BUDS 150	

Note: MOTO BUDS 250 is tested model, other models are derivative models, The models are identical in circuit and PCB layout, only different on the model names. So the test data of MOTO BUDS 250 can represent the remaining models.

1.3. Operation Frequency

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz		
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz		
~~									
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz 🔾		
9 2420MHz 19 2440MHz 29 2460MHz 39 2480MHz									
Remark:	Remark: Channel 0, 19 & 39 have been tested.								

Page 3 of 56

Report No.: TCT210722E014

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(3)	PASS
6dB Emission Bandwidth	§15.247 (a)(2)	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.
- 5. After pre-testing the two earphones, the two earphones are left and right ears respectively; we found that the left earphone is the worst case, so the results are recorded in this report.

Page 4 of 56

3. General Information

3.1. Test environment and mode

Operating Environment:							
Condition	Conducted Emission	Radiated Emission					
Temperature:	24.3 °C	25.7 °C					
Humidity:	55 % RH	45 % RH					
Atmospheric Pressure:	1010 mbar	1010 mbar					
Test Software:							
Software Information:	FCC_V2.24						
Power Level:							
Test Mode:							
Engineering mode:	Keep the EUT in continuou	s transmitting by select					

Keep the EUT in continuous transmitting by select channel and modulations

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

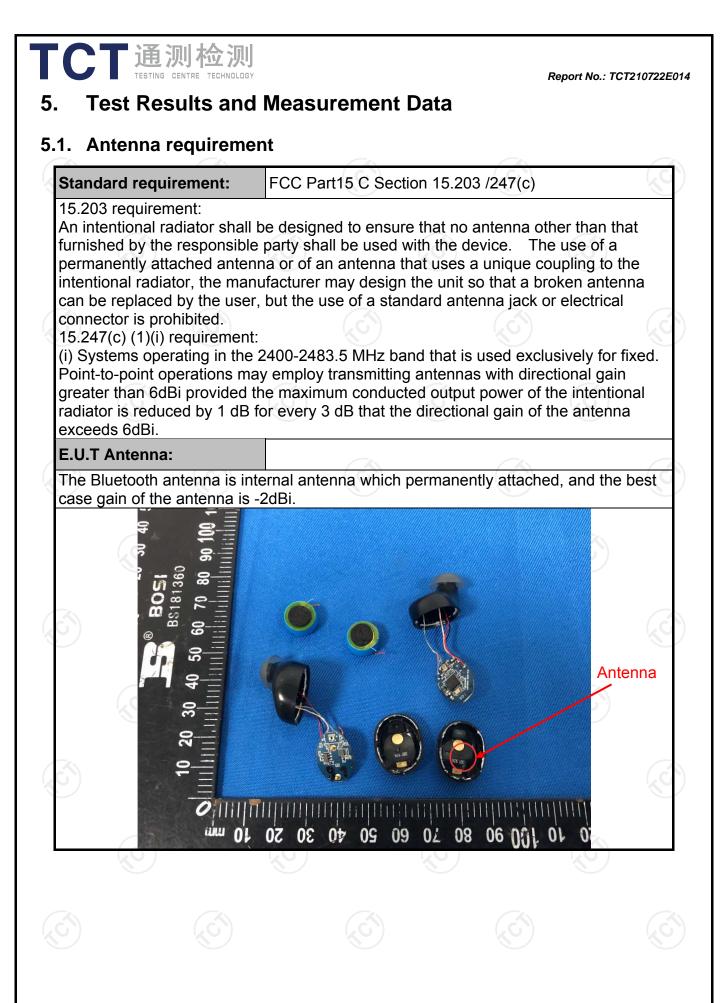
SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB


Address: TCT Testing Industrial Park Fuqiao 5th Industrial Zone, Fuhai Street, Bao'an District Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5.2. Conducted Emission

5.2.1. Test Specification

Test Method: ANSI C63.10:2 Frequency Range: 150 kHz to 30 f Receiver setup: RBW=9 kHz, V Limits: Frequency r 0.15-0.5 0.5-5 0.5-30 5-30 Frest Setup: E.U.T Test table/Inst Remark EUT: Frequency r Mode: Charging Mode 1. The E.U.T is impedance provides a 5 measuring equation of the power throug coupling impedance	Section 15.								
Frequency Range: 150 kHz to 30 f Receiver setup: RBW=9 kHz, V Limits: Frequency r 0.15-0.5 0.5-5 0.5-30 0.5-5 5-30 5-30 E.U.T Test Setup: Fest table/Insu Remark EUT: Equipment Unde LISN Line Impedence Test table height=0 8m Test Mode: 1. The E.U.T is impedance 1. The E.U.T is impedance provides a 5 measuring en 2. The peripher power throug coupling impedance		FCC Part15 C Section 15.207							
Receiver setup: RBW=9 kHz, V Limits: Frequency r (MHz) 0.15-0.5 0.5-5 5-30 Test Setup: E.U.T Test table/Insu Remark EUT Equipment Unde LISN Line Impedence Test table height=0.8m Test Mode: Charging Mode 1. The E.U.T is impedance provides a 5 measuring ed 2. The peripher power throug counling imp	013								
Limits: Frequency r (MHz) 0.15-0.5 0.5-5 5-30	ЛНz)							
Limits: (MHz) 0.15-0.5 0.5-5 5-30 E.U.T Test Setup: <i>E.U.T</i> Test table/Insu <i>Remark</i> <i>EUT Equipment Unde</i> <i>LISN Line Impedence</i> <i>Test Mode</i> : Charging Mode 1. The E.U.T is impedance provides a 5 measuring en 2. The peripher power throug counting imp	BW=30 kH:	z, Sweep time	e=auto						
Limits: 0.15-0.5 0.5-5 5-30 E.U.T Test Setup: <i>Remark</i> <i>EUT: Equipment Undul LISN Line Impedence</i> <i>Test Mode:</i> Test Mode: Charging Mode 1. The E.U.T is impedance provides a 5 measuring en 2. The peripher power throug counting imp	Frequency range								
0.5-5 5-30 E.U.T Test Setup: Test table/Insu Remark: E.U.T Equipment Under LISN: Line Impedence Test Mode: Charging Mode: 1. The E.U.T is impedance provides a 5 measuring equal to the provides a 5		Quasi-peak	Áverage						
5-30 Test Setup: E.U.T Test table/Insu Remark E.U.T Equipment Under USN Line Impedence Test Mode: Charging Mode 1. The E.U.T is impedance provides a 5 measuring equipment under coupling impedance provides a 5 measuring equipment under coupling impedance		66 to 56*	56 to 46*						
Test Setup: E.U.T Test table/Insu Remark: E.U.T Equipment Under LISN: Line Impedence Test table height=0.8m Test Mode: Charging Mode 1. The E.U.T is impedance provides a 5 measuring encourting impedance provides a 5 measuring encourting impedance		56	46						
Test Setup: Test table/Insu Remark: E.U.T. Equipment Under LISN: Line Impedence Test Mode: Charging Mode 1. The E.U.T is impedance provides a 5 measuring equipment of the power throug coupling impedance		60	50						
Test Setup: Test table/Insu Remark: E.U.T. Equipment Under LISN: Line Impedence Test Mode: Charging Mode 1. The E.U.T is impedance provides a 5 measuring equipment of the power throug coupling impedance	Reference F	Plane							
1. The E.U.T is impedance provides a 5 measuring et 2. The peripher power throug coupling imp	Test table/Insulation plane								
impedance provides a 5 measuring ed 2. The peripher power throug coupling imp	Charging Mode								
refer to the photographs 3. Both sides conducted in emission, the the interface	 The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C62 10: 2012 on conducted measurement. 								
Test Result: PASS		ANSI C63.10: 2013 on conducted measurement.							

Page 8 of 56

Page 9 of 56

http://www.tct-lab.com

5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)								
Equipment	Manufacturer	Model	Serial Number	Calibration Due				
EMI Test Receiver R&S		ESCI3	100898	Jul. 07, 2022				
Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Mar. 11, 2022				
Line-5	ТСТ	CE-05	N/A	Jul. 07, 2022				
EMI Test Software Shurple Technology		EZ-EMC	N/A	N/A				

Tel: 86-755-27673339

Hotline: 400-6611-140

Fax: 86-755-27673332

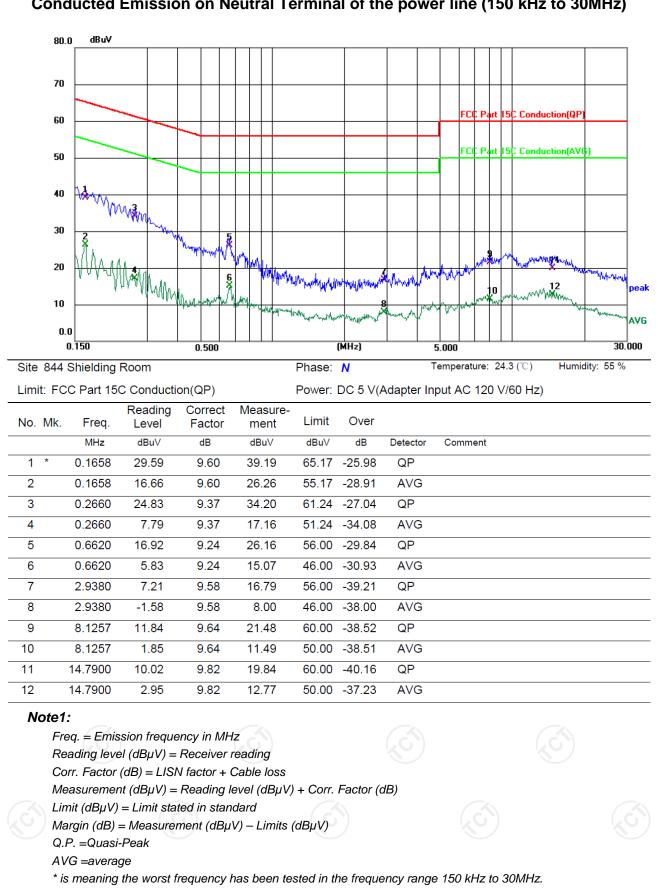
5.2.3. Test data

Please refer to following diagram for individual Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz) dBu¥ 80.0 70 5C Conduction(QP FCC Pa 60 FC P Conduction(AVG) 50 50 40 mm 30 20 peak 10 40 AVG 0.0 (MHz) 30.000 0.150 0.500 5.000

Site 844 Shielding RoomPhase: L1Temperature: 24.3 (°C)Humidity: 55 %

Limit: FCC Part 15C Conduction(QP)

Power: DC 5 V(Adapter Input AC 120 V/60 Hz)


								•	•
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1779	29.25	9.42	38.67	64.58	-25.91	QP	
2		0.1779	13.41	9.42	22.83	54.58	-31.75	AVG	
3		0.6700	13.47	9.24	22.71	56.00	-33.29	QP	
4		0.6700	7.31	9.24	16.55	46.00	-29.45	AVG	
5		1.0980	7.18	9.41	16.59	56.00	-39.41	QP	
6		1.0980	-1.32	9.41	8.09	46.00	-37.91	AVG	
7		1.9737	7.70	9.51	17.21	56.00	-38.79	QP	
8		1.9737	-0.17	9.51	9.34	46.00	-36.66	AVG	
9		5.3380	7.34	9.63	16.97	60.00	-43.03	QP	
10		5.3380	-3.59	9.63	6.04	50.00	-43.96	AVG	
11		9.0616	10.47	9.65	20.12	60.00	-39.88	QP	
12		9.0616	4.56	9.65	14.21	50.00	-35.79	AVG	

Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Report No.: TCT210722E014

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

TCT通测检测 TESTING CENTRE TECHNOLOGY

Page 11 of 56

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)						
Test Method:	KDB 558074 D01 v05r02						
Limit:	30dBm						
Test Setup:							
	Spectrum Analyzer	UT					
Test Mode:	Refer to item 4.1						
Test Procedure:	 Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to de amplitude level. 						
Test Result:	PASS						

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

5.4. Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)					
Test Method:	KDB 558074 D01 v05r02					
Limit:	>500kHz					
Test Setup:	Spectrum Analyzer EUT					
Test Mode:	Refer to item 4.1					
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report. 					
Test Result:	PASS					

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

5.5. Power Spectral Density

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.			
Test Setup:				
Test Mode:	Spectrum Analyzer			
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report. 			
Test Result:	PASS			

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

5.6. Conducted Band Edge and Spurious Emission Measurement

5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the
Test Procedure:	 EUT transmit continuously. 3. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). 4. Measure and record the results in the test report. 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

Model No.

