

RADIO TEST REPORT FCC ID: 2ARRB-MB135

Product: TRUE WIRELESS EARBUDS

Trade Mark: Motorola

Model No.: MOTO BUDS 135

Family Model: N/A

Report No.: S22092105001001

Issue Date: Oct 08, 2022

Prepared for

Meizhou Guo Wei Electronics Co., Ltd

AD1 Section, Economic Development Area, Dongsheng Industrial District, Meizhou, Guangdong, China.

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1/F, Building E, Fenda Science Park, Sanwei Community,
Xixiang Street Bao'an District, Shenzhen 518126 P.R. China
Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090


Website: http://www.ntek.org.cn

Version.1.3 Page 1 of 110

TABLE OF CONTENTS

1 TF	EST RESULT CERTIFICATION	3
2 SU	JMMARY OF TEST RESULTS	4
3 FA	CILITIES AND ACCREDITATIONS	5
3.1	FACILITIES	5
3.2	LABORATORY ACCREDITATIONS AND LISTINGS	5
3.3	MEASUREMENT UNCERTAINTY	5
4 G1	ENERAL DESCRIPTION OF EUT	6
5 DI	ESCRIPTION OF TEST MODES	8
6 SE	TUP OF EQUIPMENT UNDER TEST	9
6.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	9
6.2	SUPPORT EQUIPMENT	
6.3	EQUIPMENTS LIST FOR ALL TEST ITEMS	11
7 TI	EST REQUIREMENTS	13
7.1	CONDUCTED EMISSIONS TEST	13
7.2	RADIATED SPURIOUS EMISSION	
7.3	NUMBER OF HOPPING CHANNEL	
7.4	HOPPING CHANNEL SEPARATION MEASUREMENT	
7.5	AVERAGE TIME OF OCCUPANCY (DWELL TIME)	
7.6	20DB BANDWIDTH TEST	33
7.7	PEAK OUTPUT POWER	
7.8	CONDUCTED BAND EDGE MEASUREMENT	
7.9	SPURIOUS RF CONDUCTED EMISSION	
7.10	ANTENNA APPLICATION	
7.11	FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	38
8 TI	EST RESULTS	39
8.1	Left	39
8.2	Right	75

1 TEST RESULT CERTIFICATION

Applicant's name:	Meizhou Guo Wei Electronics Co., Ltd
Address:	AD1 Section, Economic Development Area, Dongsheng Industrial District, Meizhou, Guangdong, China.
Manufacturer's Name:	Meizhou Guo Wei Electronics Co., Ltd
Address:	AD1 Section, Economic Development Area, Dongsheng Industrial District, Meizhou, Guangdong, China.
Product description	
Product name:	TRUE WIRELESS EARBUDS
Model and/or type reference:	MOTO BUDS 135
Family Model:	N/A
Test Sample Number	S220921050001

Measurement Procedure Used:

APPLICABLE STANDARDS			
STANDARD/ TEST PROCEDURE	TEST RESULT		
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	Complied		

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	Sep 21, 2022 ~ Oct 08, 2022
Testing Engineer	:	Muhzi Lee
		(Mukzi Lee)
Authorized Signatory		Alex
Additionized Signatory	• —	
		(Alev I i)

Version.1.3 Page 3 of 110

SUMMARY OF TEST RESULTS

FCC Part15 (15.247), Subpart C			
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

- "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

Version.1.3 Page 4 of 110

Report No.: S22092105001001

3 FACILITIES AND ACCREDITATIONS

3.1 **FACILITIES**

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description

CNAS-Lab. : The Certificate Registration Number is L5516. IC-Registration
The Certificate Registration Number is 9270A.

CAB identifier: CN0074

FCC- Accredited Test Firm Registration Number: 463705.

Designation Number: CN1184

A2LA-Lab. The Certificate Registration Number is 4298.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for

the competence of testing and calibration laboratories.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Name of Firm : Shenzhen NTEK Testing Technology Co., Ltd.

Site Location : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang

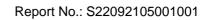
Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

Version.1.3 Page 5 of 110


4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification			
Equipment	TRUE WIRELESS EARBUDS		
Trade Mark	Motorola		
FCC ID	2ARRB- MB135		
Model No.	MOTO BUDS 135		
Family Model	N/A		
Model Difference	N/A		
Operating Frequency	2402MHz~2480MHz		
Modulation	GFSK, π/4-DQPSK		
Number of Channels	79 Channels		
Antenna Type	Chip Antenna		
Antenna Gain	2.0 dBi		
Adapter	N/A		
Battery	Earphone: DC 3.7V, 45mAh Charging case: DC 3.7V, 315mAh		
Rating	Earphone: DC 3.7V from Battery or DC 5V form Charging case. Charging case: DC 3.7V from Battery or DC 5V from type-C port.		
Hardware version	V1.0		
Firmware version	V1.27		
Software version	V1.45		

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Version.1.3 Page 6 of 110

Report No.	Version	Description	Issued Date
S22092105001001	Rev.01	Initial issue of report	Oct 08, 2022

Version.1.3 Page 7 of 110

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively. The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for $\pi/4$ -DQPSK modulation) were used for all test. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
Orianno	
0	2402
1	2403
	•••
39	2441
40	2442
	•••
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission		
Final Test Mode	Description	
Mode 1	normal link mode	

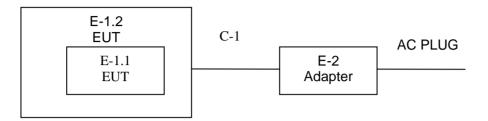
Note: AC power line Conducted Emission was tested under maximum output power.

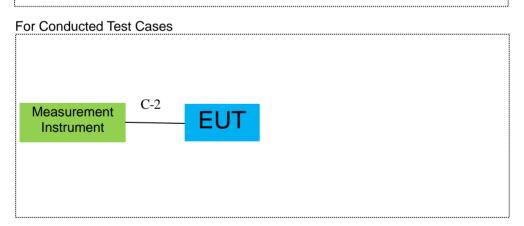
	For Radiated Test Cases
Final Test Mode	Description
Mode 1	normal link mode
Mode 2	CH00(2402MHz)
Mode 3	CH39(2441MHz)
Mode 4	CH78(2480MHz)

Note: For radiated test cases, the worst mode data rate 2Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases				
Final Test Mode	Description			
Mode 2	CH00(2402MHz)			
Mode 3	CH39(2441MHz)			
Mode 4	CH78(2480MHz)			
Mode 5	Hopping mode			

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.


Version.1.3 Page 8 of 110


6 SETUP OF EQUIPMENT UNDER TEST

6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

For AC Conducted Emission Mode

For Radiated T	est Cases	 	
	EUT		

Note: 1. The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

2. EUT built-in battery-powered, the battery is fully-charged.

Version.1.3 Page 9 of 110

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note	
F 4 4	TRUE WIRELESS	MOTO BUDS	N/A	EUT	
E-1.1	EARBUDS (Earphone)	135	IN/A	EUI	
E-1.2	TRUE WIRELESS EARBUDS (Charging case)	MOTO BUDS 135	N/A	EUT	
E-2	Adapter	N/A	N/A	Peripherals	

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	Type-C Cable	NO	NO	1.0m
C-2	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>[Length]</code> column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

Version.1.3 Page 10 of 110

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

\ <u>auialic</u>	na Conducted i	est equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2022.04.01	2023.03.31	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2022.04.01	2023.03.31	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2022.06.16	2023.06.15	1 year
4	Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2023.03.30	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2021.11.07	2022.11.06	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2022.06.17	2023.06.16	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2021.11.07	2022.11.06	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN O84	2022.06.16	2023.06.15	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2021.11.07	2022.11.06	1 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Certificate #4298.01

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

Version.1.3 Page 11 of 110

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2022.04.06	2023.04.05	1 year
2	LISN	R&S	ENV216	101313	2022.04.06	2023.04.05	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2022.04.06	2023.04.05	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

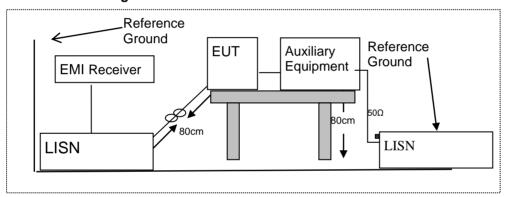
Version.1.3 Page 12 of 110

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)


7.1.2 Conformance Limit

Fraguanay/MHz)	Conducted Emission Limit			
Frequency(MHz)	Quasi-peak	Average		
0.15-0.5	66-56*	56-46*		
0.5-5.0	56	46		
5.0-30.0	60	50		

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
- 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

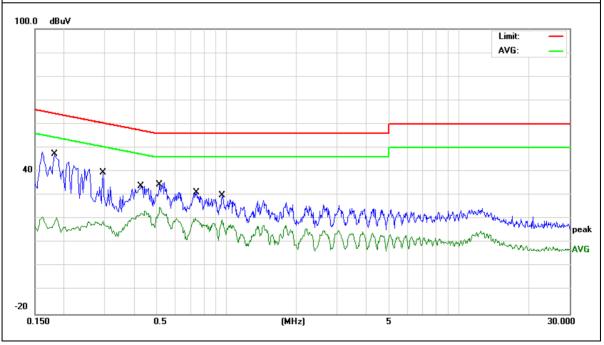
According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

7.1.5 Test Results

Pass

Version.1.3 Page 13 of 110


7.1.6 Test Results

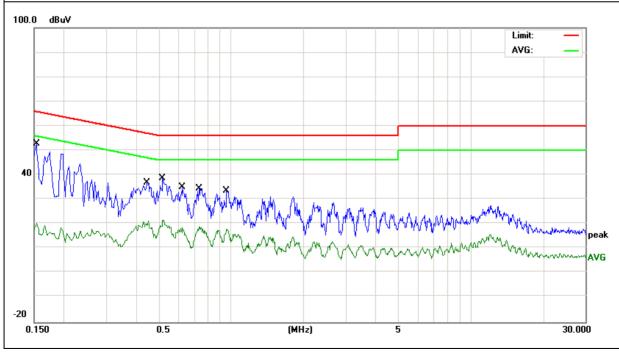
EUT:	TRUE WIRELESS EARBUDS	Model Name:	MOTO BUDS 135
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage:	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	
rrequericy	Treading Level	Correct r actor	Measure-ment	Littilo	iviargiii	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	
0.1819	37.79	9.61	47.40	64.39	-16.99	QP
0.1819	10.99	9.61	20.60	54.39	-33.79	AVG
0.2940	29.88	9.64	39.52	60.41	-20.89	QP
0.2940	9.39	9.64	19.03	50.41	-31.38	AVG
0.4300	24.31	9.66	33.97	57.25	-23.28	QP
0.4300	13.68	9.66	23.34	47.25	-23.91	AVG
0.5180	25.71	9.66	35.37	56.00	-20.63	QP
0.5180	15.28	9.66	24.94	46.00	-21.06	AVG
0.7380	21.45	9.67	31.12	56.00	-24.88	QP
0.7380	10.54	9.67	20.21	46.00	-25.79	AVG
0.9620	20.38	9.68	30.06	56.00	-25.94	QP
0.9620	10.01	9.68	19.69	46.00	-26.31	AVG

Remark:

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.

Version.1.3 Page 14 of 110



			_
EUT:	TRUE WIRELESS EARBUDS	Model Name:	MOTO BUDS 135
Temperature:	25℃	Relative Humidity:	62%
Pressure:	1010hPa	Phase :	N
Test Voltage:	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Damari
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1539	43.23	9.65	52.88	65.78	-12.90	QP
0.1539	10.67	9.65	20.32	55.78	-35.46	AVG
0.4460	27.24	9.67	36.91	56.95	-20.04	QP
0.4460	11.47	9.67	21.14	46.95	-25.81	AVG
0.5180	28.92	9.66	38.58	56.00	-17.42	QP
0.5180	11.99	9.66	21.65	46.00	-24.35	AVG
0.6260	25.25	9.67	34.92	56.00	-21.08	QP
0.6260	8.77	9.67	18.44	46.00	-27.56	AVG
0.7340	24.81	9.67	34.48	56.00	-21.52	QP
0.7340	9.18	9.67	18.85	46.00	-27.15	AVG
0.9540	23.78	9.69	33.47	56.00	-22.53	QP
0.9540	8.25	9.69	17.94	46.00	-28.06	AVG

Remark:

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.

