

SAR TEST REPORT

For

Meizhou Guo Wei Electronics Co., Ltd.

AD1 Section, Economic Development Area, Dongsheng Industrial District, Meizhou, Guangdong, China.

FCC ID: 2ARRB-H54HS

IC: 20353-H54HS

Report Type: Original Report		Product Type: Digital Cordless Telephone		
Report Number:	RSZ201106009-S	SA		
Report Date:	2020-12-16			
	Alvin Huang		Firm theand	
Reviewed By:	Lab Manager		U U	
Prepared By:	Bay Area Complian 6/F., West Wing, T Building, Shihua R Shenzhen, Guangdo Tel: +86-755-3332/ Fax: +86-755-3332 www.baclcorp.com	hird Phase o oad, Futian ong, China 0018 0008		

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*".

BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Attestation of Test Results							
	EUT Description	Digital Cordless Telephone					
	Tested Model	Motorola T6-HS					
EUT	FCC ID	2ARRB-H54HS					
Information	IC	20353-H54HS					
	Serial Number	RSZ201106009-SA-S1					
	Test Date	2020-11-13					
MO	DE	Max. SAR Level(s) Reported(W/kg)	Limit (W/kg)				
DECT	1g Head SAR	0.03	1.6				
	1g Body SAR	0.03					
Note: This wireless device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General Population/Uncontrolled Exposure limits specified in FCC 47 CFR part 2.1093 and has been tested in accordance with the measurement procedures specified in IEEE 1528-2013 and RF exposure KDB procedures.							
The results and statem	ents contained in this	report pertain only to the device(s) evaluated.					

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	
EUT DESCRIPTION	5
TECHNICAL SPECIFICATION	5
REFERENCE, STANDARDS, AND GUIDELINES	6
SAR LIMITS	7
FACILITIES	
DESCRIPTION OF TEST SYSTEM	9
EQUIPMENT LIST AND CALIBRATION	15
EQUIPMENTS LIST & CALIBRATION INFORMATION	15
SAR MEASUREMENT SYSTEM VERIFICATION	
LIQUID VERIFICATION	
SYSTEM ACCURACY VERIFICATION	
EUT TEST STRATEGY AND METHODOLOGY	
TEST POSITIONS FOR DEVICE OPERATING NEXT TO A PERSON'S EAR	
CHEEK/TOUCH POSITION EAR/TILT POSITION	
TEST POSITIONS FOR BODY-WORN AND OTHER CONFIGURATIONS	
TEST DISTANCE FOR SAR EVALUATION	
SAR EVALUATION PROCEDURE	
CONDUCTED OUTPUT POWER MEASUREMENT	
PROVISION APPLICABLE	
Test Procedure Maximum Target Average Output Power	
Test Results:	
ANTENNAS LOCATION	
ANTENNA DISTANCE TO EDGE	24
SAR MEASUREMENT RESULTS	
SAR TEST DATA	
CORRECTED SAR EVALUATION	-
SAR MEASUREMENT VARIABILITY	
APPENDIX A MEASUREMENT UNCERTAINTY	
APPENDIX B EUT TEST POSITION PHOTOS	
LIQUID DEPTH ≥ 15 CM	
HEAD LEFT CHEEK SETUP PHOTO	
HEAD LEFT TILT SETUP PHOTO	
HEAD RIGHT TILT SETUP PHOTO	
BODY BACK SETUP PHOTO	
APPENDIX C PROBE CALIBRATION CERTIFICATES	
APPENDIX D DIPOLE CALIBRATION CERTIFICATES	

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	RSZ201106009-SA	Original Report	2020-12-16

EUT DESCRIPTION

This report has been prepared on behalf of *Meizhou Guo Wei Electronics Co., Ltd.* and their product *Digital Cordless Telephone*, Model: *Motorola T6-HS*, FCC ID: *2ARRB-H54HS*; IC: *20353-H54HS* or the EUT (Equipment under Test) as referred to in the rest of this report.

*All measurement and test data in this report was gathered from production sample serial number: RSZ201106009-SA-S1 (Assigned by BACL, Shenzhen). The EUT supplied by the applicant was received on 2020/11/09.