N9020A

Report No.: TCT210722E014

Calibration Due

Jul. 18, 2022

Jul. 07, 2022

Serial Number

MY49100619

5.6.2. Test Instruments

Name Spectrum

Analyzer

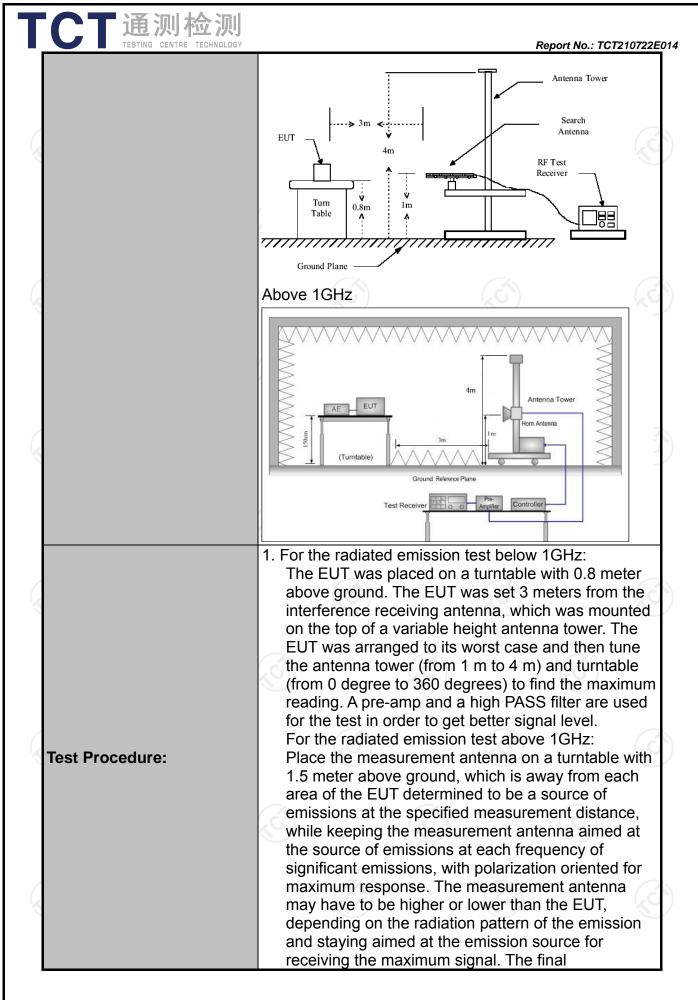
Combiner Box

TCT通测检测 TCT通测检测

Manufacturer

Agilent

Ascentest


						Page	16 of 56
I.I. a dlive	or 400 6644	140 Tel:		06 766 0767	12222 bat	. //www.wat la	haam

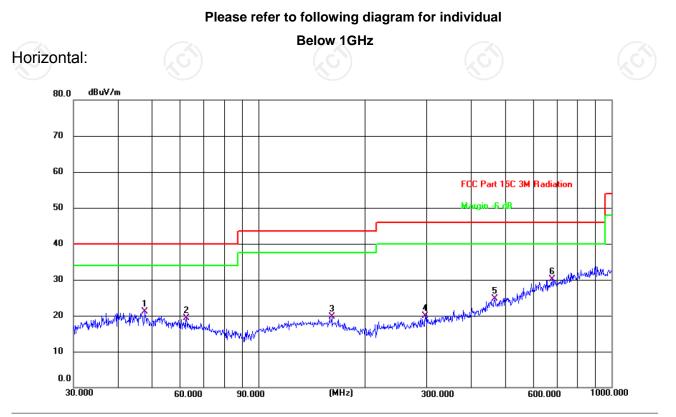
5.7. Radiated Spurious Emission Measurement

5.7.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15	FCC Part15 C Section 15.209					
Test Method:	ANSI C63.10: 2013						
Frequency Range:	9 kHz to 25 GHz						
Measurement Distance:	3 m						
Antenna Polarization:	Horizontal & Vertical						
Operation mode:	Refer to item 4.1						
	Frequency 9kHz- 150kHz 150kHz-	Detector Quasi-peak Quasi-peak		VBW 1kHz 30kHz	Remark Quasi-peak Value Quasi-peak Value		
Receiver Setup:	30MHz 30MHz-1GHz	Quasi-peak Peak	120KHz 1MHz	300KHz 3MHz	Quasi-peak Value Peak Value		
	Above 1GHz	Peak	1MHz	10Hz	Average Value		
	Frequen	ю	Field Stre (microvolts	-	Measurement Distance (meters)		
	0.009-0.4		2400/F(I		300		
	0.490-1.7	1	24000/F(30	nHZ)	30 30		
	30-88		100		30		
	88-216		150		3		
Limit:	216-960		200		3		
	Above 960		500		3		
			eld Strength rovolts/meter)		ce Detector		
	Above 1GHz		500		Average		
	Above IGH2	2	5000 3		Peak		
Test setup:	EUT	emissions		Pre -A	Computer		
		- (T)					

' CT 通测检:	沨」
TESTING CENTRE TECHN	 Report No:: TCT210722/ measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. Use the following spectrum analyzer settings: Span shall wide enough to fully capture the emission being measured; Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; Set RBW = 1 MHz, VBW= 3MHz for f > 1 GHz for
	peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test mode:	Refer to section 4.1 for details
Test results:	PASS

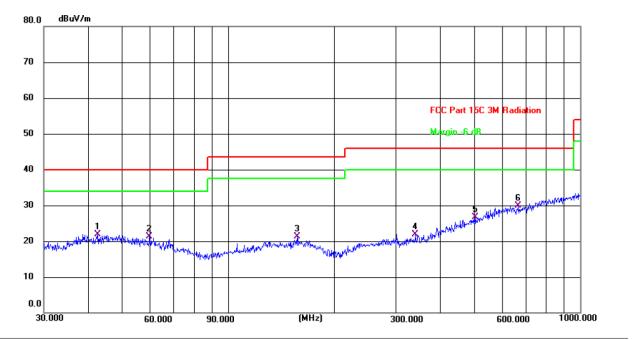

5.7.2. Test Instruments

Radiated Emission Test Site (966)							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
EMI Test Receiver	R&S	ESIB7	100197	Jul. 07, 2022			
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 07, 2022			
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Mar. 11, 2022			
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Apr. 08, 2022			
Pre-amplifier	HP	8447D	2727A05017	Jul. 07, 2022			
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 05, 2022			
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 04, 2022			
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 04, 2022			
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Apr. 10, 2023			
Antenna Mast	Keleto	RE-AM	N/A	N/A			
Coaxial cable	SKET	RC_DC18G-N	N/A	Apr. 08, 2022			
Coaxial cable	SKET	RC-DC18G-N	N/A	Apr. 08, 2022			
Coaxial cable	SKET	RC-DC40G-N	N/A	Jul. 07, 2022			
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A			

Page 20 of 56

5.7.3. Test Data

TCT通测检测 TECTING CENTRE TECHNOLOGY


Report No.: TCT210722E014

Site					Polariz	ation:	Horizon	tal	Temperature: 25.7(C)
Limit:	FCC Part 150	3M Radia	ation		Power:	DC 3	.7 V		Humidity: 45 %
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	47.6584	7.22	13.82	21.04	40.00	-18.96	QP	Ρ	
2	62.6505	7.02	12.21	19.23	40.00	-20.77	QP	Ρ	
3	161.4738	5.94	13.75	19.69	43.50	-23.81	QP	Ρ	
4	297.2238	6.00	13.95	19.95	46.00	-26.05	QP	Ρ	
5	467.2348	6.41	18.23	24.64	46.00	-21.36	QP	Ρ	
6 *	679.9600	7.84	22.24	30.08	46.00	-15 .92	QP	Ρ	

Market Series
 Market S

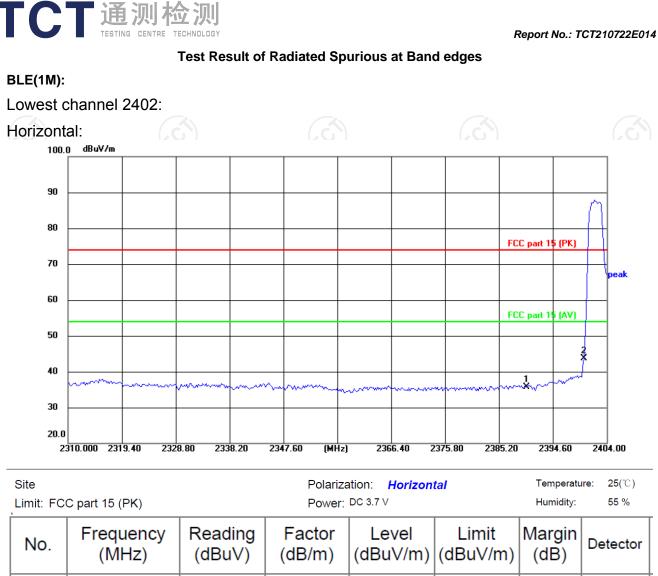
Vertical:

TCT通测检测 TESTING CENTRE TECHNOLOGY

Site Limit:	FCC Part 150	C 3M Radia	ation			Polarization: Vertical Power: DC 3.7 V			Temperature: 25.7(C) Humidity: 45 %
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	42.7494	7.97	13.93	21.90	40.00	-18.10	QP	Ρ	
2	59.8588	8.80	12.55	21.35	40.00	-18.65	QP	Р	
3	157.0072	7.48	13.79	21.27	43.50	-22.23	QP	Ρ	
4	340.7816	6.90	15.06	21.96	46.00	-24.04	QP	Р	
5	502.9395	7.57	19.09	26.66	46.00	-19.34	QP	Р	
6 *	668.1422	7.79	22.11	29.90	46.00	-16.10	QP	Р	

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

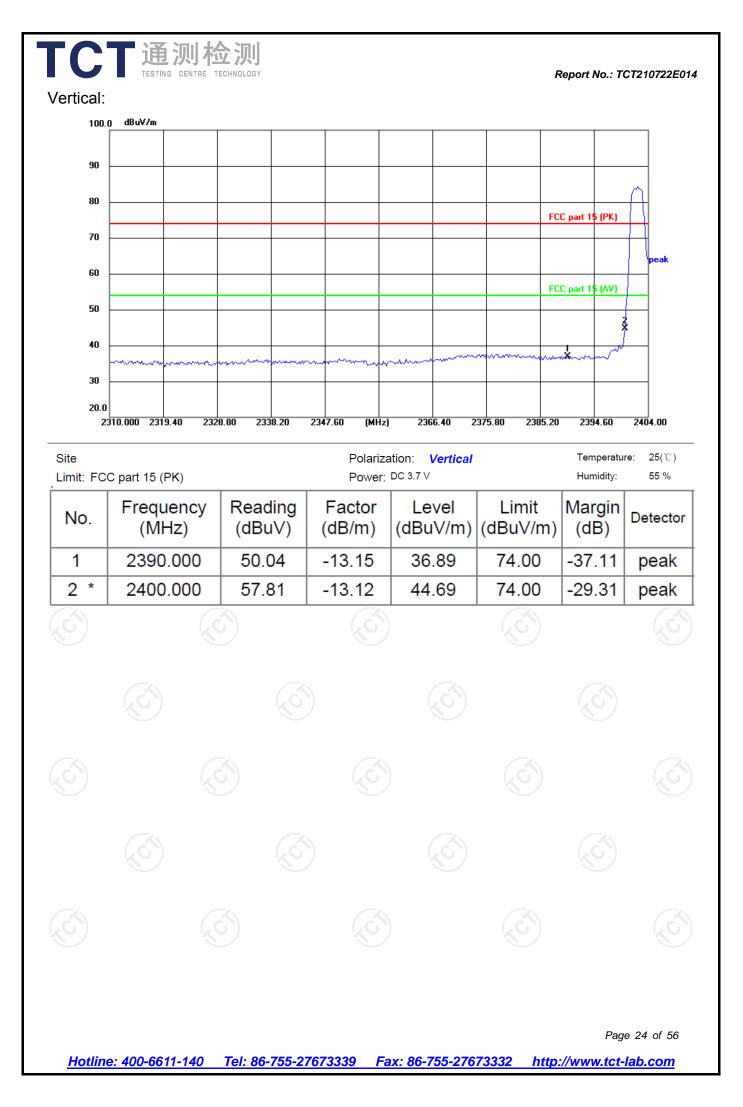
- 2. Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Lowest channel) was submitted only.
- 3. 1