Version.1.3 Page 15 of 110

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

According to FCC Part15.205, Restricted bands

o, restricted barras		
MHz	MHz	GHz
16.42-16.423	399.9-410	4.5-5.15
16.69475-16.69525	608-614	5.35-5.46
16.80425-16.80475	960-1240	7.25-7.75
25.5-25.67	1300-1427	8.025-8.5
37.5-38.25	1435-1626.5	9.0-9.2
73-74.6	1645.5-1646.5	9.3-9.5
74.8-75.2	1660-1710	10.6-12.7
123-138	2200-2300	14.47-14.5
149.9-150.05	2310-2390	15.35-16.2
156.52475-156.52525	2483.5-2500	17.7-21.4
156.7-156.9	2690-2900	22.01-23.12
162.0125-167.17	3260-3267	23.6-24.0
167.72-173.2	3332-3339	31.2-31.8
240-285	3345.8-3358	36.43-36.5
322-335.4	3600-4400	(2)
	•	
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHz MHz 16.42-16.423 399.9-410 16.69475-16.69525 608-614 16.80425-16.80475 960-1240 25.5-25.67 1300-1427 37.5-38.25 1435-1626.5 73-74.6 1645.5-1646.5 74.8-75.2 1660-1710 123-138 2200-2300 149.9-150.05 2310-2390 156.52475-156.52525 2483.5-2500 156.7-156.9 2690-2900 162.0125-167.17 3260-3267 167.72-173.2 3332-3339 240-285 3345.8-3358

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

· · · · · · · · · · · · · · · · · · ·	delitered band operation of respect (a), then the respect (a) in the table below had to be remembed.						
Restricted Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBµV/m)	Measurement Distance				
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300				
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30				
1.705~30.0	30	29.5	30				
30-88	100	40	3				
88-216	150	43.5	3				
216-960	200	46	3				
Above 960	500	54	3				

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV	Class B (dBuV/m) (at 3M)		
	PEAK	AVERAGE		
Above 1000	74	54		

Remark :1. Emission level in dBuV/m=20 log (uV/m)

- 2. Measurement was performed at an antenna to the closed point of EUT distance of meters.
- 3. For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

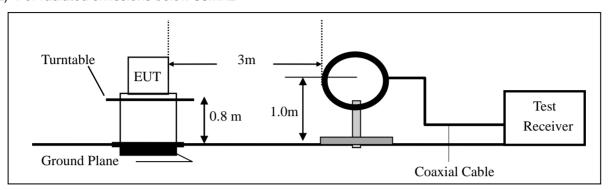
Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

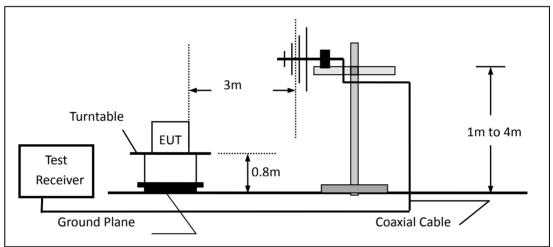
Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

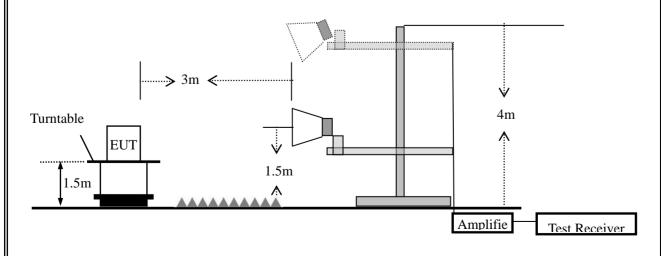
Version.1.3 Page 16 of 110



7.2.3 Measuring Instruments


The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration


(a) For radiated emissions below 30MHz

(b) For radiated emissions from 30MHz to 1000MHz

(c) For radiated emissions above 1000MHz

Version.1.3 Page 17 of 110

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT.

114	£ = 11 =			
LISE THE	TOHOWING	spectrum	anawzer	SEILINUS.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz:
 - Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

Version.1.3 Page 18 of 110

Report No.: S22092105001001

During the radiated emission test, the Spectrum Analyzer was set with the following configuration	During	the radiated	emission test.	the Spectrum Anal	vzer was set with	the following configurations
---	--------	--------------	----------------	-------------------	-------------------	------------------------------

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	1 MHz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz])., the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

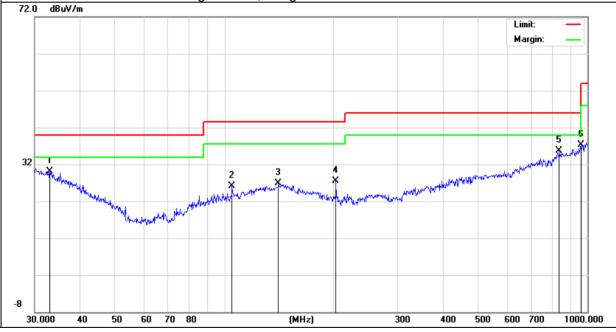
EUT:	TRUE WIRELESS EARBUDS	Model No.:	MOTO BUDS 135
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	r(dB) AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Version.1.3 Page 19 of 110

Spurious Emission below 1GHz (30MHz to 1GHz)
All the modulation modes have been tested, and the worst result was report as below:


EUT:	TRUE WIRELESS EARBUDS	Model Name :	MOTO BUDS 135
Temperature:	25℃	Relative Humidity:	55%
Pressure:	1010hPa	Test Mode:	Mode 2
Test Voltage:	DC 3.7V		

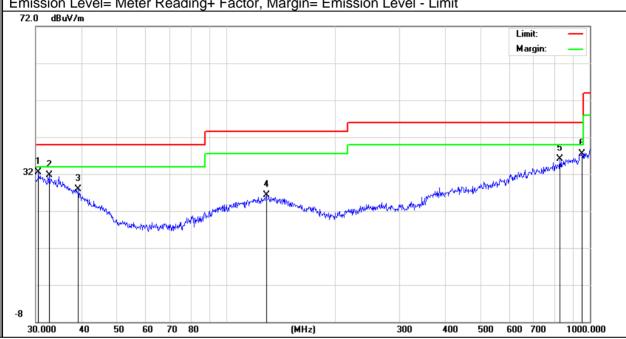
Left

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	32.9791	5.54	24.48	30.02	40.00	-9.98	QP
V	104.9033	7.72	18.36	26.08	43.50	-17.42	QP
V	140.8351	8.02	18.88	26.90	43.50	-16.60	QP
V	202.8103	10.93	16.49	27.42	43.50	-16.08	QP
V	836.2441	5.84	29.79	35.63	46.00	-10.37	QP
V	958.7943	6.07	31.22	37.29	46.00	-8.71	QP

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

Version.1.3 Page 20 of 110

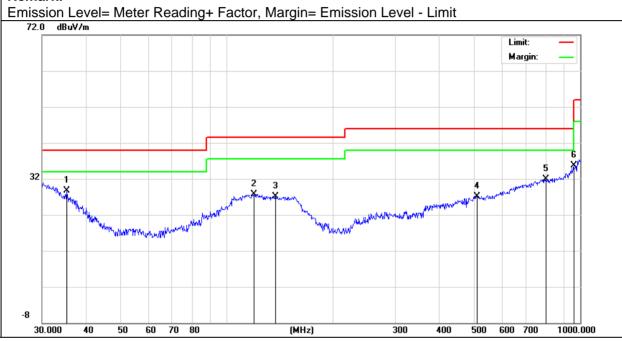


Meter **Emission Frequency Factor** Limits Margin Polar Reading Level Remark (H/V) (MHz) (dBuV) (dB) (dBuV/m) (dBuV/m) (dB) 30.5304 32.48 40.00 QP Н 6.61 25.87 -7.52-8.39 32.6340 7.06 24.55 31.61 40.00 QΡ Н Н 39.2991 6.81 21.05 40.00 -12.14 QP 27.86 Н 129.0146 7.77 18.48 26.25 43.50 -17.25 QΡ Н 827.4932 6.63 29.38 46.00 -9.99 QP 36.01 Н 37.53 QP 952.0937 6.67 30.86 46.00 -8.47

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

Version.1.3 Page 21 of 110

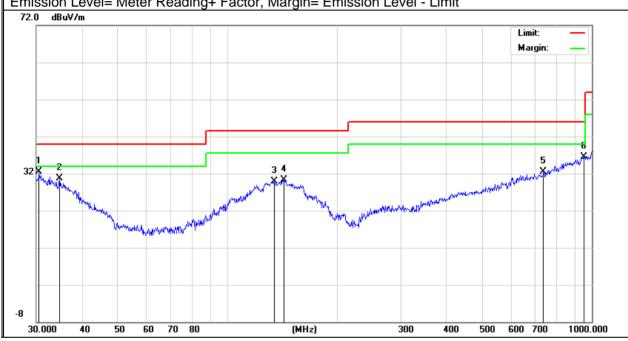


Right

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	35.2511	5.30	23.35	28.65	40.00	-11.35	QP
V	119.4360	8.96	18.78	27.74	43.50	-15.76	QP
V	137.4199	8.40	18.68	27.08	43.50	-16.42	QP
V	511.8351	2.11	24.99	27.10	46.00	-18.90	QP
V	801.7862	2.67	29.18	31.85	46.00	-14.15	QP
V	958.7943	4.57	31.22	35.79	46.00	-10.21	QP

Remark:

Version.1.3 Page 22 of 110



Meter **Emission Frequency Factor** Limits Margin Polar Reading Level Remark (H/V) (MHz) (dBuV) (dB) (dBuV/m) (dBuV/m) (dB) 30.5304 40.00 QP Н 6.61 25.87 32.48 -7.52 -9.27 34.7601 7.24 23.49 30.73 40.00 QΡ Н Н 134.5592 11.22 18.65 29.87 43.50 -13.63 QP Н 143.3257 11.79 18.47 30.26 43.50 -13.24 QΡ Н 737.0714 4.05 28.54 32.59 46.00 -13.41 QP Н 952.0937 -9.47 QP 5.67 30.86 36.53 46.00

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

Version.1.3 Page 23 of 110

Spurious Emission Above 1GHz (1GHz to 25GHz)

EUT:	TRUE WIRELESS EARBUDS	Model No.:	MOTO BUDS 135
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

All the modulation modes have been tested, and the worst result was report as below:

Left

Lett										
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Remark	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)			
Low Channel (2402 MHz)(π/4-DQPSK)Above 1G										
4804	70.54	5.21	35.59	44.30	67.04	74.00	-6.96	Pk	Vertical	
4804	50.94	5.21	35.59	44.30	47.44	54.00	-6.56	AV	Vertical	
7206	70.63	6.48	36.27	44.60	68.78	74.00	-5.22	Pk	Vertical	
7206	47.96	6.48	36.27	44.60	46.11	54.00	-7.89	AV	Vertical	
4804	69.94	5.21	35.55	44.30	66.40	74.00	-7.60	Pk	Horizontal	
4804	50.11	5.21	35.55	44.30	46.57	54.00	-7.43	AV	Horizontal	
7206	70.65	6.48	36.27	44.52	68.88	74.00	-5.12	Pk	Horizontal	
7206	48.49	6.48	36.27	44.52	46.72	54.00	-7.28	AV	Horizontal	
Mid Channel (2441 MHz)(π/4-DQPSK)Above 1G										
4882	70.85	5.21	35.66	44.20	67.52	74.00	-6.48	Pk	Vertical	
4882	47.35	5.21	35.66	44.20	44.02	54.00	-9.98	AV	Vertical	
7323	68.8	7.10	36.50	44.43	67.97	74.00	-6.03	Pk	Vertical	
7323	45.71	7.10	36.50	44.43	44.88	54.00	-9.12	AV	Vertical	
4882	70.88	5.21	35.66	44.20	67.55	74.00	-6.45	Pk	Horizontal	
4882	48.9	5.21	35.66	44.20	45.57	54.00	-8.43	AV	Horizontal	
7323	70.44	7.10	36.50	44.43	69.61	74.00	-4.39	Pk	Horizontal	
7323	50.8	7.10	36.50	44.43	49.97	54.00	-4.03	AV	Horizontal	
		Hi	gh Channel	(2480 MHz	z)(π/4-DQPS	SK) Above	1G			
4960	68.9	5.21	35.52	44.21	65.42	74.00	-8.58	Pk	Vertical	
4960	46.96	5.21	35.52	44.21	43.48	54.00	-10.52	AV	Vertical	
7440	70.03	7.10	36.53	44.60	69.06	74.00	-4.94	Pk	Vertical	
7440	45.87	7.10	36.53	44.60	44.90	54.00	-9.10	AV	Vertical	
4960	69.62	5.21	35.52	44.21	66.14	74.00	-7.86	Pk	Horizontal	
4960	45.82	5.21	35.52	44.21	42.34	54.00	-11.66	AV	Horizontal	
7440	70.04	7.10	36.53	44.60	69.07	74.00	-4.93	Pk	Horizontal	
7440	49.4	7.10	36.53	44.60	48.43	54.00	-5.57	AV	Horizontal	

Version.1.3 Page 24 of 110

Right				_						
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Remark	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)			
Low Channel (2402 MHz)(π/4-DQPSK)Above 1G										
4804	70.87	5.21	35.59	44.30	67.37	74.00	-6.63	Pk	Vertical	
4804	48.46	5.21	35.59	44.30	44.96	54.00	-9.04	AV	Vertical	
7206	68.45	6.48	36.27	44.60	66.60	74.00	-7.40	Pk	Vertical	
7206	45.79	6.48	36.27	44.60	43.94	54.00	-10.06	AV	Vertical	
4804	70.69	5.21	35.55	44.30	67.15	74.00	-6.85	Pk	Horizontal	
4804	45.02	5.21	35.55	44.30	41.48	54.00	-12.52	AV	Horizontal	
7206	69.36	6.48	36.27	44.52	67.59	74.00	-6.41	Pk	Horizontal	
7206	45.89	6.48	36.27	44.52	44.12	54.00	-9.88	AV	Horizontal	
Mid Channel (2441 MHz)(π/4-DQPSK)Above 1G										
4882	70.98	5.21	35.66	44.20	67.65	74.00	-6.35	Pk	Vertical	
4882	49.83	5.21	35.66	44.20	46.50	54.00	-7.50	AV	Vertical	
7323	70.45	7.10	36.50	44.43	69.62	74.00	-4.38	Pk	Vertical	
7323	49.31	7.10	36.50	44.43	48.48	54.00	-5.52	AV	Vertical	
4882	70.77	5.21	35.66	44.20	67.44	74.00	-6.56	Pk	Horizontal	
4882	45.02	5.21	35.66	44.20	41.69	54.00	-12.31	AV	Horizontal	
7323	68.86	7.10	36.50	44.43	68.03	74.00	-5.97	Pk	Horizontal	
7323	46.95	7.10	36.50	44.43	46.12	54.00	-7.88	AV	Horizontal	
		Hi	igh Channel	(2480 MHz	z)(π/4-DQPS	SK) Above	1G			
4960	69.18	5.21	35.52	44.21	65.70	74.00	-8.30	Pk	Vertical	
4960	45.21	5.21	35.52	44.21	41.73	54.00	-12.27	AV	Vertical	
7440	69.16	7.10	36.53	44.60	68.19	74.00	-5.81	Pk	Vertical	
7440	49.5	7.10	36.53	44.60	48.53	54.00	-5.47	AV	Vertical	
4960	68.4	5.21	35.52	44.21	64.92	74.00	-9.08	Pk	Horizontal	
4960	48.15	5.21	35.52	44.21	44.67	54.00	-9.33	AV	Horizontal	
7440	69.01	7.10	36.53	44.60	68.04	74.00	-5.96	Pk	Horizontal	
7440	48.95	7.10	36.53	44.60	47.98	54.00	-6.02	AV	Horizontal	

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

Version.1.3 Page 25 of 110

■ Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

- Opanoac	= Spaniede Emilioción in Robinsted Band 2010 2000 Win 2 and 2 100:0 2000 Win 2								
EUT:	TRUE WIRELESS EARBUDS	Model No.:	MOTO BUDS 135						
Temperature:	20 ℃	Relative Humidity:	48%						
Test Mode:	Mode2/ Mode4	Test By:	Mukzi Lee						

All the modulation modes have been tested, and the worst result was report as below:

Left

_ert									
Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
			2Mb	ps(π/4-DQ	PSK)-Non-h	opping			
2310.00	69.6	2.97	27.80	43.80	56.57	74	-17.43	Pk	Horizontal
2310.00	45.97	2.97	27.80	43.80	32.94	54	-21.06	AV	Horizontal
2310.00	70.37	2.97	27.80	43.80	57.34	74	-16.66	Pk	Vertical
2310.00	45.88	2.97	27.80	43.80	32.85	54	-21.15	AV	Vertical
2390.00	68.04	3.14	27.21	43.80	54.59	74	-19.41	Pk	Vertical
2390.00	45.06	3.14	27.21	43.80	31.61	54	-22.39	AV	Vertical
2390.00	70.84	3.14	27.21	43.80	57.39	74	-16.61	Pk	Horizontal
2390.00	45.14	3.14	27.21	43.80	31.69	54	-22.31	AV	Horizontal
2483.50	68.03	3.58	27.70	44.00	55.31	74	-18.69	Pk	Vertical
2483.50	46.68	3.58	27.70	44.00	33.96	54	-20.04	AV	Vertical
2483.50	68.54	3.58	27.70	44.00	55.82	74	-18.18	Pk	Horizontal
2483.50	45.74	3.58	27.70	44.00	33.02	54	-20.98	AV	Horizontal
			21	/lbps(π/4-E	QPSK)-hop	ping			
2310.00	69.96	2.97	27.80	43.80	56.93	74	-17.07	Pk	Horizontal
2310.00	46.27	2.97	27.80	43.80	33.24	54	-20.76	AV	Horizontal
2310.00	70.18	2.97	27.80	43.80	57.15	74	-16.85	Pk	Vertical
2310.00	46.81	2.97	27.80	43.80	33.78	54	-20.22	AV	Vertical
2390.00	69.04	3.14	27.21	43.80	55.59	74	-18.41	Pk	Vertical
2390.00	46.5	3.14	27.21	43.80	33.05	54	-20.95	AV	Vertical
2390.00	69.83	3.14	27.21	43.80	56.38	74	-17.62	Pk	Horizontal
2390.00	47.29	3.14	27.21	43.80	33.84	54	-20.16	AV	Horizontal
2483.50	70.82	3.58	27.70	44.00	58.10	74	-15.90	Pk	Vertical
2483.50	48.42	3.58	27.70	44.00	35.70	54	-18.30	AV	Vertical
2483.50	70.59	3.58	27.70	44.00	57.87	74	-16.13	Pk	Horizontal
2483.50	47.44	3.58	27.70	44.00	34.72	54	-19.28	AV	Horizontal

Version.1.3 Page 26 of 110

Right										
Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
2Mbps(π/4-DQPSK)-Non-hopping										
2310.00	68.77	2.97	27.80	43.80	55.74	74	-18.26	Pk	Horizontal	
2310.00	47.89	2.97	27.80	43.80	34.86	54	-19.14	AV	Horizontal	
2310.00	68.06	2.97	27.80	43.80	55.03	74	-18.97	Pk	Vertical	
2310.00	46.98	2.97	27.80	43.80	33.95	54	-20.05	AV	Vertical	
2390.00	70.86	3.14	27.21	43.80	57.41	74	-16.59	Pk	Vertical	
2390.00	45.17	3.14	27.21	43.80	31.72	54	-22.28	AV	Vertical	
2390.00	68.16	3.14	27.21	43.80	54.71	74	-19.29	Pk	Horizontal	
2390.00	45.86	3.14	27.21	43.80	32.41	54	-21.59	AV	Horizontal	
2483.50	70.42	3.58	27.70	44.00	57.70	74	-16.30	Pk	Vertical	
2483.50	48.62	3.58	27.70	44.00	35.90	54	-18.10	AV	Vertical	
2483.50	70.13	3.58	27.70	44.00	57.41	74	-16.59	Pk	Horizontal	
2483.50	46.55	3.58	27.70	44.00	33.83	54	-20.17	AV	Horizontal	
			21	/lbps(π/4-E	QPSK)-hop	ping				
2310.00	69.11	2.97	27.80	43.80	56.08	74	-17.92	Pk	Horizontal	
2310.00	45.28	2.97	27.80	43.80	32.25	54	-21.75	AV	Horizontal	
2310.00	70.15	2.97	27.80	43.80	57.12	74	-16.88	Pk	Vertical	
2310.00	49.2	2.97	27.80	43.80	36.17	54	-17.83	AV	Vertical	
2390.00	69.58	3.14	27.21	43.80	56.13	74	-17.87	Pk	Vertical	
2390.00	48.8	3.14	27.21	43.80	35.35	54	-18.65	AV	Vertical	
2390.00	70.02	3.14	27.21	43.80	56.57	74	-17.43	Pk	Horizontal	
2390.00	46.47	3.14	27.21	43.80	33.02	54	-20.98	AV	Horizontal	
2483.50	70.74	3.58	27.70	44.00	58.02	74	-15.98	Pk	Vertical	
2483.50	50.65	3.58	27.70	44.00	37.93	54	-16.07	AV	Vertical	
2483.50	69.55	3.58	27.70	44.00	56.83	74	-17.17	Pk	Horizontal	
2483.50	46.02	3.58	27.70	44.00	33.30	54	-20.70	AV	Horizontal	

Note: (1) All other emissions more than 20dB below the limit.

Version.1.3 Page 27 of 110

Report No.: S22092105001001

	Spurious	Emission	in Restricted	ed Band 3260MHz-18000MHz
--	-----------------	----------	---------------	--------------------------

I F I I I '	TRUE WIRELESS EARBUDS	Model No.:	MOTO BUDS 135
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/ Mode4	Test By:	Mukzi Lee

All the modulation modes have been tested, and the worst result was report as below:

Left

Lett									
Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
3260	68.3	4.04	29.57	44.70	57.21	74	-16.79	Pk	Vertical
3260	50.28	4.04	29.57	44.70	39.19	54	-14.81	AV	Vertical
3260	69.34	4.04	29.57	44.70	58.25	74	-15.75	Pk	Horizontal
3260	46.51	4.04	29.57	44.70	35.42	54	-18.58	AV	Horizontal
3332	69.33	4.26	29.87	44.40	59.06	74	-14.94	Pk	Vertical
3332	48.08	4.26	29.87	44.40	37.81	54	-16.19	AV	Vertical
3332	68.37	4.26	29.87	44.40	58.10	74	-15.90	Pk	Horizontal
3332	46.52	4.26	29.87	44.40	36.25	54	-17.75	AV	Horizontal
17797	60.34	10.99	43.95	43.50	71.78	74	-2.22	Pk	Vertical
17797	34.49	10.99	43.95	43.50	45.93	54	-8.07	AV	Vertical
17788	56.52	11.81	43.69	44.60	67.42	74	-6.58	Pk	Horizontal
17788	34.47	11.81	43.69	44.60	45.37	54	-8.63	AV	Horizontal

Right

Right									
Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	
3260	69.97	4.04	29.57	44.70	58.88	74	-15.12	Pk	Vertical
3260	47.44	4.04	29.57	44.70	36.35	54	-17.65	AV	Vertical
3260	70.91	4.04	29.57	44.70	59.82	74	-14.18	Pk	Horizontal
3260	49.46	4.04	29.57	44.70	38.37	54	-15.63	AV	Horizontal
3332	69.52	4.26	29.87	44.40	59.25	74	-14.75	Pk	Vertical
3332	46.65	4.26	29.87	44.40	36.38	54	-17.62	AV	Vertical
3332	70.55	4.26	29.87	44.40	60.28	74	-13.72	Pk	Horizontal
3332	48.41	4.26	29.87	44.40	38.14	54	-15.86	AV	Horizontal
17797	52.59	10.99	43.95	43.50	64.03	74	-9.97	Pk	Vertical
17797	36.65	10.99	43.95	43.50	48.09	54	-5.91	AV	Vertical
17788	58.07	11.81	43.69	44.60	68.97	74	-5.03	Pk	Horizontal
17788	35.16	11.81	43.69	44.60	46.06	54	-7.94	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

Version.1.3 Page 28 of 110

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

 $VBW \geq RBW$

Sweep = auto

Detector function = peak

Trace = max hold

7.3.6 Test Results

EUT:	TRUE WIRELESS EARBUDS	Model No.:	MOTO BUDS 135
Temperature:	120 7	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Mukzi Lee

Test data reference attachment.