Technical Specification

Product Type	Portable
Exposure Category:	Population / Uncontrolled
Antenna Type(s):	Internal Antenna
Body-Worn Accessories:	None
Modulation:	GFSK
Frequency Band:	DECT: 1921.536-1928.448 MHz;
Conducted RF Power:	Peak power : 19.43 dBm
Power Source:	Rechargeable Battery
Normal Operation:	Body-worn and Head

REFERENCE, STANDARDS, AND GUIDELINES

FCC:

The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass.

CE:

The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 2 mW/g as recommended by EN62209-1 for an uncontrolled environment. According to the Standard, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in Europe is 2 mW/g average over 10 gram of tissue mass.

The test configurations were laid out on a specially designed test fixture to ensure the reproducibility of measurements. Each configuration was scanned for SAR. Analysis of each scan was carried out to characterize the above effects in the device.

Bay Area Compliance Laboratories Corp. (Shenzhen)

SAR Limits

FCC&IC Limit

	SAR (W/kg)				
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)			
Spatial Average (averaged over the whole body)	0.08	0.4			
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0			
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0			

CE Limit

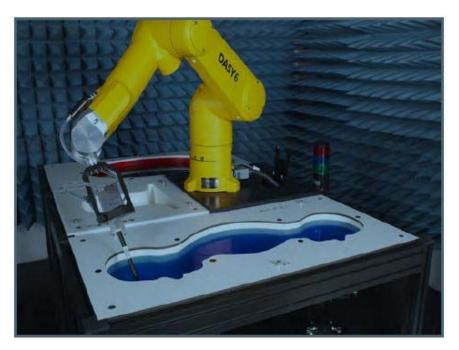
	SAR (W/kg)				
EVDOCUDE I IMITO	(General Population /	(Occupational /			
EXPOSURE LIMITS	Uncontrolled Exposure	Controlled Exposure			
	Environment)	Environment)			
Spatial Average (averaged over the whole body)	0.08	0.4			
Spatial Peak (averaged over any 10 g of tissue)	2.0	10			
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0			

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

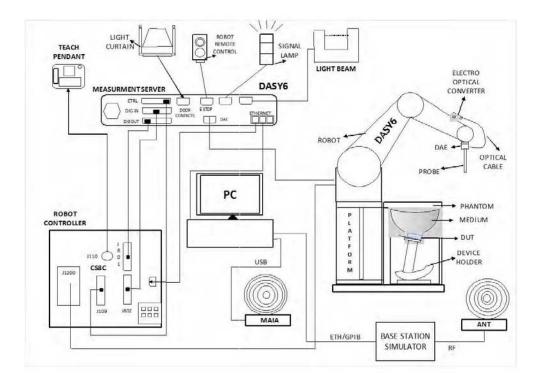
General Population/Uncontrolled environments Spatial Peak limit 1.6W/kg (FCC&IC) & 2 W/kg (CE) applied to the EUT.

FACILITIES


The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 342867, the FCC Designation No. : CN1221.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier : CN0023.


DESCRIPTION OF TEST SYSTEM

These measurements were performed with the automated near-field scanning system DASY6 from Schmid & Partner Engineering AG (SPEAG) which is the Fifth generation of the system shown in the figure hereinafter:

DASY6 System Description

The DASY6 system for performing compliance tests consists of the following items:

Bay Area Compliance Laboratories Corp. (Shenzhen)

- A standard high precision 6-axis robot (Staubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal application, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win7 professional operating system and the DASY52 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

DASY6 Measurement Server

The DASY6 measurement server is based on a PC/104 CPU board with a 400 MHz Intel ULV Celeron, 128 MB chip-disk and 128 MB RAM. The necessary circuits for communication with the DAE4 (or DAE3) electronics box, as well as the 16-bit AD converter system for optical detection and digital I/O interface are contained on the DASY6 I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all real-time data evaluations of field

measurements and surface detection, controls robot movements, and handles safety operations. The PC operating system cannot interfere with these time-critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program- controlled robot movements. Furthermore, the measurement server is equipped with an expansion port, which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Connection of devices from any other supplier could seriously damage the measurement server.