 Freq. = Emission frequency in MHz Measurement (dBμV/m) = Reading level (dBμV) + Corr. Factor (dB) Correction Factor= Antenna Factor + Cable loss – Pre-amplifier Limit (dBμV/m) = Limit stated in standard

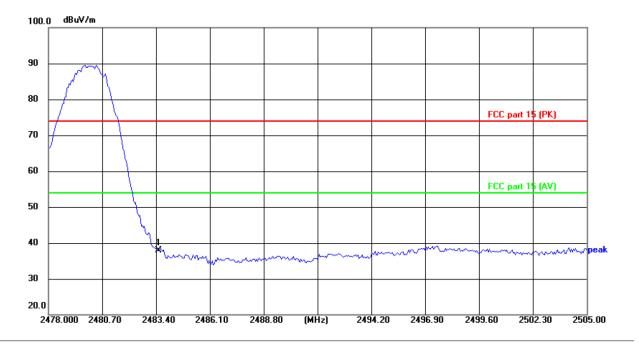
- Margin (dB) = Measurement (dB μ V/m) Limits (dB μ V/m)
- * is meaning the worst frequency has been tested in the test frequency range

Page 22 of 56

Report No.: TCT210722E014



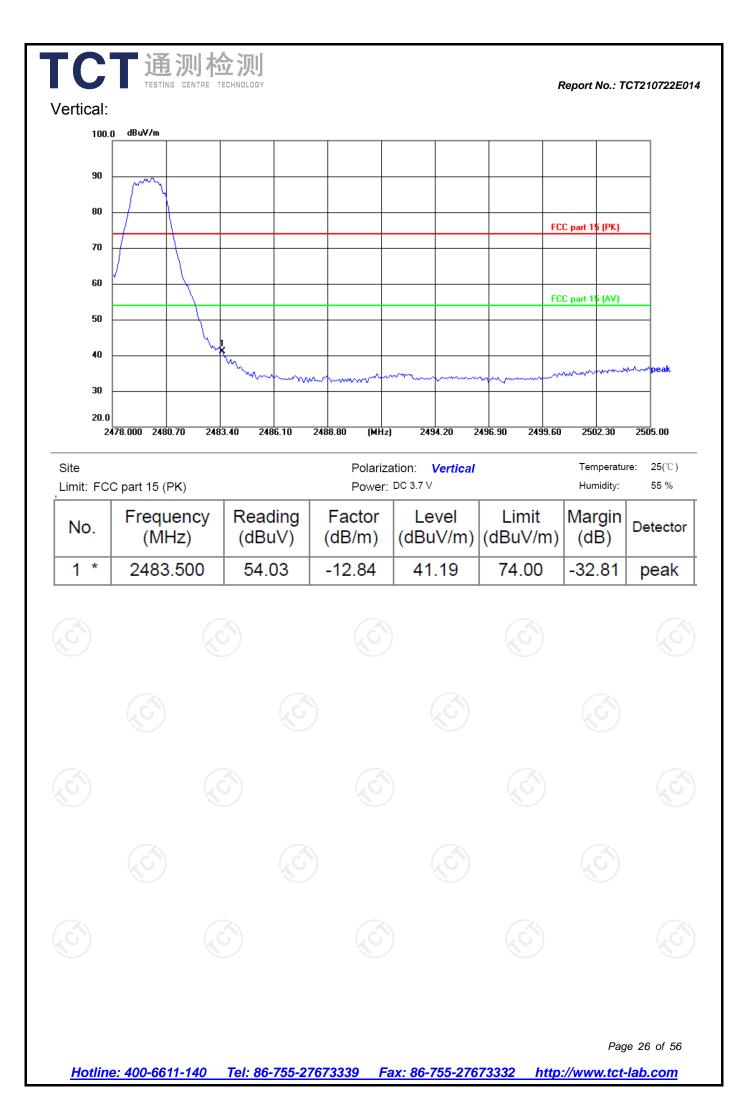
Page 23 of 56

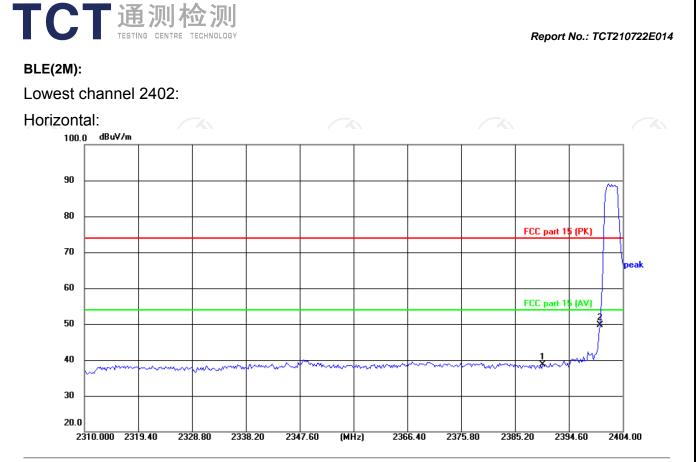

peak

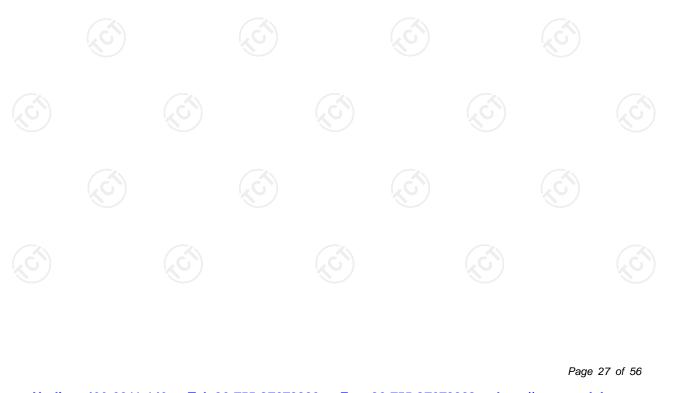
peak

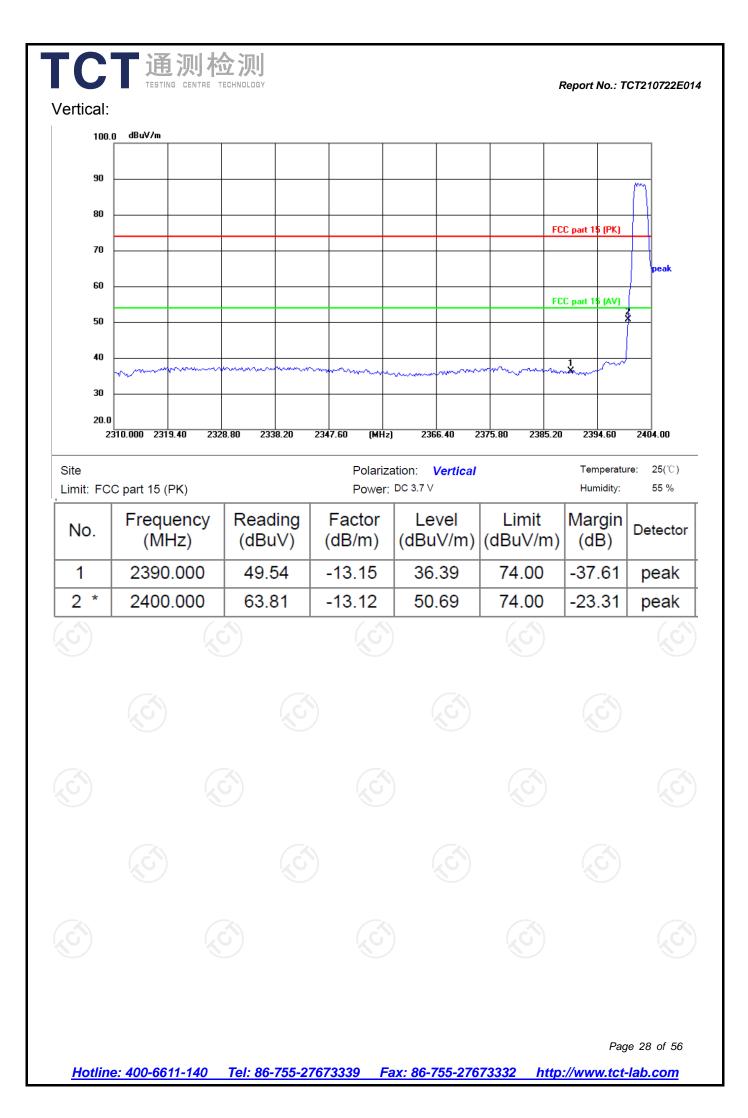
Highest channel 2480:

Horizontal:

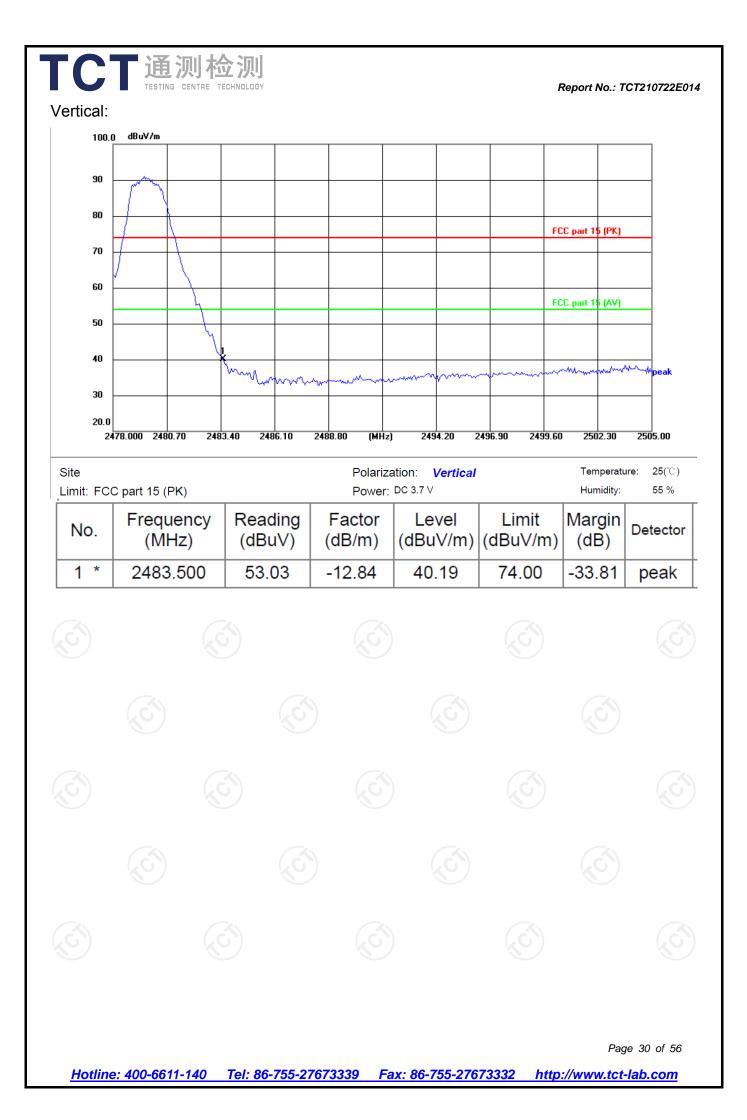



Site Limit: FC	C part 15 (PK)		Polariza Power:		tal	Temperatu Humidity:	re: 25(℃) 55 %
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	2483.500	50.69	-12.84	37.85	74.00	-36.15	peak