Version.1.3 Page 29 of 110

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto Detector function = peak

Trace = max hold

7.4.6 Test Results

I = I I I ·	TRUE WIRELESS EARBUDS	Model No.:	MOTO BUDS 135
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

Test data reference attachment.

Version.1.3 Page 30 of 110

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = zero span, centered on a hopping channel

RBW ≥ 1MHz

 $VBW \ge RBW$

Sweep = as necessary to capture the entire dwell time per hopping channel

Detector function = peak

Trace = max hold

Measure the maximum time duration of one single pulse.

Set the EUT for DH5, DH3 and DH1 packet transmitting.

Measure the maximum time duration of one single pulse.

Version.1.3 Page 31 of 110

7.5.6 Test Results

EUT:	TRUE WIRELESS EARBUDS	Model No.:	MOTO BUDS 135
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4

DH1 Dwell time: Reading * (1600/2)*31.6/(channel number)
DH3 Dwell time: Reading * (1600/4)*31.6/(channel number)
DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67 \text{ hops}$.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

Version.1.3 Page 32 of 110

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel

RBW ≥ 1% of the 20 dB bandwidth

 $\mathsf{VBW} \geq \mathsf{RBW}$

Sweep = auto

Detector function = peak

Trace = max hold

7.6.6 Test Results

EUT:	TRUE WIRELESS EARBUDS	Model No.:	MOTO BUDS 135
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

Test data reference attachment.

Version.1.3 Page 33 of 110

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW ≥ the 20 dB bandwidth of the emission being measured

 $VBW \geq RBW$

Sweep = auto

Detector function = peak

Trace = max hold

7.7.6 Test Results

EUT:	TRUE WIRELESS EARBUDS	Model No.:	MOTO BUDS 135
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mukzi Lee

Test data reference attachment.

Version.1.3 Page 34 of 110

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	TRUE WIRELESS EARBUDS	Model No.:	MOTO BUDS 135
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Mukzi Lee

Test data reference attachment.

Version.1.3 Page 35 of 110

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 \times RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

Test data reference attachment.

Version.1.3 Page 36 of 110

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached Chip	antenna (Gain:2.0 dBi)	. It comply with the standard
requirement.		

Version.1.3 Page 37 of 110

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmister be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

7.11.2 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

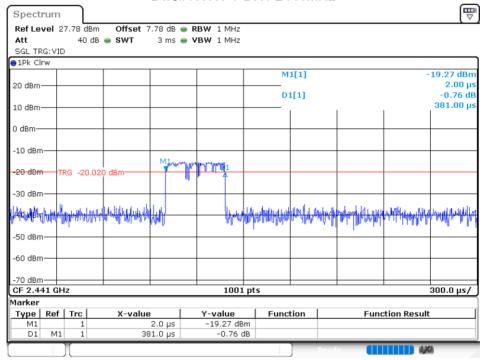
7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

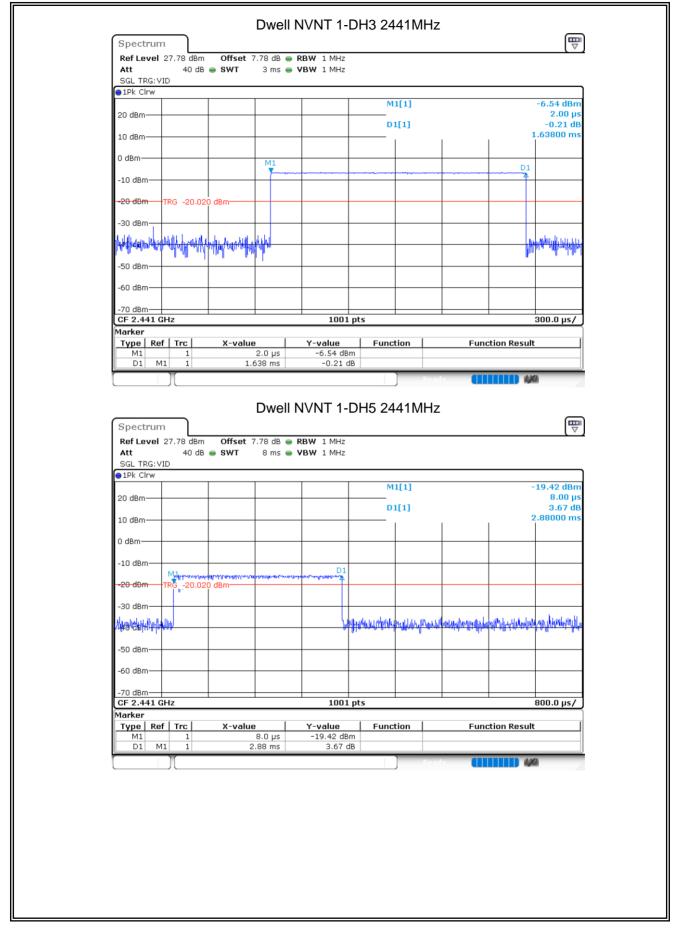
Version.1.3 Page 38 of 110

TEST RESULTS

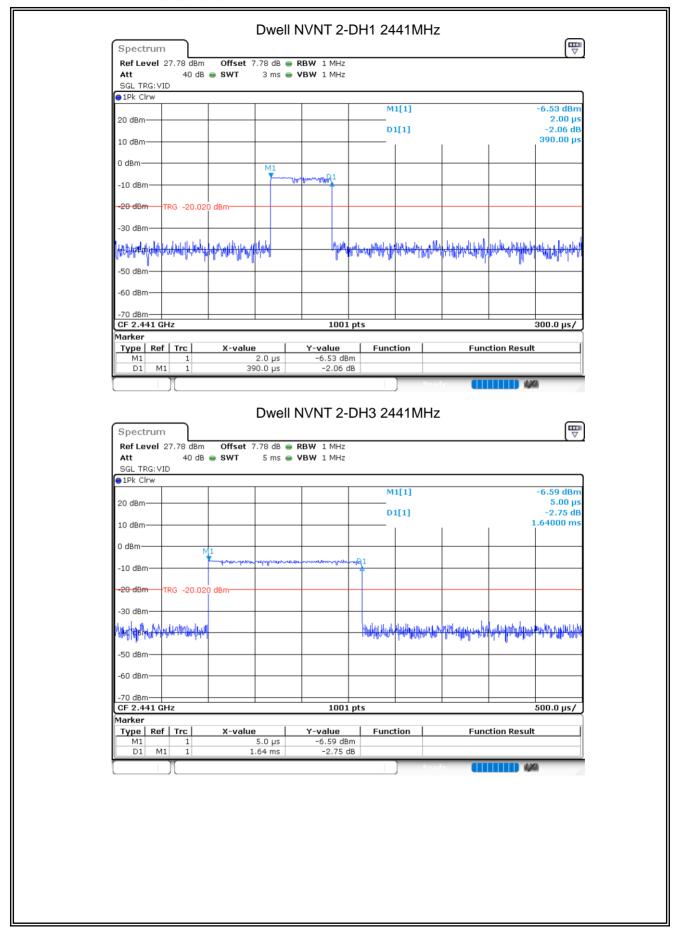

8.1 **LEFT**

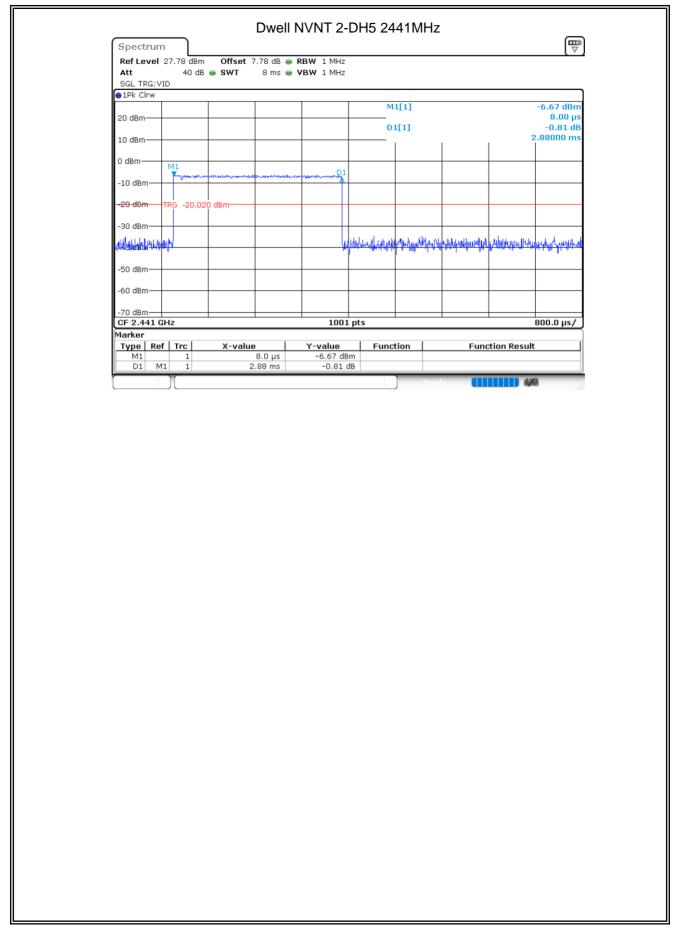
8

8.1.1 **Dwell Time**


Condition	Mode	Frequency	Pulse	Total Dwell	Period	Limit	Verdict
Condition	Mode	(MHz)	Time (ms)	Time (ms)	Time (ms)	(ms)	verdict
NVNT	1-DH1	2441	0.381	121.92	31600	400	Pass
NVNT	1-DH3	2441	1.638	262.08	31600	400	Pass
NVNT	1-DH5	2441	2.88	307.2	31600	400	Pass
NVNT	2-DH1	2441	0.39	124.8	31600	400	Pass
NVNT	2-DH3	2441	1.64	262.4	31600	400	Pass
NVNT	2-DH5	2441	2.88	307.2	31600	400	Pass