Data Acquisition Electronics

The data acquisition electronics (DAE4) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of both the DAE4 as well as of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

EX3DV4 E-Field Probes

Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	\pm 0.3 dB in TSL (rotation around probe axis) \pm 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	$\begin{array}{l} 10 \ \mu W/g \ to > 100 \ m W/g \\ Linearity: \pm 0.2 \ dB \ (noise: \ typically < 1 \ \mu W/g) \end{array}$
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

SAM Twin Phantom

The SAM Twin Phantom (shown in front of DASY6) is a fiberglass shell phantom with shell thickness 2 mm, except in the ear region where the thickness is increased to 6 mm. The phantom has three measurement areas: 1) Left Head, 2) Right Head, and 3) Flat Section. For larger devices, the use of the ELI-Phantom (shown behind DASY6) is required. For devices such as glasses with a wireless link, the Face Down Phantom is the most suitable (between the SAM Twin and ELI phantoms).

When the phantom is mounted inside allocated slot of the DASY6 platform, phantom reference points can be taught directly in the DASY5 V5.2 software. When the DASY6 platform is used to mount the

Phantom, some of the phantom teaching points cannot be reached by the robot in DASY5 V5.2. A special tool called P1a-P2aX-Former is provided to transform two of the three points, P1 and P2, to reachable locations. To use these new teaching points, a revised phantom configuration file is required. In addition to our standard broadband liquids, the phantom can be used with the following tissue simulating liquids:

Sugar-water-based liquids can be left permanently in the phantom. Always cover the liquid when the system is not in use to prevent changes in liquid parameters due to water evaporation.

DGBE-based liquids should be used with care. As DGBE is a softener for most plastics, the liquid should be taken out of the phantom, and the phantom should be dried when the system is not in use (desirable at least once a week).

Do not use other organic solvents without previously testing the solvent resistivity of the phantom. Approximately 25 liters of liquid is required to fill the SAM Twin phantom.

Bay Area Compliance Laboratories Corp. (Shenzhen)

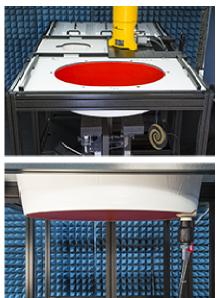
Report No.: RSZ201106009-SA

ELI Phantom

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30MHz to 6 GHz. ELI is fully compatible with the latest draft of the standard IEC 62209-2 and the use of all known tissue simulating liquids. ELI has been optimized for performance and can be integrated into a SPEAG standard phantom table. A cover is provided to prevent evaporation of water and changes in liquid parameters. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points.

The phantom can be used with the following tissue simulating liquids:

- Sugar-water-based liquids can be left permanently in the phantom. Always cover the liquid when the system is not in use to prevent changes in liquid parameters due to water evaporation.
- DGBE-based liquids should be used with care. As DGBE is a softener for most plastics, the liquid should be taken out of the phantom, and the phantom should be dried when the system is not in use (desirable at least once a week).
- Do not use other organic solvents without previously testing the solvent resistivity of the phantom.


Approximately 25 liters of liquid is required to _fill the ELI phantom.

Robots

The DASY6 system uses the high-precision industrial robots TX60L, TX90XL, and RX160L from St aubli SA (France). The TX robot family - the successor of the well-known RX robot family - continues to offer the features important for DASY6 applications:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchrony motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

The robots are controlled by the Staubli CS8c robot controllers. All information regarding the use and maintenance of the robot arm and the robot controller is provided

Calibration Frequency	Frequency	Range(MHz)	Conversion Factor		
Point(MHz)	Point(MHz) From To		X	Y	Z
750 Head	650	850	9.92	9.92	9.92
900 Head	850	1000	9.4	9.4	9.4
1750 Head	1650	1850	8.21	8.21	8.21
1900 Head	1850	2000	7.95	7.95	7.95
2300 Head	2200	2400	7.53	7.53	7.53
2450 Head	2400	2550	7.15	7.15	7.15
2600 Head	2550	2700	7.04	7.04	7.04
5200 Head	5090	5250	5.2	5.2	5.2
5300 Head	5250	5410	4.96	4.96	4.96
5600 Head	5490	5700	4.55	4.55	4.55
5800 Head	5700	5910	4.65	4.65	4.65

Calibration Frequency Points for EX3DV4 E-Field Probes SN: 7522 Calibrated: 2020/04/01

Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 15mm 2 step integral, with 1.5mm interpolation used to locate the peak SAR area used for zoom scan assessments.

Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging.

Zoom Scan (Cube Scan Averaging)

The averaging zoom scan volume utilized in the DASY5 software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m^3 is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1g cube is 10mm, with the side length of the 10g cube is 21.5mm.

When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 7 x7 x 7 (5mmx5mm) providing a volume of 30 mm in the X & Y & Z axis.

Tissue Dielectric Parameters for Head and Body Phantoms

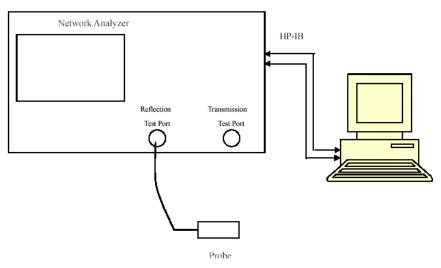
The head tissue dielectric parameters recommended by the IEC 62209-1:2016

Recommended Tissue Dielectric Parameters for Head and Body

Table A.3 - Dielectric properties of the head tissue-equivalent liquid

Frequency	Relative permittivity	Conductivity (o)
MHz	ε _r	S/m
300	45,3	0,87
450	43,5	0,87
750	41,9	0,89
835	41,5	0,90
900	41,5	0,97
1 450	40,5	1,20
1 500	40,4	1,23
1 6 4 0	40,2	1,31
1 750	40,1	1,37
1 800	40,0	1,40
1 900	40,0	1,40
2 000	40,0	1,40
2 100	39,8	1,49
2 300	39,5	1,67
2 450	39,2	1,80
2 600	39,0	1,96
3 000	38,5	2,40
3 500	37,9	2,91
4 000	37,4	3,43
4 500	36,8	3,94
5 000	36,2	4,45
5 200	36,0	4,66
5 400	35,8	4,86
5 600	35,5	5,07
5 800	35,3	5,27
6 000	35,1	5,48

NOTE For convenience, permittivity and conductivity values at those frequencies which are not part of the original data provided by Drossos et al. [33] or the extension to 5 800 MHz are provided (i.e. the values shown *in italics*). These values were linearly interpolated between the values in this table that are immediately above and below these values, except the values at 6 000 MHz that were linearly extrapolated from the values at 3 000 MHz and 5 800 MHz.


EQUIPMENT LIST AND CALIBRATION

Equipments List & Calibration Information

Equipment	Model	S/N	Calibration Date	Calibration Due Date
DASY5 Test Software	DASY52 52.10.2	N/A	NCR	NCR
DASY6 Measurement Server	DASY6 6.0.31	N/A	NCR	NCR
Data Acquisition Electronics	DAE4	1562	2020/03/03	2021/03/02
E-Field Probe	EX3DV4	7522	2020/04/01	2021/03/31
Mounting Device	MD4HHTV5	SD 000 H01 KA	NCR	NCR
SAM Twin Phantom	SAM-Twin V8.0	1962	NCR	NCR
Dipole, 1900MHz	D1900V2	5d231	2020/01/14	2023/01/13
Tissue Liquid Head	HBBL600-10000V6	180622-2	Each Time	/
Network Analyzer	8753D	3410A08288	2020/07/31	2021/07/30
Dielectric Assessment Kit	DAK-3.5	1248	NCR	NCR
MXG Analog Signal Generator	N5181A	MY48180408	2020/07/31	2021/07/30
USB wideband power sensor	U2021XA	MY54250003	2020/07/31	2021/07/30
Power Amplifier	5S1G4	71377	NCR	NCR
Directional Coupler	Oct-42	3307	NCR	NCR
Attenuator	6dB	773-6	NCR	NCR
Digital Radio Communication Tester	CMD60	830553/018	2020/07/31	2021/07/30