Report No.: TCT210722E014


Page 25 of 56

Site Limit: FC	C part 15 (PK)		Polariza Power:		Temperatu Humidity:	re: 25(℃) 55 %	
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390.000	51.92	-13.15	38.77	74.00	-35.23	peak
2 *	2400.000	62.92	-13.12	49.80	74.00	-24.20	peak



Report No.: TCT210722E014 Highest channel 2480: Horizontal: 100.0 dBuV/m 90 80 FCC part 15 (PK) 70 60 FCC part 15 (AV) 50 40 peak mm month 30 20.0 2478.000 2480.70 2483.40 2486.10 2502.30 2505.00 2488.80 (MHz) 2494.20 2496.90 2499.60 Site Polarization: Horizontal Temperature: **25(°**℃) Limit: FCC part 15 (PK) Power: DC 3.7 V Humidity: 55 %

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	2483.500	53.19	-12.84	40.35	74.00	-33.65	peak

Page 29 of 56

Above 1GHz

BLE(1M):

Low channe	el: 2402 N	1Hz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4804	Н	44.75		0.66	45.41		74	54	-8.59
7206	Н	35.82		9.50	45.32		74	54	-8.68
	H								
			(ĉ.		(
4804	V	45.03	-	0.66	45.69	×-	74	54	-8.31
7206	V	36.47		9.50	45.97		74	54	-8.03
	V								

Middle channel: 2440 MHz

wilddie cha	nnei: 2440	JIVIHZ							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak		Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4880	H	47.18		0.99	48.17	<u> </u>	74	54	-5.83
7320	, CH	36.52	- - , G	9.87	46.39	<u>, G +</u> -	74	54	-7.61
	Ч								
4880	V	46.96		0.99	47.95		74	54	-6.05
7320	V	37.24		9.87	47.11		74	54	-6.89
G ')	V			<) (` (KU)		

High channel: 2480 MHz

i ngiri onarin									
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
40.00				· · ·	· · · · · · · · · · · · · · · · · · ·	(ubµv/m)	74	53	4.07
4960	H	48.30		1.33	49.63		74	54	-4.37
7440	Н	37.69		10.22	47.91		74	54	-6.09
	Н								
						•			
4960	V	44.85		1.33	46.18		74	54	-7.82
7440	V	35.42		10.22	45.64		74	54	-8.36
	V								

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dBµV/m)-Average limit (dBµV/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "--- "in the above table mean that the reading of emissions is attenuated more than 20 dB

below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

BLE(2M):

Lo	Low channel: 2402 MHz											
	equency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)		n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)		
	4804	Н	44.83		0.66	45.49		74	54	-8.51		
	7206	Н	35.07		9.50	44.57		74	54	-9.43		
		Н										
		<u></u>										
	4804	V	45.49	4	0.66	46.15		74	54	-7.85		
	7206	V	36.72		9.50	46.22	<u> </u>	74	54	-7.78		
		V										

Middle channel: 2440 MHz

.

initiatic che					X \				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4880	Н	47.14		0.99	48.13		74	54	-5.87
7320	Н	36.28		9.87	46.15		74	54	-7.85
	, GH		-+.6)	(, G `} -		(, C)	
4880	V	46.53		0.99	47.52		74	54	-6.48
7320	V	37.96		9.87	47.83		74	54	-6.17
X	V			(4		

High channel: 2480 MHz

Frequency	Ant Pol	Peak	AV	Correction	Emissic	on Level	Peak limit	AV/limit	Margin	
(MHz)	H/V	reading (dBµV)	reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)			(dBµV/m)	(dB)	
4960	CH	48.37	-40	1.33	49.70	(0)	74	54	-4.30	
7440	H	37.62		10.22	47.84		74	54	-6.16	
	Н									
4960	V	44.48		1.33	45.81		74	54	-8.19	
7440	V	35.15		10.22	45.37		74	54	-8.63	
	V									

Note:

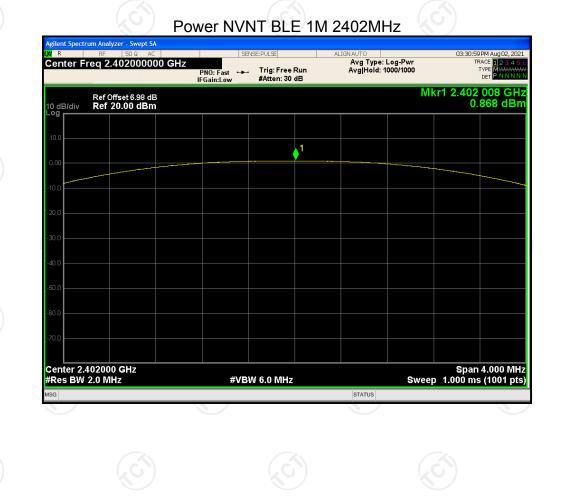
7. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

8. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

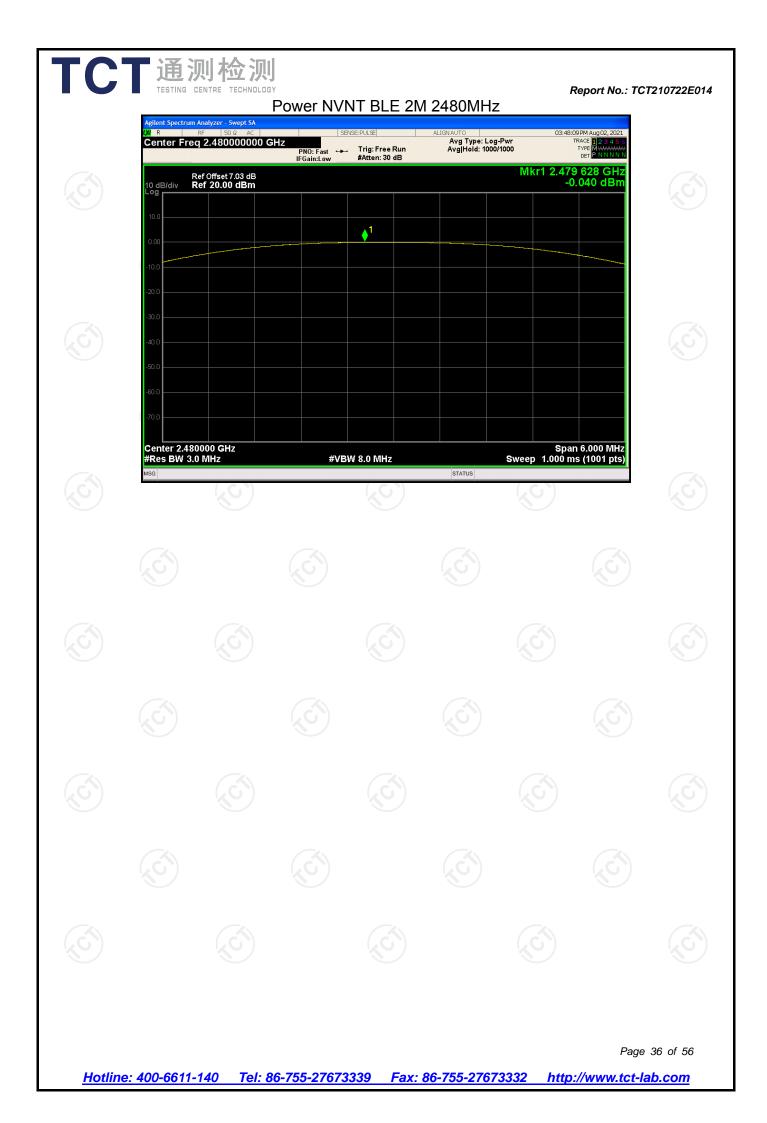
9. The emission levels of other frequencies are very lower than the limit and not show in test report.

10. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

11. Data of measurement shown "----"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.


12. All the restriction bands are compliance with the limit of 15.209.

	wax	Imum Condi	ucted Output Pow	er	
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	0.868	30	Pass
NVNT	BLE 1M	2440	0.679	30	Pass
NVNT	BLE 1M	2480	0.078	30	Pass
NVNT	BLE 2M	2402	0.832	30	Pass
NVNT	BLE 2M	2440	0.612	30	Pass
NVNT	BLE 2M	2480	-0.04	30	Pass


Maximum Conducted Output Power

Note:Duty cycle above 98%.