Dwell NVNT 1-DH1 2441MHz

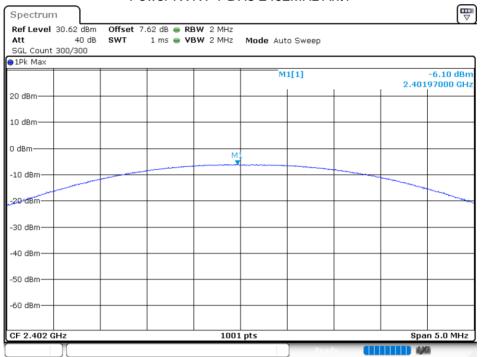

Version.1.3 Page 39 of 110

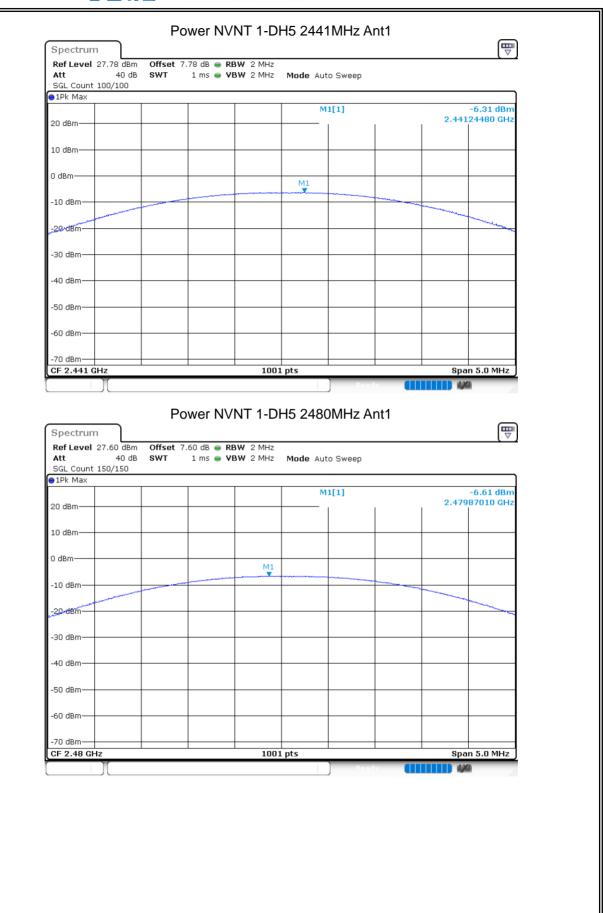


Version.1.3 Page 40 of 110

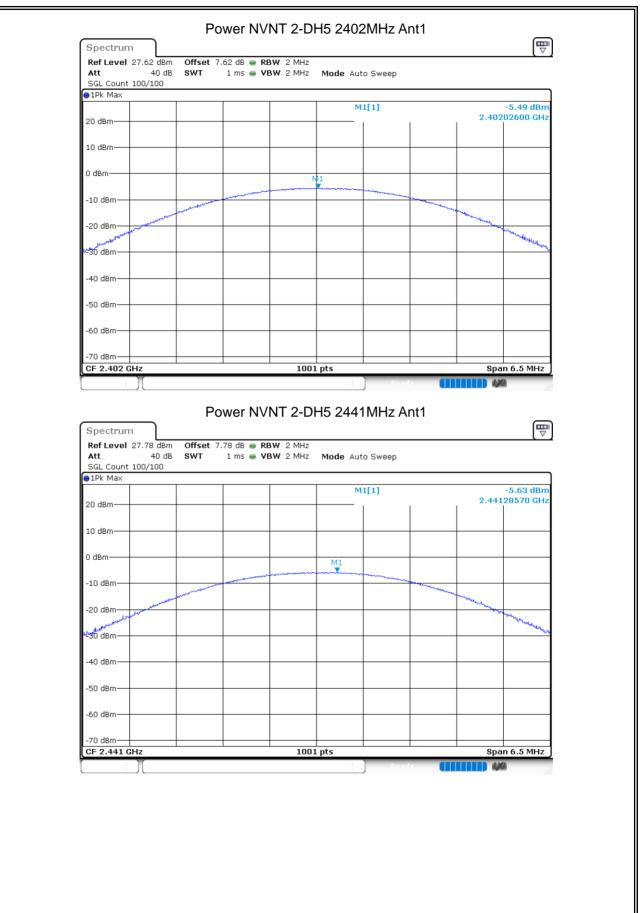
Version.1.3 Page 41 of 110

Version.1.3 Page 42 of 110

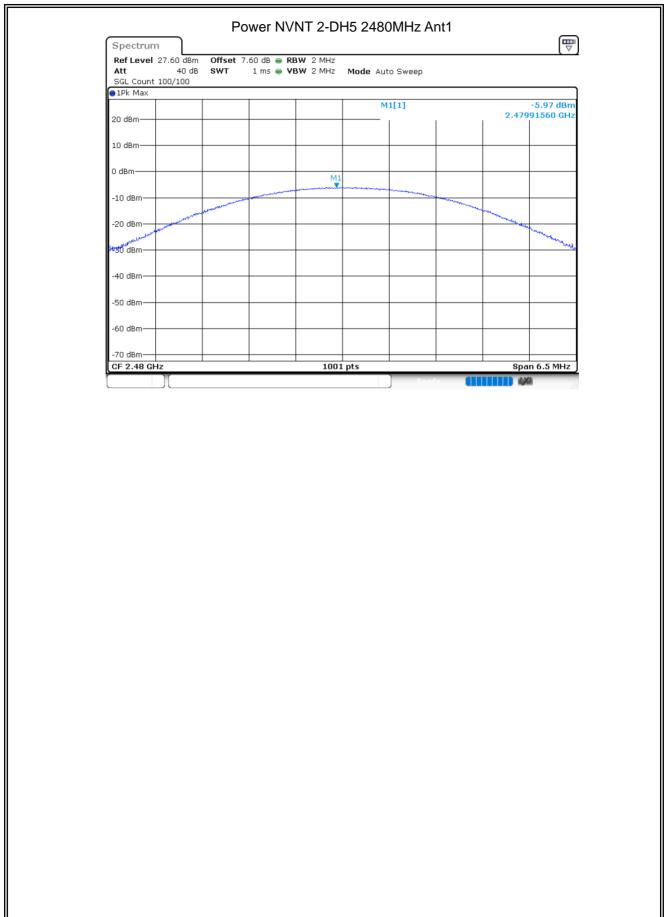



8.1.2 Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant 1	-6.104	30	Pass
NVNT	1-DH5	2441	Ant 1	-6.306	30	Pass
NVNT	1-DH5	2480	Ant 1	-6.608	30	Pass
NVNT	2-DH5	2402	Ant 1	-5.487	21	Pass
NVNT	2-DH5	2441	Ant 1	-5.628	21	Pass
NVNT	2-DH5	2480	Ant 1	-5.97	21	Pass



Version.1.3 Page 43 of 110



Version.1.3 Page 44 of 110

Version.1.3 Page 45 of 110

Version.1.3 Page 46 of 110

8.1.3 Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH5	2402	Ant 1	0.8871	0.982	Pass
NVNT	1-DH5	2441	Ant 1	0.8831	0.956	Pass
NVNT	1-DH5	2480	Ant 1	0.8551	0.95	Pass
NVNT	2-DH5	2402	Ant 1	1.1808	1.314	Pass
NVNT	2-DH5	2441	Ant 1	1.1788	1.284	Pass
NVNT	2-DH5	2480	Ant 1	1.1748	1.284	Pass

OBW NVNT 1-DH5 2402MHz Ant1

Version.1.3 Page 47 of 110



Version.1.3 Page 48 of 110

Version.1.3 Page 49 of 110

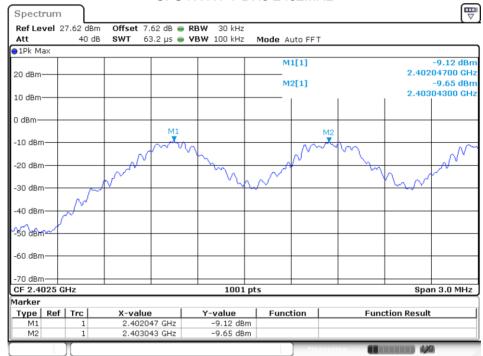


Version.1.3 Page 50 of 110

Version.1.3 Page 51 of 110

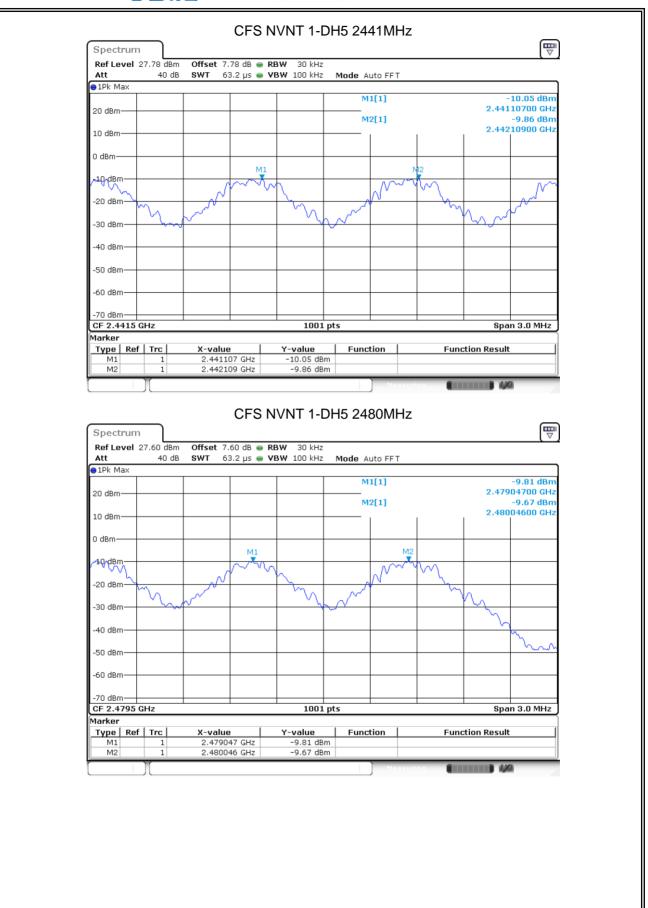
Version.1.3 Page 52 of 110

Version.1.3 Page 53 of 110

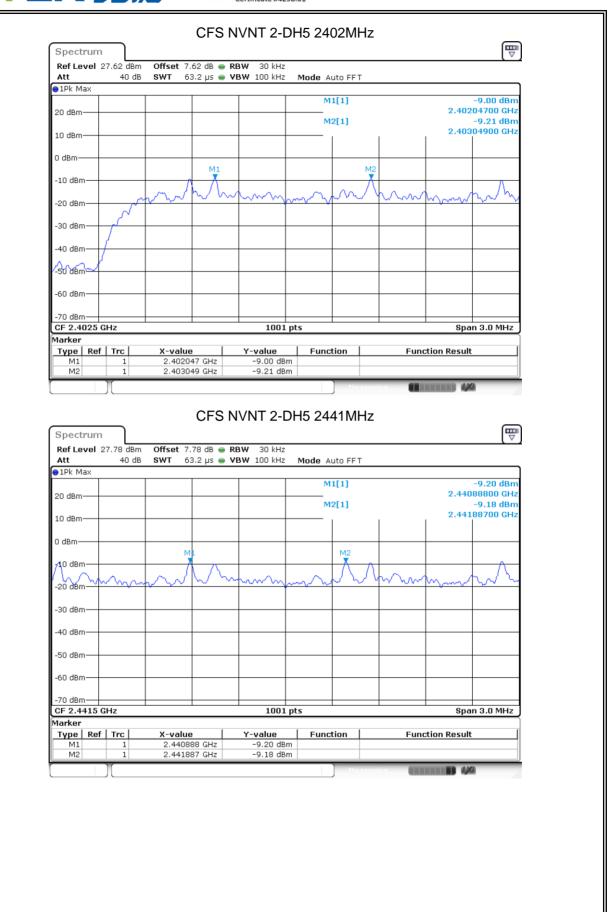


8.1.4 Carrier Frequencies Separation

Condition	Mode	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH5	2402.047	2403.043	0.996	0.982	Pass
NVNT	1-DH5	2441.107	2442.109	1.002	0.956	Pass
NVNT	1-DH5	2479.047	2480.046	0.999	0.95	Pass
NVNT	2-DH5	2402.047	2403.049	1.002	0.876	Pass
NVNT	2-DH5	2440.888	2441.887	0.999	0.856	Pass
NVNT	2-DH5	2478.888	2480.046	1.158	0.856	Pass