#Res BW MSG Agilent Spec Dd R Center I 10 dB/div 10 0 -10.0 -20 0 -30 0 -40 0	2.440000 GHz 2.440000 GHz V 2.0 MHz Ctrum Analyzer - Swept SA RF 50 2 AC Freq 2.480000000 GH	PNO: Fast FGain:Low Trig: Free Run #Atten: 30 dB 1 1 1 1 1 1 1 1 1 1 1 1 1	Status ALIGNAUTO Avg Type: Log-Pwr AvgHold: 1000/1000	TRACE 12.34.5 C TYPE MARTI Akr1 2.439 836 GHz 0.679 dBm Akr1 2.439 836 GHz 0.679 dBm Span 4.000 MHz 9 Span 4.000 MHz 9 D3:38:46PM Aug 02, 2021 1001 pts) Mkr1 2.479 980 GHz 0.078 dBm	
100 -100 -200 -200 -300 -400 -500 -	2.440000 GHz 2.440000 GHz W 2.0 MHz Crum Analyzer - Swept SA RF 50 2 AC Freq 2.480000000 GH	#VBW 6.0 MHz #VBW 6.0 MHz Power NVNT BLE Iz PNO: Fast + Trig: Free Run IFGain:Low Trig: Free Run #Atten: 30 dB	STATUS 1M 2480MHz ALIGNAUTO Avg Type: Log-Pwr AvgHold: 1000/1000	03:38:46 PM Aug 02, 2021 Trace 03:38:46 PM Aug 02, 2021 Trace 1000 ms (1001 pts)	
0.00 -1000 -200 -200 -400 -500 -400 -500 -500 -500 -500 -5	N 2.0 MHz ctrum Analyzer - Swept SA RF 50 Q AC Freq 2.480000000 GH Ref Offset 7.03 dB	#VBW 6.0 MHz #VBW 6.0 MHz Power NVNT BLE Iz PNO: Fast + Trig: Free Run IFGain:Low Trig: Free Run #Atten: 30 dB	STATUS 1M 2480MHz ALIGNAUTO Avg Type: Log-Pwr AvgHold: 1000/1000	ep 1.000 ms (1001 pts)	
-10.0 -20.0 -30.0 -40.0 -50.0 -50.0 -50.0 -70.0	N 2.0 MHz ctrum Analyzer - Swept SA RF 50 Q AC Freq 2.480000000 GH Ref Offset 7.03 dB	Power NVNT BLE SENSE:PULSE PNO: Fast IFGain:Low Trig: Free Run #Atten: 30 dB	STATUS 1M 2480MHz ALIGNAUTO Avg Type: Log-Pwr AvgHold: 1000/1000	ep 1.000 ms (1001 pts)	
-20 0 -30 0 -40 0 -50 0 -70 0 -70 -70 0 -70 0 -7	N 2.0 MHz ctrum Analyzer - Swept SA RF 50 Q AC Freq 2.480000000 GH Ref Offset 7.03 dB	Power NVNT BLE SENSE:PULSE PNO: Fast IFGain:Low Trig: Free Run #Atten: 30 dB	STATUS 1M 2480MHz ALIGNAUTO Avg Type: Log-Pwr AvgHold: 1000/1000	ep 1.000 ms (1001 pts)	
-40.0 -50.0 -50.0 -70.0	N 2.0 MHz ctrum Analyzer - Swept SA RF 50 Q AC Freq 2.480000000 GH Ref Offset 7.03 dB	Power NVNT BLE SENSE:PULSE PNO: Fast IFGain:Low Trig: Free Run #Atten: 30 dB	STATUS 1M 2480MHz ALIGNAUTO Avg Type: Log-Pwr AvgHold: 1000/1000	ep 1.000 ms (1001 pts)	
-50.0 -60.0 -70.0 -70.0 -70.0 -70.0 -70.0 -70.0 MSG -70.0 MSG -70.0 -70.0 MSG -70.0	N 2.0 MHz ctrum Analyzer - Swept SA RF 50 Q AC Freq 2.480000000 GH Ref Offset 7.03 dB	Power NVNT BLE SENSE:PULSE PNO: Fast IFGain:Low Trig: Free Run #Atten: 30 dB	STATUS 1M 2480MHz ALIGNAUTO Avg Type: Log-Pwr AvgHold: 1000/1000	ep 1.000 ms (1001 pts)	
-60.0 -70.0 Center 2 #Res BW Msg Center 1 10.0 -20.0 -20.0 -20.0 -20.0 -20.0	N 2.0 MHz ctrum Analyzer - Swept SA RF 50 Q AC Freq 2.480000000 GH Ref Offset 7.03 dB	Power NVNT BLE SENSE:PULSE PNO: Fast IFGain:Low Trig: Free Run #Atten: 30 dB	STATUS 1M 2480MHz ALIGNAUTO Avg Type: Log-Pwr AvgHold: 1000/1000	ep 1.000 ms (1001 pts)	
-70.0 Center 2 #Res BW MSG Agilent Spec 00 R Center I 10.0 -10.0 -20.0 -30.0 -40.0	N 2.0 MHz ctrum Analyzer - Swept SA RF 50 Q AC Freq 2.480000000 GH Ref Offset 7.03 dB	Power NVNT BLE SENSE:PULSE PNO: Fast IFGain:Low Trig: Free Run #Atten: 30 dB	STATUS 1M 2480MHz ALIGNAUTO Avg Type: Log-Pwr AvgHold: 1000/1000	ep 1.000 ms (1001 pts)	
Center 2 #Res BW Msg Agilent Spec X R Center 1 10 dB/div Log 10.0 -10.0 -20.0 -30.0	N 2.0 MHz ctrum Analyzer - Swept SA RF 50 Q AC Freq 2.480000000 GH Ref Offset 7.03 dB	Power NVNT BLE SENSE:PULSE PNO: Fast IFGain:Low Trig: Free Run #Atten: 30 dB	STATUS 1M 2480MHz ALIGNAUTO Avg Type: Log-Pwr AvgHold: 1000/1000	ep 1.000 ms (1001 pts)	
#Res BW MSG Agilent Spec V R Center I 10 dB/div 10.0 -10.0 -20.0 -30.0 -40.0	N 2.0 MHz ctrum Analyzer - Swept SA RF 50 Q AC Freq 2.480000000 GH Ref Offset 7.03 dB	Power NVNT BLE SENSE:PULSE PNO: Fast IFGain:Low Trig: Free Run #Atten: 30 dB	STATUS 1M 2480MHz ALIGNAUTO Avg Type: Log-Pwr AvgHold: 1000/1000	ep 1.000 ms (1001 pts)	
Agilent Spec Xr Center I 10 dB/div 10.0 10.0 - -10.0 - -30.0 - -40.0 -	ctrum Analyzer - Swept SA RF 50 Ω AC Freq 2.480000000 GH Ref Offset 7.03 dB	Z PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB	ALIGNAUTO Avg Type: Log-Pwr AvgHold: 1000/1000		
Image: 2000 cm R 10 dE/div 0.00 10.0 0.00 -10.0 0.00 -20.0 0.00 -30.0 0.00	RF 50 Ω AC Freq 2.480000000 GH	IZ PNO: Fast →→ Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 1000/1000		
10.0 0.00 -10.0 -20.0 -30.0 -40.0	Ref Offset 7.03 dB	PNO: Fast ->- Trig: Free Run IFGain:Low #Atten: 30 dB		/kr1 2.479 980 GHz	
Log	Ref 20.00 dBm			0.078 dBm	
0.00 -10.0 -20.0 -30.0 -40.0					
-10.0 -20.0 -30.0 -40.0					
-20.0 -30.0 -40.0					
-30.0					
-50.0					
-60.0					
-70.0					
Center 2 #Res BW	2.480000 GHz N 2.0 MHz	#VBW 6.0 MHz	Swe	Span 4.000 MHz ep 1.000 ms (1001 pts)	
MSG		<u> </u>	STATUS	· · · · · · · · · · · · · · · · · · ·	

LXI F	nt Spectrum Analyzer - Swept SA		ALIGNAUTO Avg Type: Log-Pwr	03:41:57PM Aug 02, 2021 TRACE 11 2 3 4 5 6 TYPE MWWWW DET P NN NN N	
		PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Hold: 1000/1000	1 2.401 700 GHz	
10 d Log	Ref Offset 6.98 dB IB/div Ref 20.00 dBm			0.832 dBm	
10.0					
0.00					
-10.0					
-20.0					
-30.0					
-40.0					
-50.0					
-60.C					
-70.0					
0					
#Re	nter 2.402000 GHz es BW 3.0 MHz	#VBW 8.0 MHz		Span 6.000 MHz 1.000 ms (1001 pts)	
MSG	(20°) F	Power NVNT BLE 2M	status 1 2440MHz))	
LXI F	nt Spectrum Analyzer - Swept SA	SENSE:PULSE	ALIGN AUTO	03:45:17 PM Aug 02, 2021	
Cer	nter Freq 2.440000000 GH	IZ PNO: Fast IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 1000/1000	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	
10 d	Ref Offset 7.06 dB IB/div Ref 20.00 dBm		Mki	1 2.439 862 GHz 0.612 dBm	
Log					
10.0		. 1			
0.00					
-10.0					
-10.0					
-10.0 -20.0 -30.0					
-10.0 -20.0 -30.0 -40.0					
-10. C					
-10.0 -20.0 -30.0 -40.0 -50.0 -60.0					
-10.0 -20.0 -30.0 -40.0 -60.0					
-10.0 -20.0 -30.0 -40.0 -60.0 -70.0 Cer	nter 2.440000 GHz	#VBW 8.0 MHz	Sweep	Span 6.000 MHz 1.000 ms (1001 pts)	
-10.0 -20.0 -30.0 -40.0 -60.0 -70.0 Cer		#VBW 8.0 MHz	Sweep	Span 6.000 MHz 1.000 ms (1001 pts)	
-10.0 -20.0 -30.0 -40.0 -50.0 -70.0 Cer	nter 2.440000 GHz	#VBW 8.0 MHz	1 1	Span 6.000 MHz 1.000 ms (1001 pts)	
-10.0 -20.0 -30.0 -40.0 -50.0 -70.0 Cer	nter 2.440000 GHz	#VBW 8.0 MHz	1 1	Span 6.000 MHz 1.000 ms (1001 pts)	
-10.0 -20.0 -30.0 -40.0 -50.0 -70.0 Cer	nter 2.440000 GHz	#VBW 8.0 MHz	1 1	Span 6.000 MHz 1.000 ms (1001 pts)	
-10.0 -20.0 -30.0 -40.0 -50.0 -70.0 Cer	nter 2.440000 GHz	#VBW 8.0 MHz	1 1	Span 6.000 MHz 1.000 ms (1001 pts)	

	Freq Error	D694 MHz -10.425 kHz 670.4 kHz	Total Power OBW Power x dB	7.07 dBm 99.00 % -6.00 dB	
MSG				STATUS	

-6dB Bandwidth NVNT BLE 1M 2402MHz

 $\langle \rangle^2$

#IFGain:Low

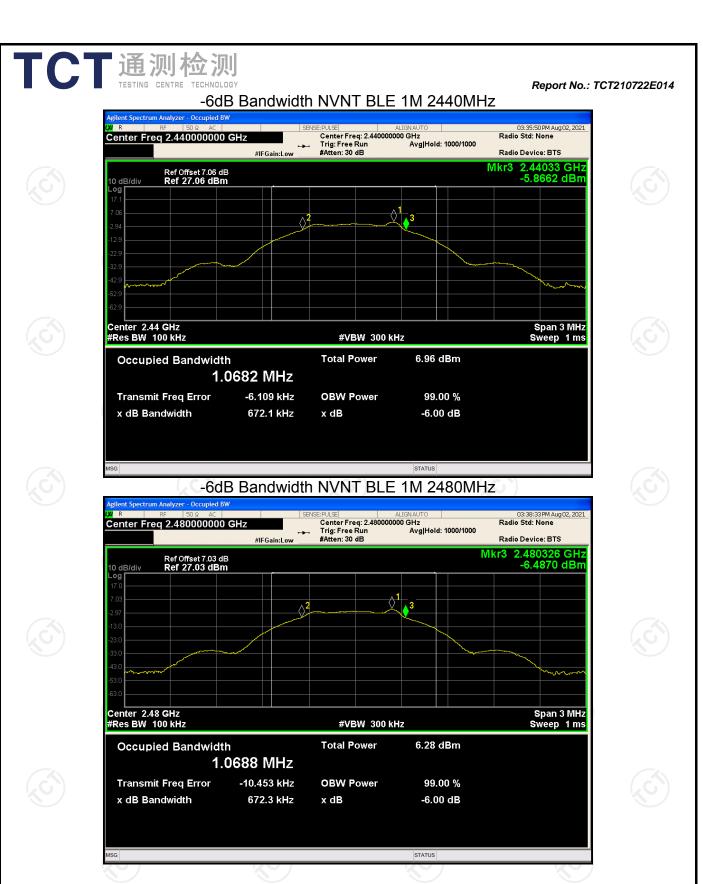
SE:PUCE ALIGNAUTO Center Freq: 2.402000000 GHz Trig: Free Run Avg|Hold: 1000/1000 #Atten: 30 dB

______3

			-6dB Bandwidth		
Condition	Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	0.67	0.5	Pass
NVNT	BLE 1M	2440	0.672	0.5	Pass
NVNT	BLE 1M	2480	0.672	0.5	Pass
NVNT	BLE 2M	2402	1.181	0.5	Pass
NVNT	BLE 2M	2440	1.191	0.5	Pass
NVNT	BLE 2M	2480	1.189	0.5	Pass