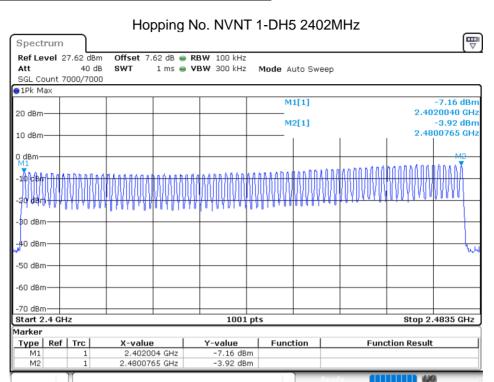

CFS NVNT 1-DH5 2402MHz

Version.1.3 Page 54 of 110



Version.1.3 Page 55 of 110

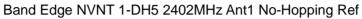
Version.1.3 Page 56 of 110

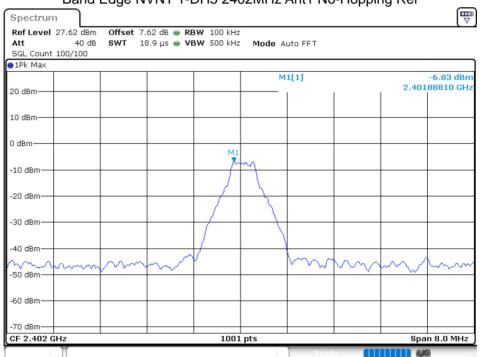


Version.1.3 Page 57 of 110

8.1.5 **Number of Hopping Channel**

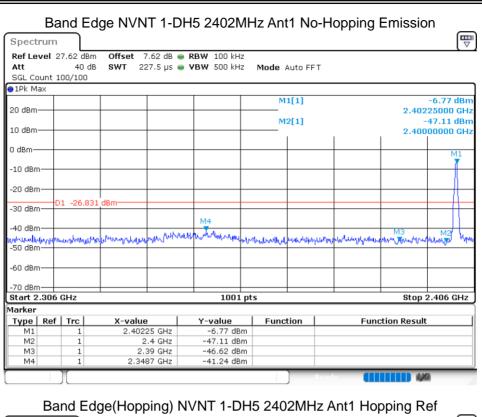
Condition	Mode	Hopping Number	Limit	Verdict
NVNT	1-DH5	79	15	Pass


Version.1.3 Page 58 of 110

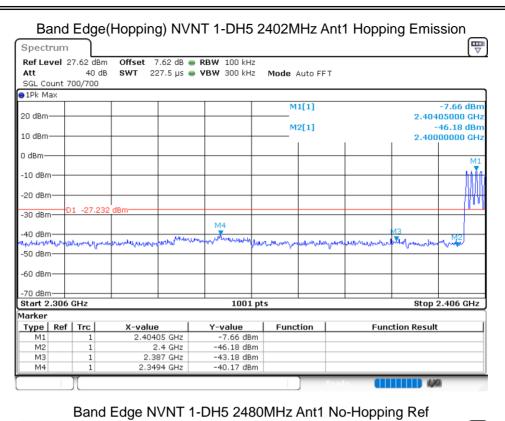


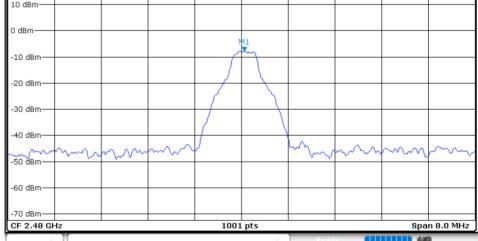
8.1.6 Band Edge

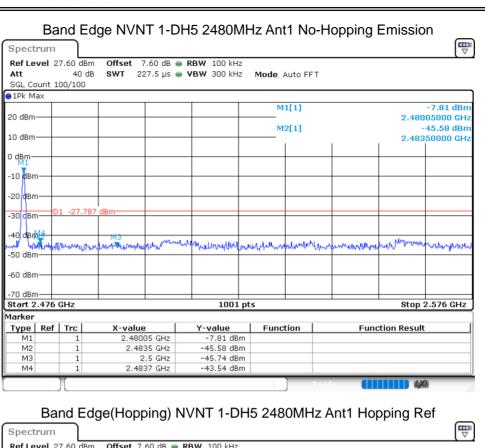
Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	No-Hopping	-34.41	-20	Pass
NVNT	1-DH5	2402	Ant 1	Hopping	-32.93	-20	Pass
NVNT	1-DH5	2480	Ant 1	No-Hopping	-35.74	-20	Pass
NVNT	1-DH5	2480	Ant 1	Hopping	-35.62	-20	Pass
NVNT	2-DH5	2402	Ant 1	No-Hopping	-33.77	-20	Pass
NVNT	2-DH5	2402	Ant 1	Hopping	-33.95	-20	Pass
NVNT	2-DH5	2480	Ant 1	No-Hopping	-34.17	-20	Pass
NVNT	2-DH5	2480	Ant 1	Hopping	-35.62	-20	Pass



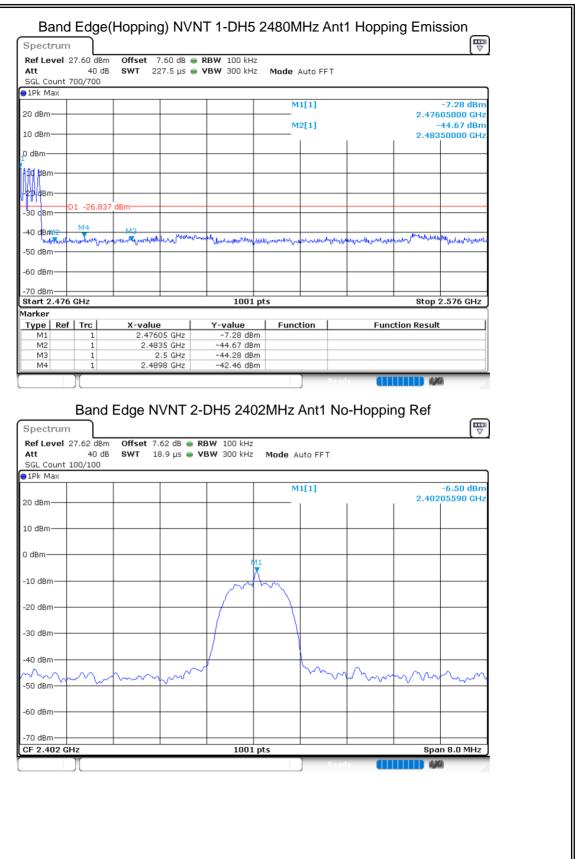
Version.1.3 Page 59 of 110




Version.1.3 Page 60 of 110

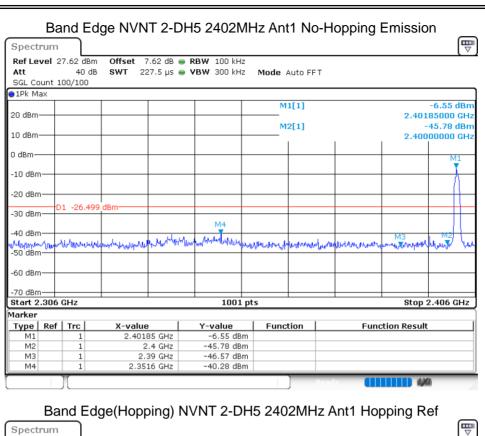

Spectrum Ref Level 27.60 dBm Offset 7.60 dB ● RBW 100 kHz Att 40 dB SWT 18.9 µs ● VBW 300 kHz Mode Auto FFT SGL Count 100/100 ● IPk Max M1[1] -7.79 dBm 2.48004800 GHz 10 dBm 0 dB

Version.1.3 Page 61 of 110

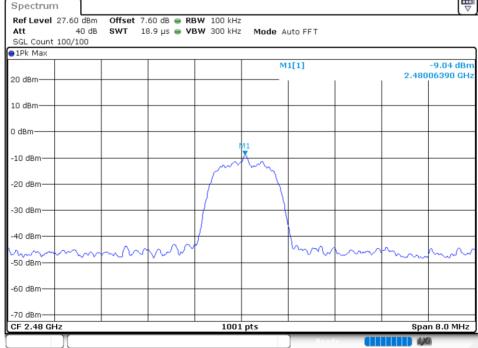


Ref Level 27.60 dBm Offset 7.60 dB . RBW 100 kHz 40 dB **SWT** 18.9 µs ● **VBW** 300 kHz Mode Auto FFT SGL Count 8009/8009 ●1Pk Max M1[1] -6.84 dBn 2.47704300 GHz 20 dBm 0 dBm -10 dBm -20 dBm--30 dBm -50 dBm -70 dBm Span 8.0 MHz 1001 pts CF 2.48 GHz

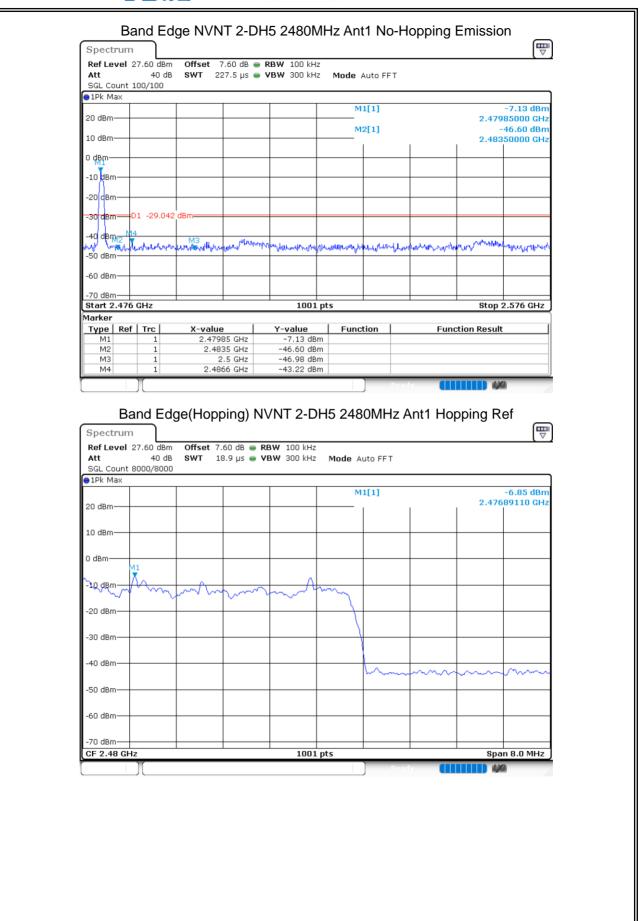
Version.1.3 Page 62 of 110



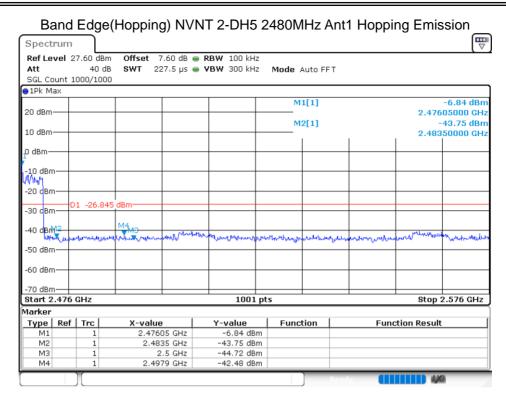
Version.1.3 Page 63 of 110


Ref Level 27.62 dBm Offset 7.62 dB @ RBW 100 kHz Att 40 dB **SWT** 18.9 µs ● **VBW** 300 kHz Mode Auto FFT SGL Count 8000/8000 ●1Pk Max M1[1] -6.63 dBn 2.40303900 GHz 20 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm--50 dBm -70 dBm Span 8.0 MHz 1001 pts CF 2.402 GHz