R

10 dB/div Log


Center Freq 2.402000000 GHz

Ref Offset 6.98 dB Ref 26.98 dBm

Report No.: TCT210722E014

03:35:13 PM Aug 02, 2021 Radio Std: None

Radio Device: BTS Mkr3 2.402325 GHz -5.6310 dBm

Page 38 of 56

Span 6 MHz Sweep 1 ms

#VBW 300 kHz

7.79 dBm

99.00 %

-6.00 dB

STATUS

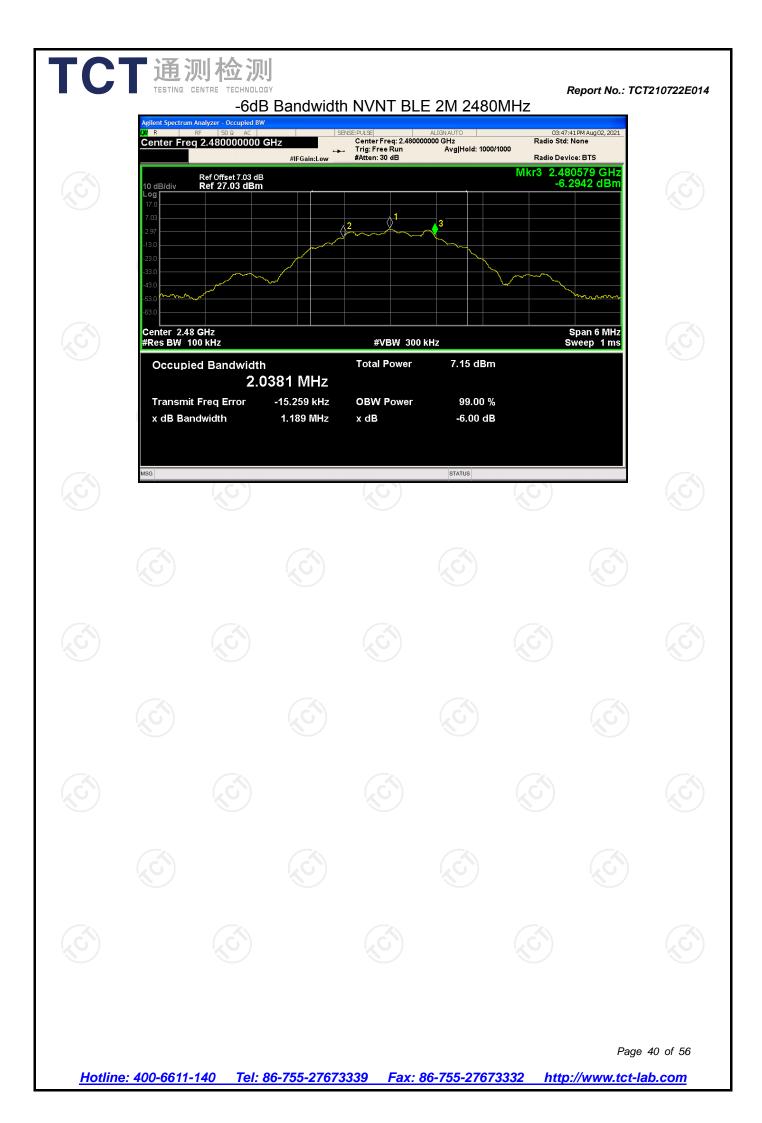
Total Power

OBW Power

x dB

Center 2.44 GHz #Res BW 100 kHz

Occupied Bandwidth

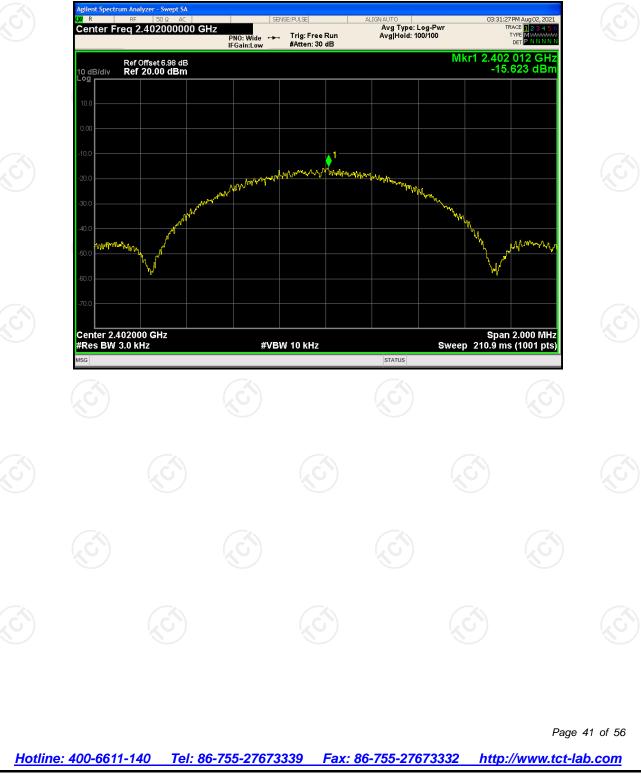

Transmit Freq Error

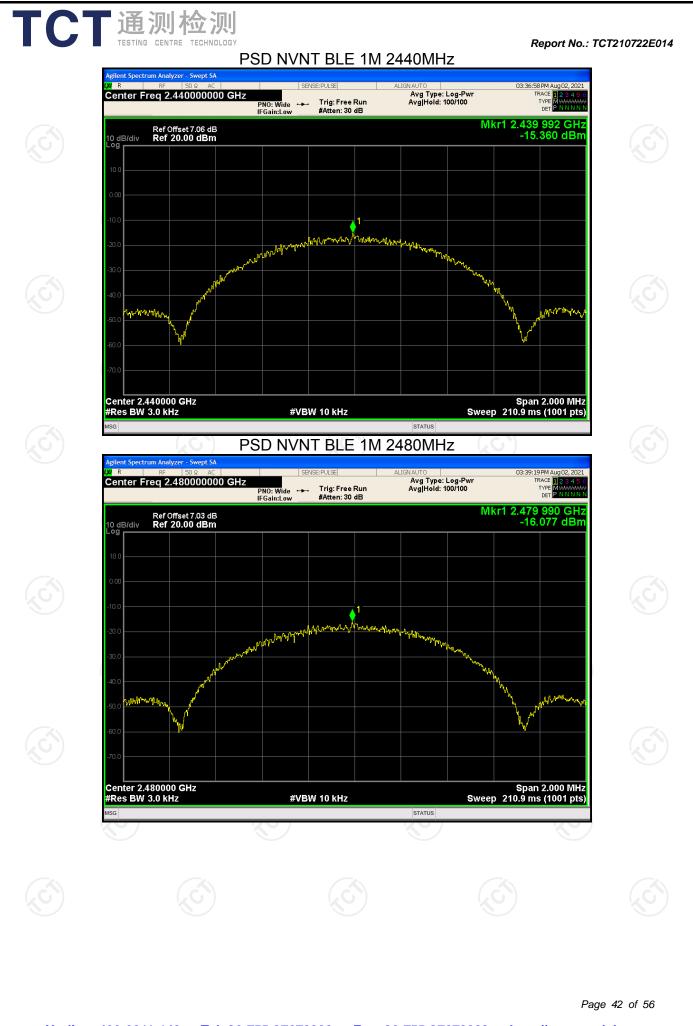
x dB Bandwidth

ISG

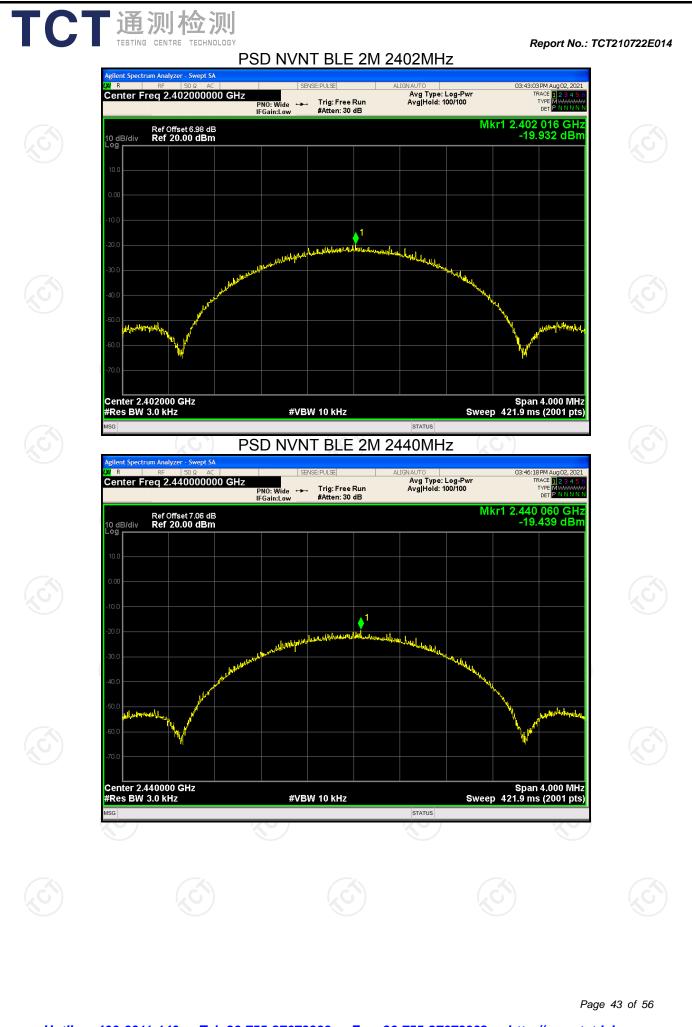
2.0388 MHz -8.595 kHz

1.191 MHz

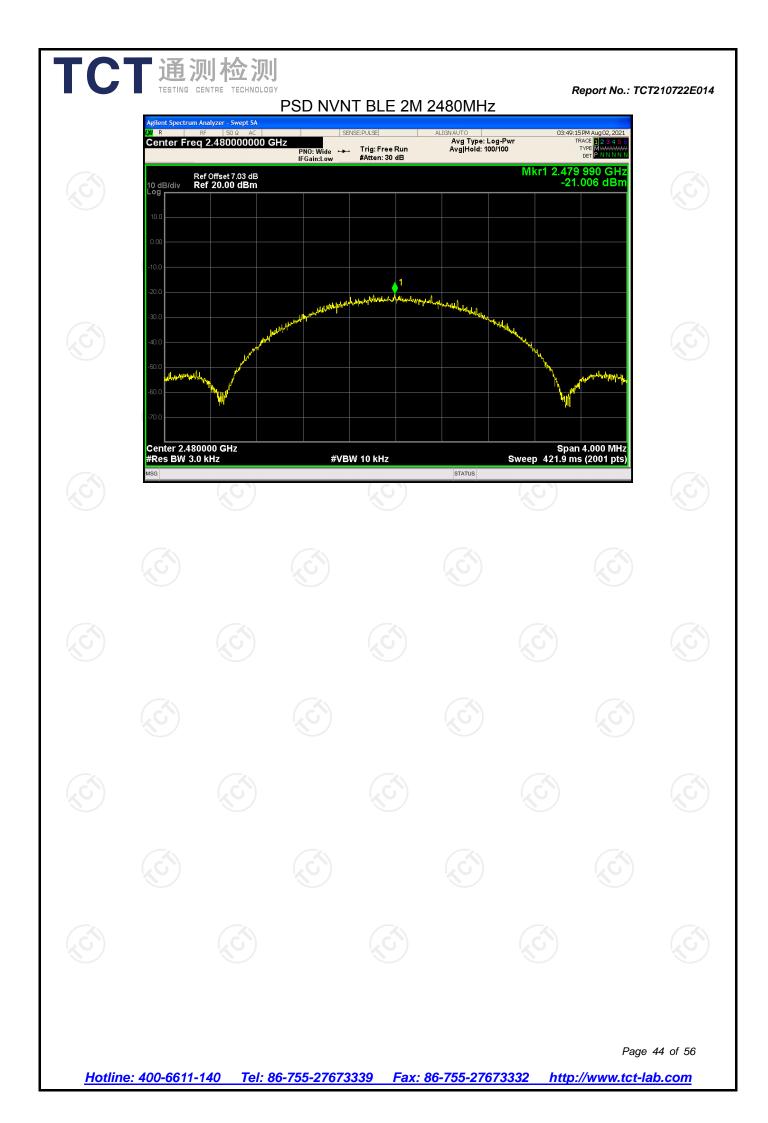



	Condition	Mode	Frequency (MHz)	Max PSD	Limit	Verdict
				(dBm/3KHz)	(dBm/3KHz)	
	NVNT	BLE 1M	2402	-15.623	8	Pass
ر	NVNT	BLE 1M	2440	-15.36	8	Pass
	NVNT	BLE 1M	2480	-16.077	8	Pass
	NVNT	BLE 2M	2402	-19.932	8	Pass
	NVNT	BLE 2M	2440	-19.439	8	Pass
	NVNT	BLE 2M	2480	-21.006	8	Pass

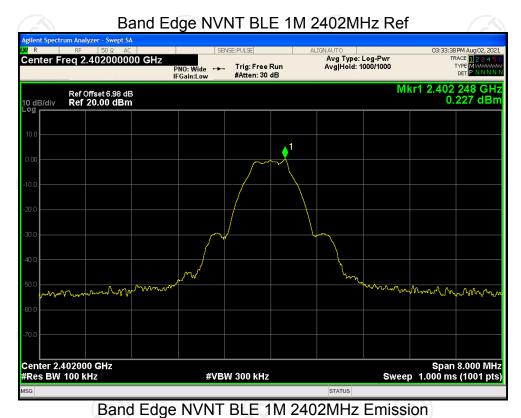
Maximum Power Spectral Density Level


TCT通测检测 TESTING CENTRE TECHNOLOGY

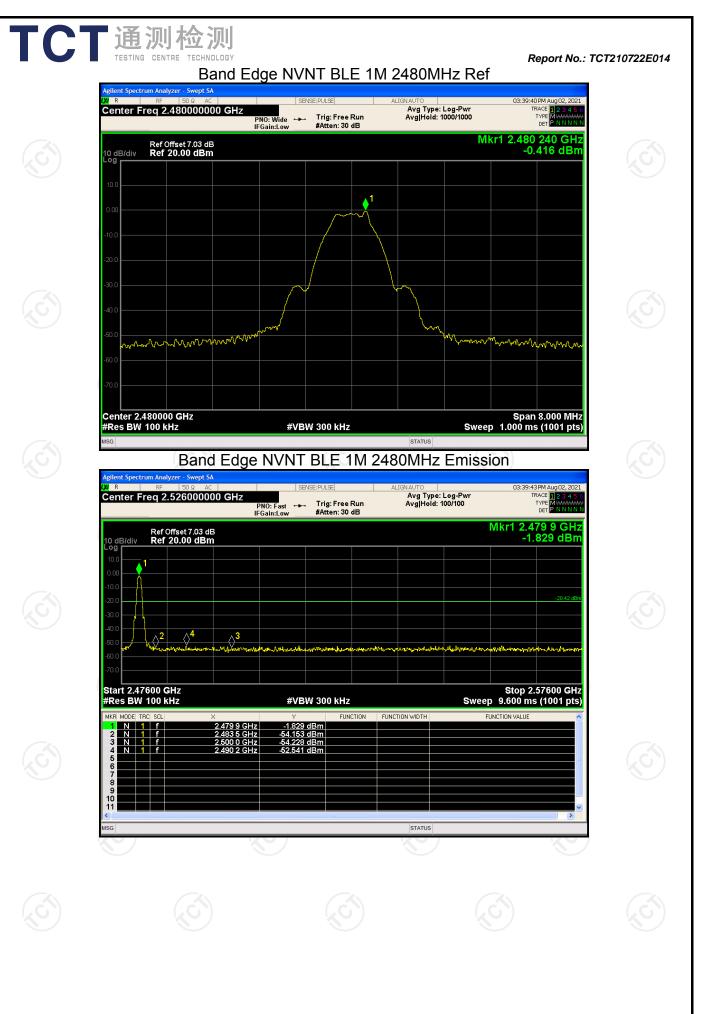
PSD NVNT BLE 1M 2402MHz



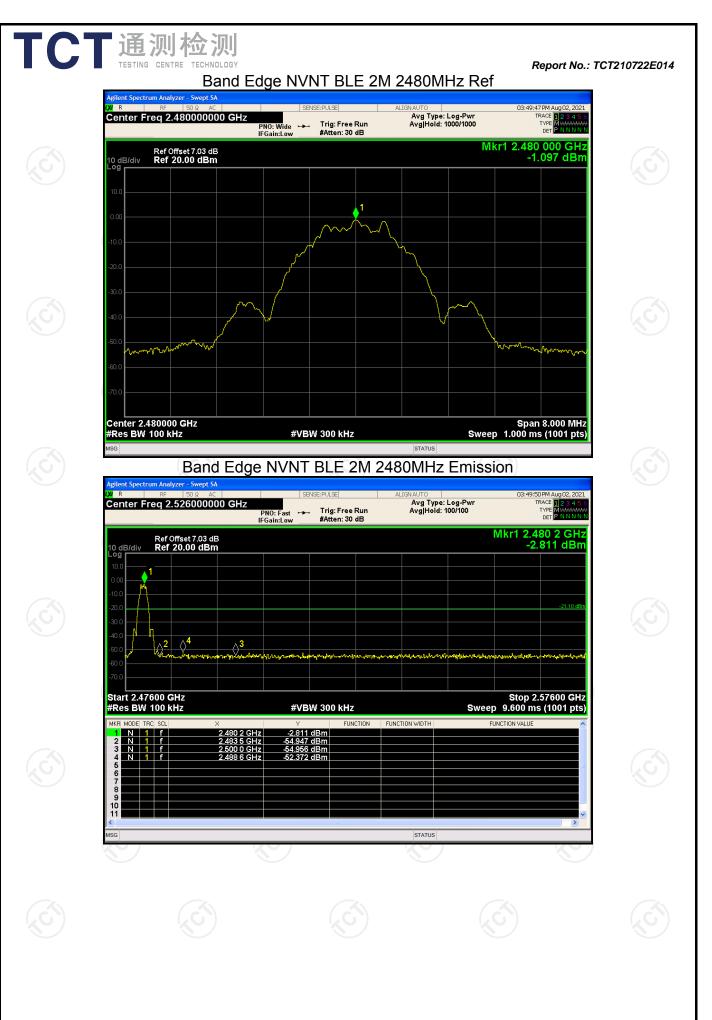
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


		Band	Edge		
Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	-52.46	-20	Pass
NVNT	BLE 1M	2480	-52.12	-20	Pass
NVNT	BLE 2M	2402	-51.96	-20	Pass
NVNT	BLE 2M	2480	-51.27	-20	Pass

TCT通测检测 TESTING CENTRE TECHNOLOGY


R		RF	50 Ω /	AC		SENSE:PUL	SE	ALIGN AUTO		03:33	3:41 PM Aug 02, 20
enter	Fre	eq 2	3560000	F	PNO: Fast Gain:Low		: Free Run :en: 30 dB	Avg Typ Avg Hold	e: Log-Pwr : 100/100		TRACE 1234 TYPE MWWW DET PNNN
dB/di			Offset 6.98 o 20.00 dB								402 2 GH 0.276 dB
											1
┉┣─											, j
1.0											
1.0											-19.77 c
1.0											/↓
								A4			
								N/		<u>^`</u>	
stand.	haldo	non line	waynum	~undruc-departm	An the second second	w. manager	- upon les upon les up	maria	way the way of the tak	man man	mannet
0.0	hall	www	hand and the second	-Untrus-Aupannia	An guiltan	w. marine wy	neron Jennyeby Anely	man	week and a second and a second s	nann Dagaan	month
0.0 0.0 0.0	hald,	new Une	hanaihen han han han han han han han han han ha	าปท ี่ปุญมัน-กษณะสุขสรณ	ALL-GUNINGAL	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	neron fennischerdreit	1 minteret have no souther	ารของสูฟาษแห่งระเป็งที่มีหมาไป	naven Aguar	1 Konguetan
				~ <mark>ป</mark> ที่ปุ่นเป็สารีทางสุดกำห	A. And Maria	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ny vny henny hydrodd	ininine doctors whe	weed the property of the state	nun an Childhaine Ar	2 40600 GI
1.0	.306	i00 G	Hz	~UNIpst-APP-appen		••••••••••••••••••••••••••••••••••••••		inana dan sa		Stop	
art 2. Res B	.306 W 1	00 G 00 k 00 k	Hz	×	#	VBW 300		FUNCTION WIDTH	Swee	Stop	ns (1001 pi
art 2. Res B	.306 W 1	600 Q 100 k 5 SGL	Hz	× 2.402 2 GHz	#	VBW 300 7 276 dBm	0 kHz		Swee	Stop p 9.600 r	2.40600 GI ns (1001 pt
art 2. Res B	.306 W 1	00 G 00 k 00 k	Hz	× 2.402 2 GHz 2.400 0 GHz	# 	VBW 300 Y 276 dBm 890 dBm	0 kHz		Swee	Stop p 9.600 r	ns (1001 pi
 tart 2. Res B Я моде 1 N 2 N 3 N 4 N	.306 W 1	600 Q 100 k 5 SGL	Hz	× 2.402 2 GHz	# 	VBW 300 7 276 dBm	0 kHz		Swee	Stop p 9.600 r	ns (1001 pi
art 2. Res B R MODE N N N N N N N N N	.306 W 1	600 Q 100 k 5 SGL	Hz	× 2.402 2 GHz 2.400 0 GHz 2.390 0 GHz	# 	VBW 300 276 dBm 890 dBm 734 dBm	0 kHz		Swee	Stop p 9.600 r	ns (1001 pi
ant 2. Res B R MODE N N N N N N N N N N N N N N N N N N N	.306 W 1	600 Q 100 k 5 SGL	Hz	× 2.402 2 GHz 2.400 0 GHz 2.390 0 GHz	# 	VBW 300 276 dBm 890 dBm 734 dBm	0 kHz		Swee	Stop p 9.600 r	ns (1001 pi
and a second sec	.306 W 1	600 Q 100 k 5 SGL	Hz	× 2.402 2 GHz 2.400 0 GHz 2.390 0 GHz	# 	VBW 300 276 dBm 890 dBm 734 dBm	0 kHz		Swee	Stop p 9.600 r	ns (1001 pi
ant 2. Res B R MODE N N N N N N N N N N N N N N N N N N N	.306 W 1	600 Q 100 k 5 SGL	Hz	× 2.402 2 GHz 2.400 0 GHz 2.390 0 GHz	# 	VBW 300 276 dBm 890 dBm 734 dBm	0 kHz		Swee	Stop p 9.600 r	ns (1001 pi