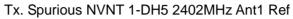
Version.1.3 Page 64 of 110


Band Edge(Hopping) NVNT 2-DH5 2402MHz Ant1 Hopping Emission Spectrum Ref Level 27.62 dBm Offset 7.62 dB • RBW 100 kHz 40 dB SWT 227.5 µs ● VBW 300 kHz Mode Auto FFT ●1Pk Max M1[1] 20 dBm-2.40505000 GHz M2[1] -44.66 dBm 10 dBm 2.40000000 GHz 0 dBm -20 dBm -26.630 -30 dBm· -50 dBm -70 dBm Start 2.306 GHz 1001 pts Stop 2.406 GHz Marker Type | Ref | Trc Y-value Function **Function Result** X-value 2.40505 GHz -9.78 dBm М2 -44.66 dBm МЗ 2.39 GHz -44.72 dBm -40.59 dBm Μ4 2.341 GHz Band Edge NVNT 2-DH5 2480MHz Ant1 No-Hopping Ref

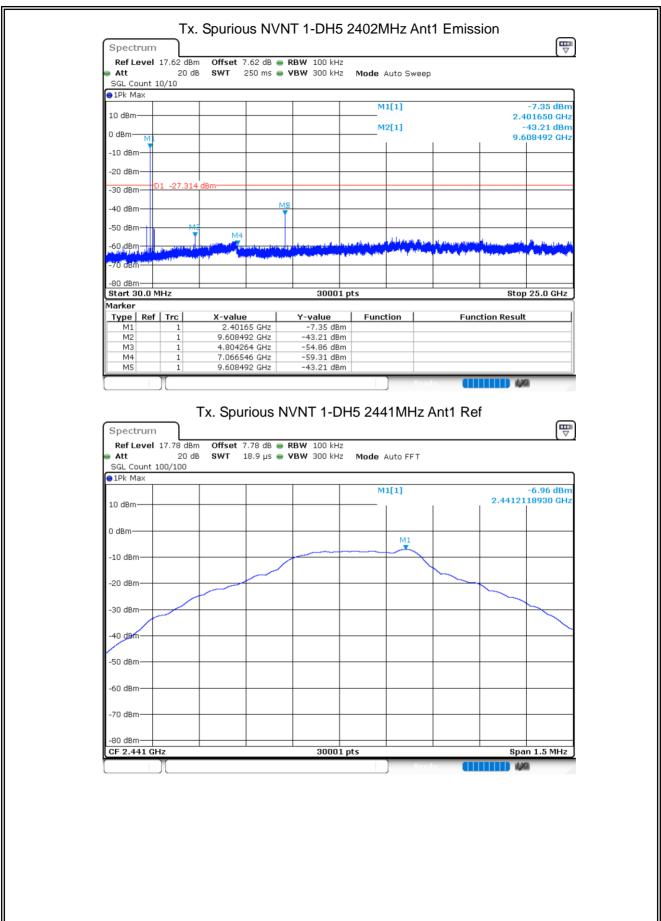
Version.1.3 Page 65 of 110

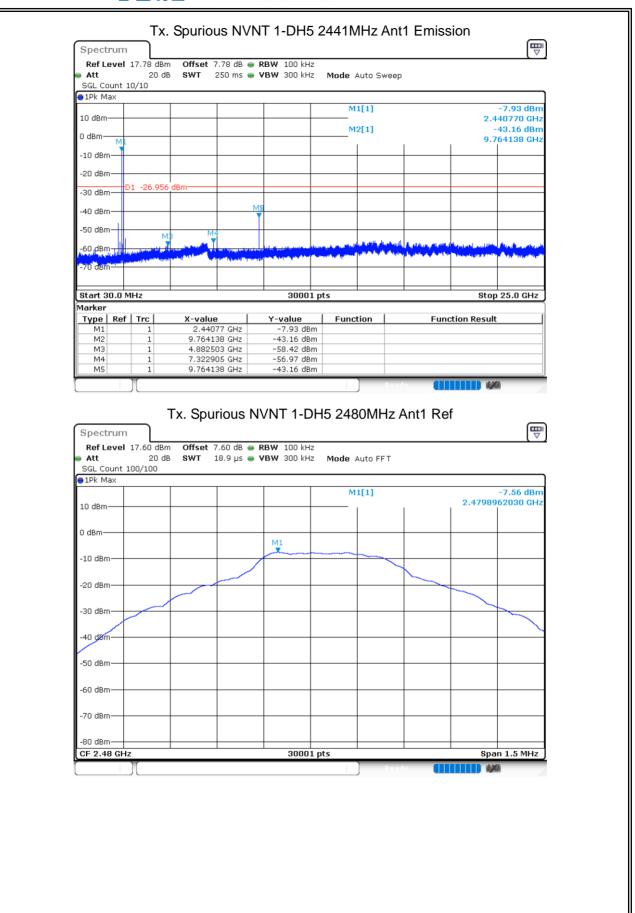


Version.1.3 Page 66 of 110

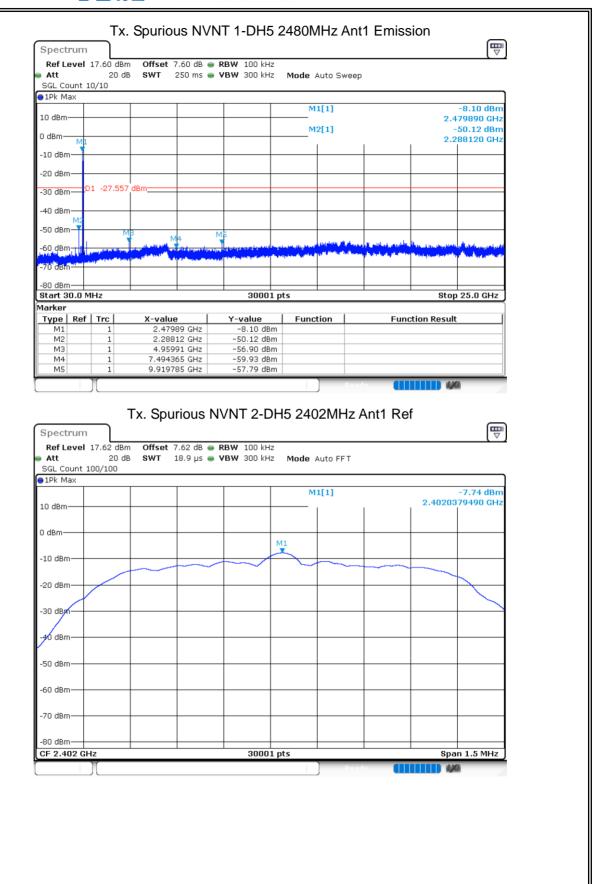

Version.1.3 Page 67 of 110

8.1.7 Conducted RF Spurious Emission

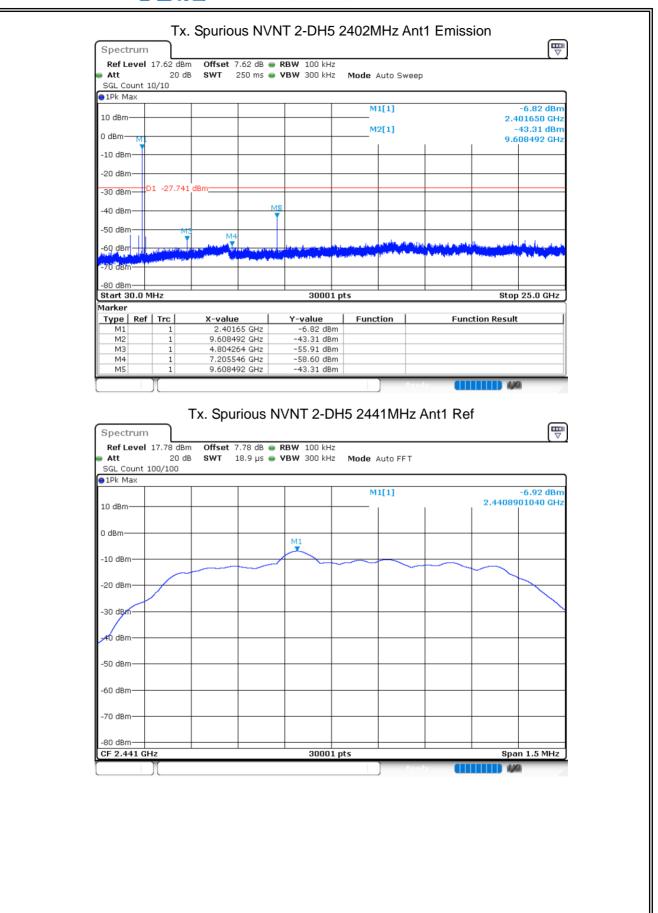

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	-35.89	-20	Pass
NVNT	1-DH5	2441	Ant 1	-36.19	-20	Pass
NVNT	1-DH5	2480	Ant 1	-42.56	-20	Pass
NVNT	2-DH5	2402	Ant 1	-35.56	-20	Pass
NVNT	2-DH5	2441	Ant 1	-36.09	-20	Pass
NVNT	2-DH5	2480	Ant 1	-46.26	-20	Pass