Page 45 of 56

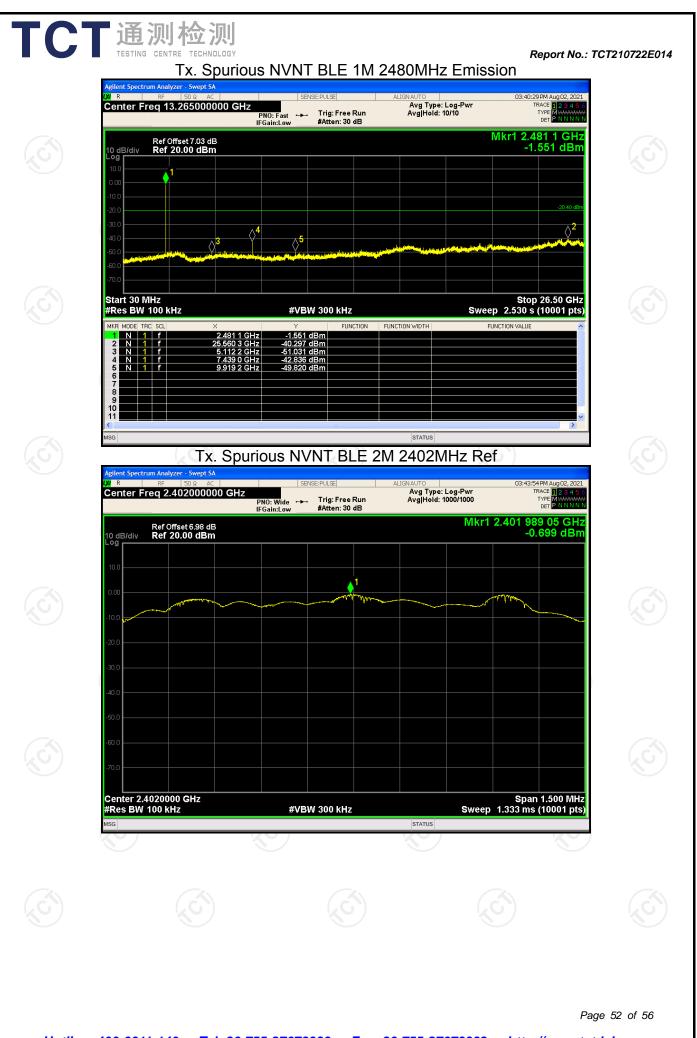
Page 47 of 56

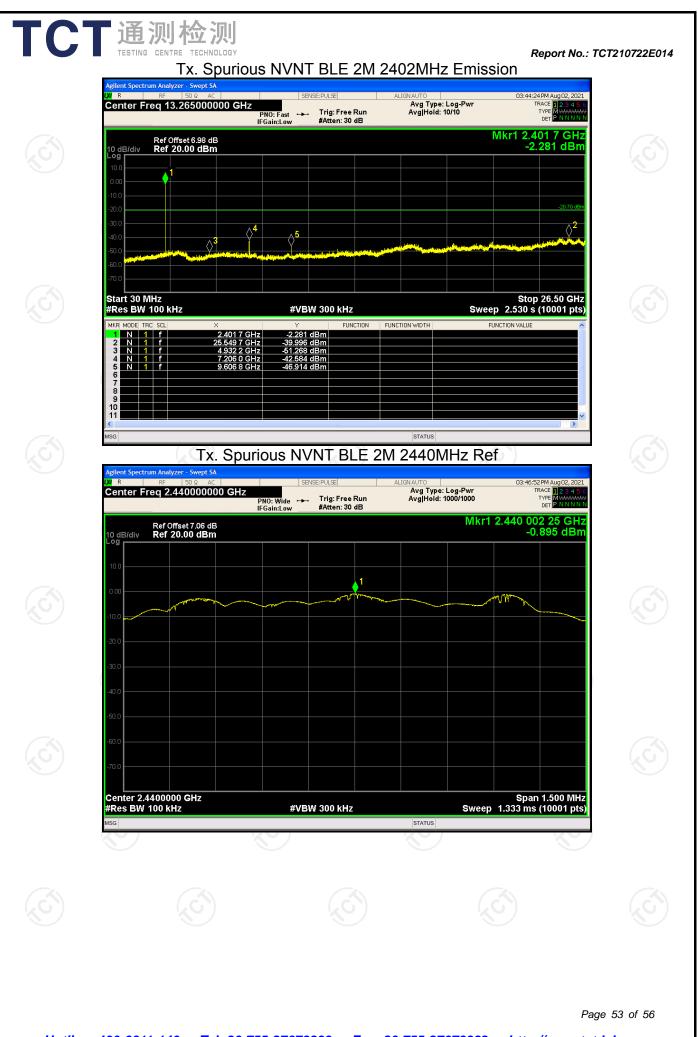
Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
BLE 1M	2402	-40.36	-20	Pass
BLE 1M	2440	-39.69	-20	Pass
BLE 1M	2480	-39.89	-20	Pass
BLE 2M	2402	-39.29	-20	Pass
BLE 2M	2440	-39.31	-20	Pass
BLE 2M	2480	-38.94	-20	Pass
	BLE 1M BLE 1M BLE 1M BLE 2M BLE 2M	BLE 1M 2402 BLE 1M 2440 BLE 1M 2480 BLE 2M 2402 BLE 2M 2440	BLE 1M 2402 -40.36 BLE 1M 2440 -39.69 BLE 1M 2480 -39.89 BLE 2M 2402 -39.29 BLE 2M 2440 -39.31	BLE 1M 2402 -40.36 -20 BLE 1M 2440 -39.69 -20 BLE 1M 2480 -39.89 -20 BLE 2M 2402 -39.29 -20 BLE 2M 2440 -39.31 -20

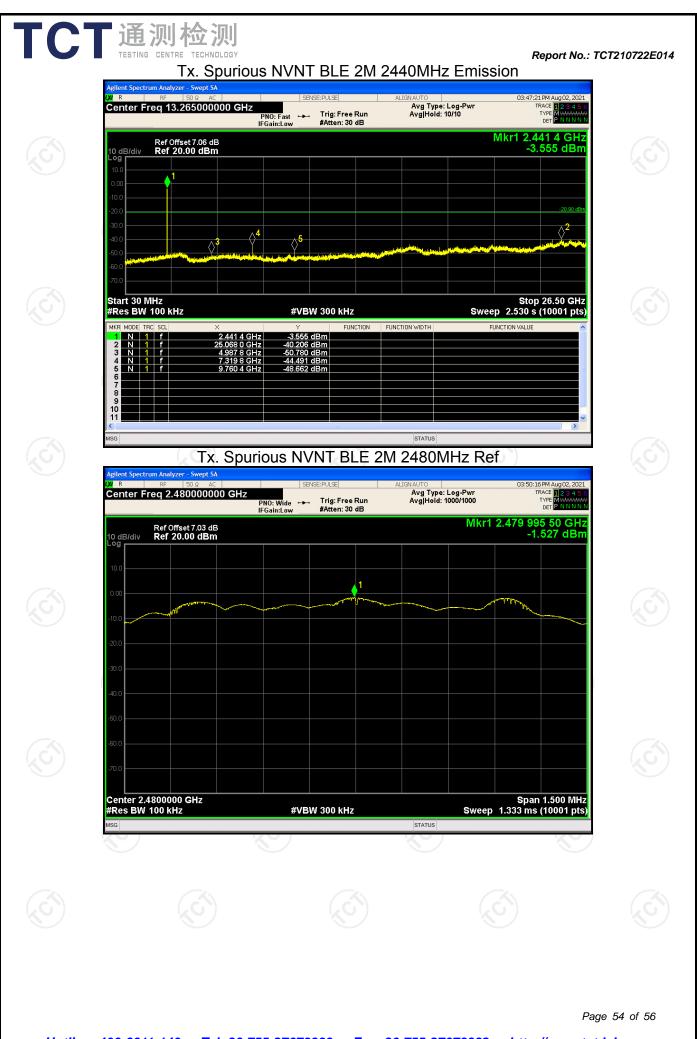
Conducted RF Spurious Emission

TCT通测检测 TESTING CENTRE TECHNOLOGY

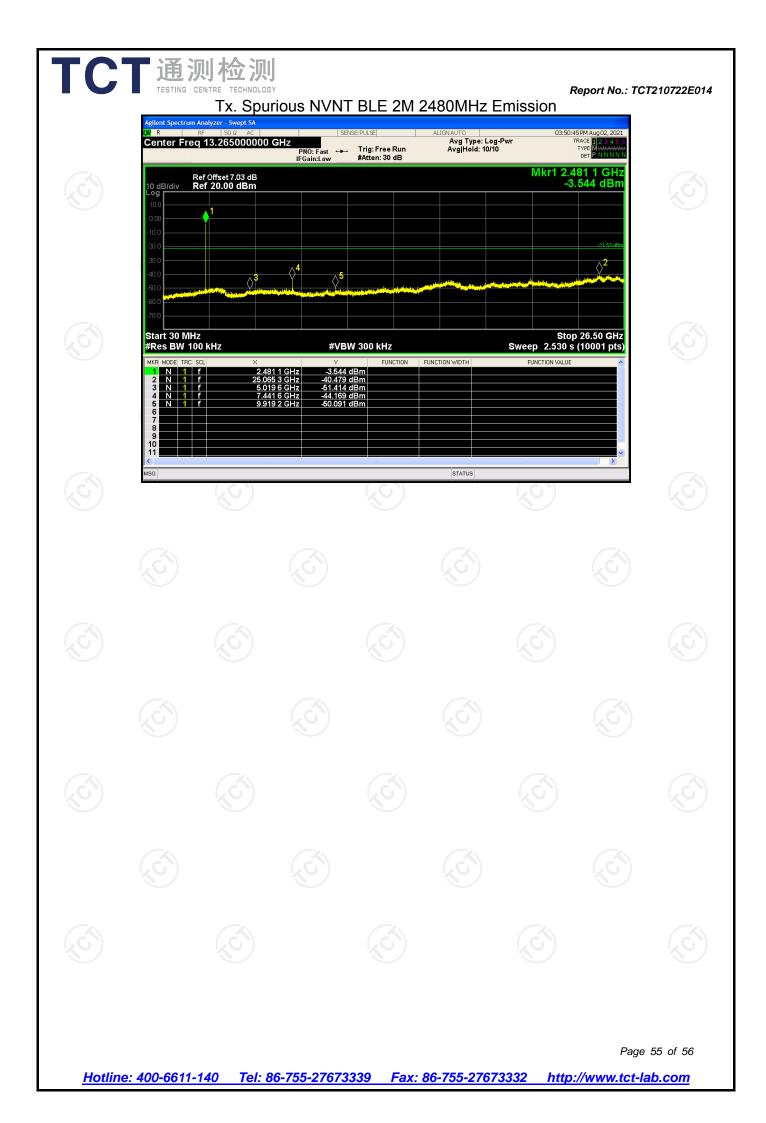
Tx. Spurious NVNT BLE 1M 2402MHz Ref

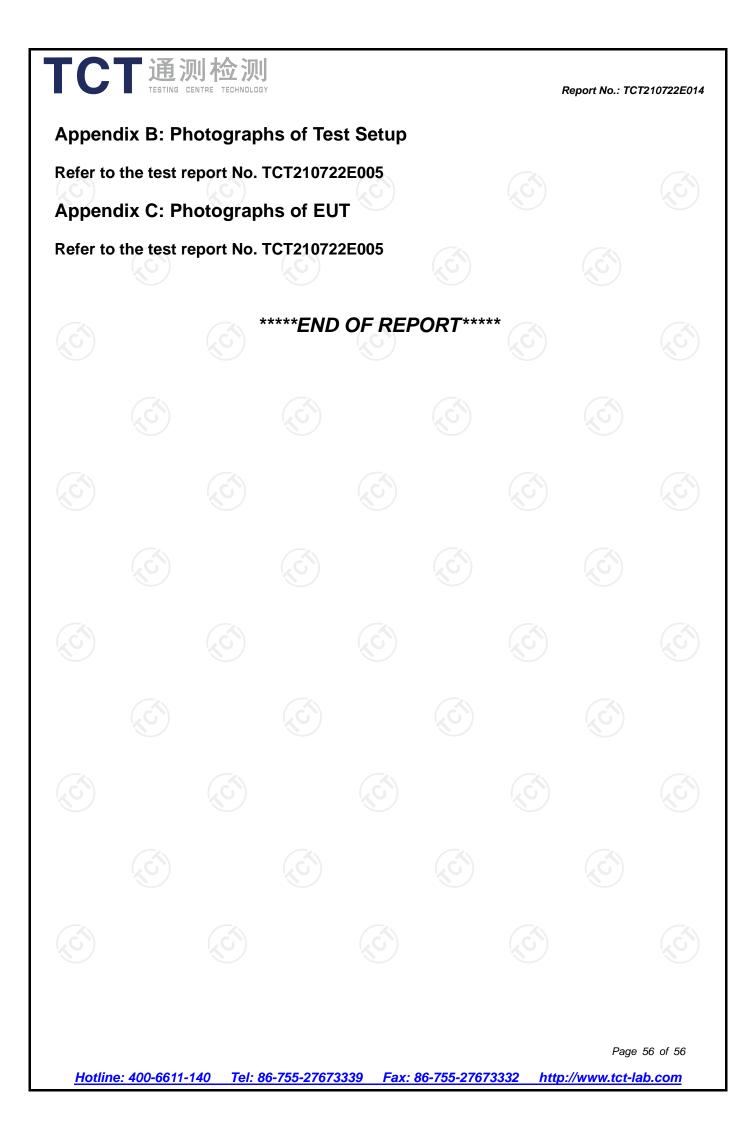






Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com





Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