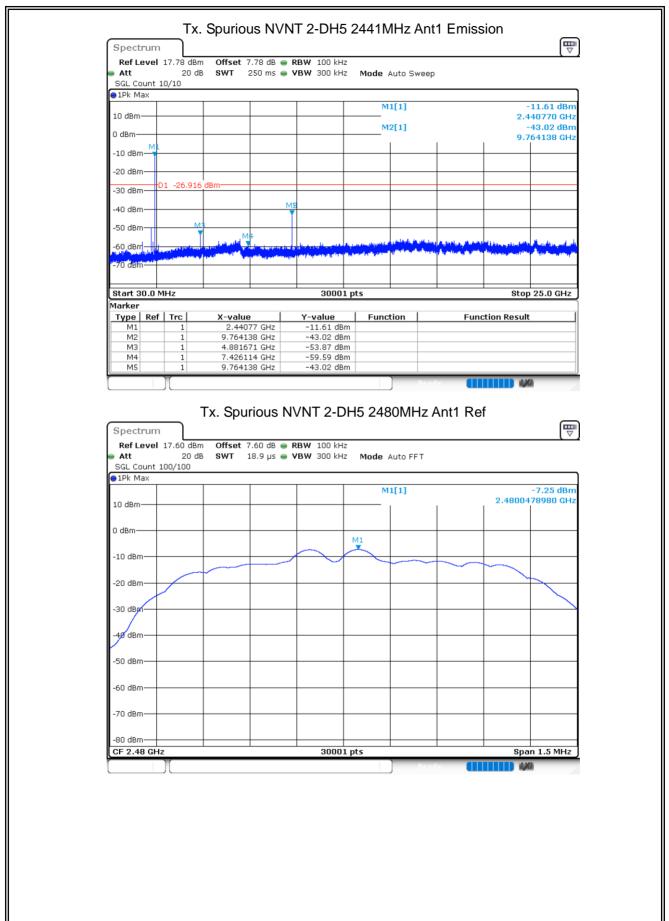
Version.1.3 Page 68 of 110

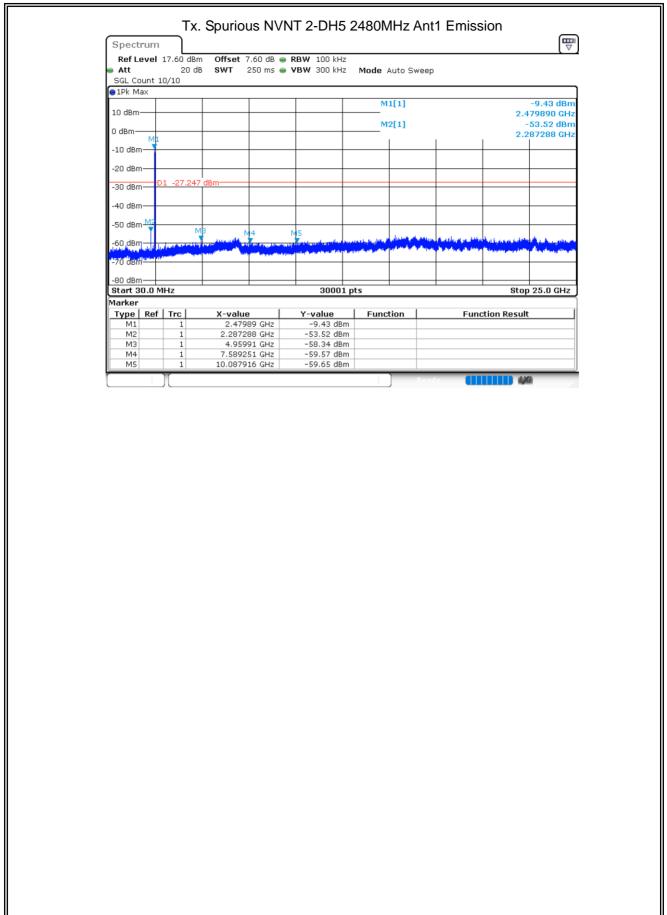


Version.1.3 Page 69 of 110



Version.1.3 Page 70 of 110

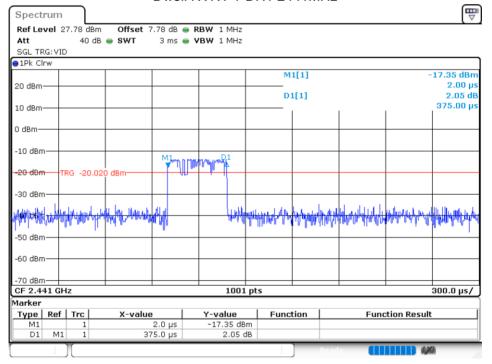



Version.1.3 Page 71 of 110

Version.1.3 Page 72 of 110

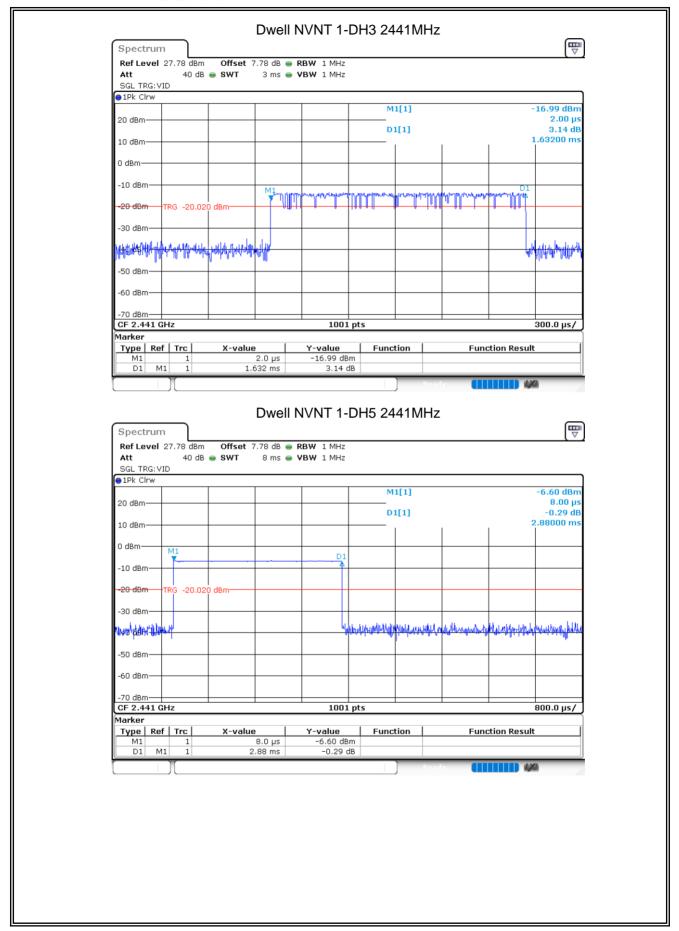
Version.1.3 Page 73 of 110

Version.1.3 Page 74 of 110



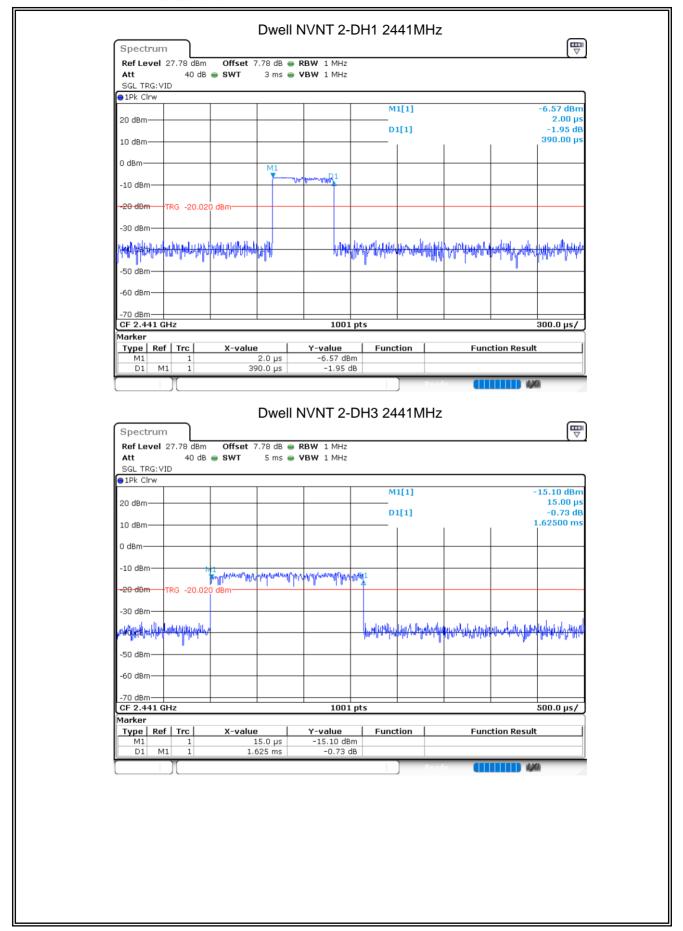
8.2.1 **Dwell Time**

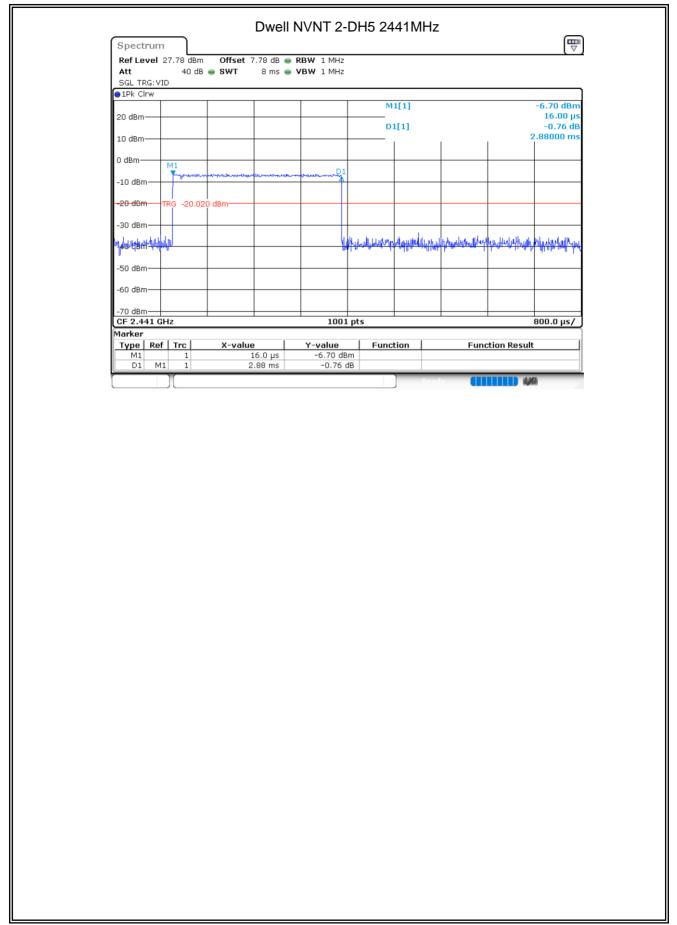
Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Period Time (ms)	Limit (ms)	Verdict
NVNT	1-DH1	2441	0.375	120	31600	400	Pass
NVNT	1-DH3	2441	1.632	261.12	31600	400	Pass
NVNT	1-DH5	2441	2.88	307.2	31600	400	Pass
NVNT	2-DH1	2441	0.39	124.8	31600	400	Pass
NVNT	2-DH3	2441	1.625	260	31600	400	Pass
NVNT	2-DH5	2441	2.88	307.2	31600	400	Pass


Certificate #4298.01

Dwell NVNT 1-DH1 2441MHz

Version.1.3 Page 75 of 110

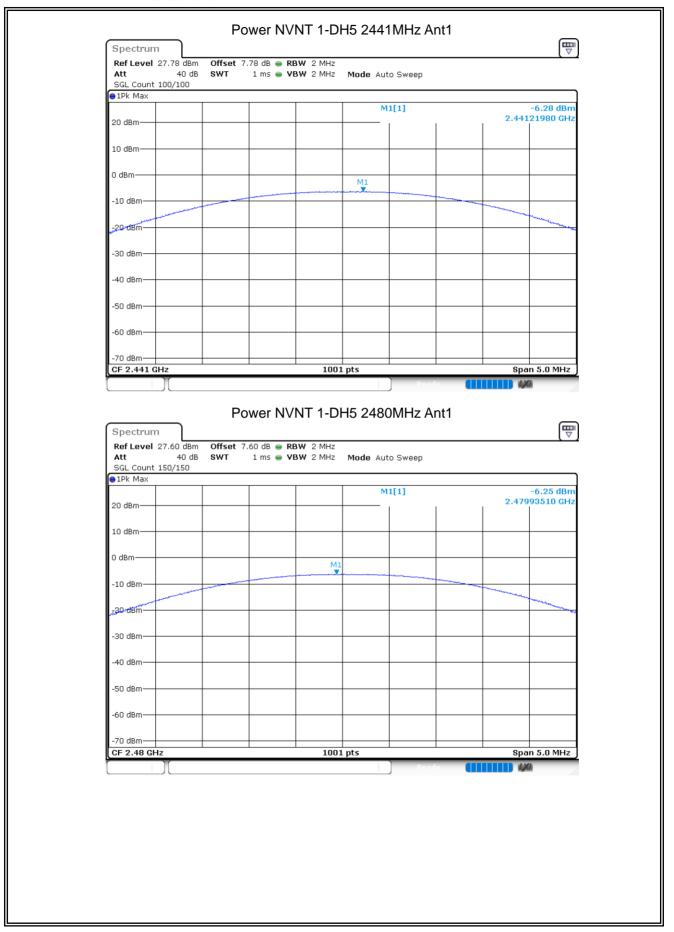



Version.1.3 Page 76 of 110

Version.1.3 Page 77 of 110

Version.1.3 Page 78 of 110




8.2.2 Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant 1	-5.936	30	Pass
NVNT	1-DH5	2441	Ant 1	-6.284	30	Pass
NVNT	1-DH5	2480	Ant 1	-6.247	30	Pass
NVNT	2-DH5	2402	Ant 1	-5.337	21	Pass
NVNT	2-DH5	2441	Ant 1	-5.607	21	Pass
NVNT	2-DH5	2480	Ant 1	-5.66	21	Pass

Version.1.3 Page 79 of 110

Version.1.3 Page 80 of 110