SAR MEASUREMENT SYSTEM VERIFICATION

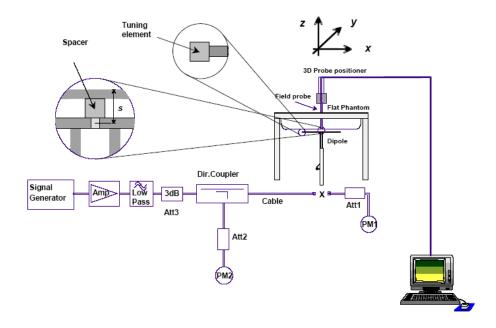
Liquid Verification

Liquid Verification Setup Block Diagram

Liquid Verification Results

Frequency Liquid		Liq Parar		Target Value		Delta (%)		Tolerance
(MHz)	Туре	-		ε _r	0 (S/m)	$\Delta \epsilon_{\rm r}$	ΔƠ (S/m)	(%)
1900	Tissue Liquid Head	39.641	1.372	40.0	1.40	-0.9	-2	±5
1921.536	Tissue Liquid Head	39.793	1.394	40.0	1.40	-0.52	-0.43	±5
1924.992	Tissue Liquid Head	39.633	1.391	40.0	1.40	-0.92	-0.64	±5
1928.448	Tissue Liquid Head	40.007	1.405	40.0	1.40	0.02	0.36	±5

*Liquid Verification above was performed on 2020-11-13.


System Accuracy Verification

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

The spacing distances in the System Verification Setup Block Diagram is given by the following:

- a) $s = 15 \text{ mm} \pm 0.2 \text{ mm}$ for 300 MHz $\leq f \leq 1 \text{ 000 MHz}$;
- b) $s = 10 \text{ mm} \pm 0.2 \text{ mm}$ for 1 000 MHz < f \leq 3 000 MHz;
- c) $s = 10 \text{ mm} \pm 0.2 \text{ mm}$ for 3 000 MHz < f \leq 6 000 MHz.

System Verification Setup Block Diagram

System Accuracy Check Results

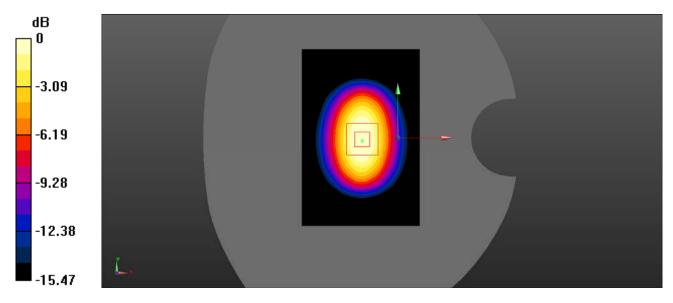
Date	Frequency Band (MHz)	Liquid Type	Input Power (mW)	· SAR		Normalized to 1W (W/kg)	to 1W Value		Tolerance (%)
2020/11/13	1900	Head	100	1g	4.16	41.6	40.3	3.226	± 10

*The SAR values above are normalized to 1 Watt forward power.

SAR SYSTEM VALIDATION DATA

System Performance 1900 MHz Head

DUT: Dipole 1900MHz; Type: D1900V2; Serial: 5d231

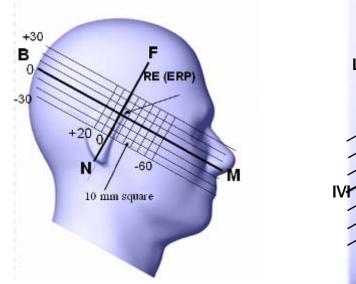

Communication System: UID 0, CW (0); Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.372 S/m; ϵ_r = 39.641; ρ = 1000 kg/m³ Phantom section: Flat Section

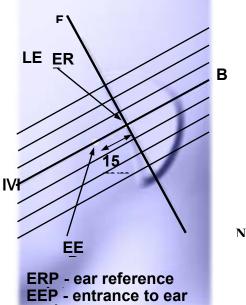
DASY5 Configuration:

- Probe: EX3DV4 SN7522; ConvF(7.95, 7.95, 7.95) @ 1900 MHz;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1562; Calibrated: 3/3/2020
- Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA; Serial: 1962
- Measurement SW: DASY52, Version 52.10 (2);

Head 1900MHz Pin=100mW/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 4.78 W/kg

Head 1900MHz Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.43 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 5.33 W/kg SAR(1 g) = 4.16 W/kg; SAR(10 g) = 2.15W/kgMaximum value of SAR (measured) = 4.37W/kg


0 dB = 4.37 W/kg = 6.40 dBW/kg


EUT TEST STRATEGY AND METHODOLOGY

Test Positions for Device Operating Next to a Person's Ear

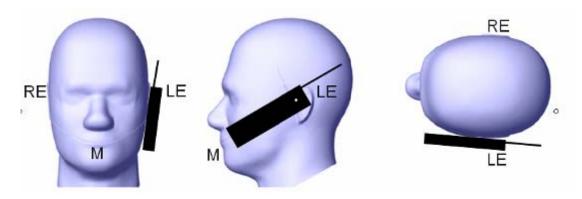
This category includes most wireless handsets with fixed, retractable or internal antennas located toward the top half of the device, with or without a foldout, sliding or similar keypad cover. The handset should have its earpiece located within the upper ¼ of the device, either along the centerline or off-centered, as perceived by its users. This type of handset should be positioned in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point". The "test device reference point" should be located at the same level as the center of the earpiece region. The "vertical centerline" should bisect the front surface of the handset at its top and bottom edges. A "ear reference point" is located on the outer surface of the head phantom on each ear spacer. It is located 1.5 cm above the center of the ear canal entrance in the "phantom reference plane" defined by the three lines joining the center of each "ear reference point" (left and right) and the tip of the mouth.

A handset should be initially positioned with the earpiece region pressed against the ear spacer of a head phantom. For the SCC-34/SC-2 head phantom, the device should be positioned parallel to the "N-F" line defined along the base of the ear spacer that contains the "ear reference point". For interim head phantoms, the device should be positioned parallel to the cheek for maximum RF energy coupling. The "test device reference point" is aligned to the "ear reference point" on the head phantom and the "vertical centerline" is aligned to the "phantom reference plane". This is called the "initial ear position". While maintaining these three alignments, the body of the handset is gradually adjusted to each of the following positions for evaluating SAR:

Bay Area Compliance Laboratories Corp. (Shenzhen)

Cheek/Touch Position

The device is brought toward the mouth of the head phantom by pivoting against the "ear reference point" or along the "N-F" line for the SCC-34/SC-2 head phantom.


This test position is established:

When any point on the display, keypad or mouthpiece portions of the handset is in contact with the phantom.

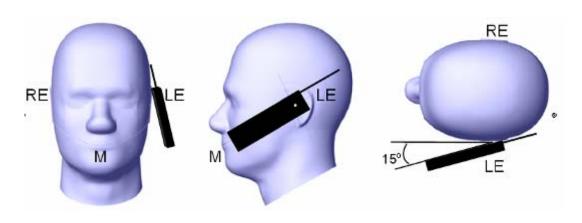
(or) When any portion of a foldout, sliding or similar keypad cover opened to its intended self-adjusting normal use position is in contact with the cheek or mouth of the phantom.

For existing head phantoms – when the handset loses contact with the phantom at the pivoting point, rotation should continue until the device touches the cheek of the phantom or breaks its last contact from the ear spacer.

Cheek /Touch Position

Ear/Tilt Position

With the handset aligned in the "Cheek/Touch Position":


1) If the earpiece of the handset is not in full contact with the phantom's ear spacer (in the "Cheek/Touch position") and the peak SAR location for the "Cheek/Touch" position is located at the ear spacer region or corresponds to the earpiece region of the handset, the device should be returned to the "initial ear position" by rotating it away from the mouth until the earpiece is in full contact with the ear spacer.

2) (otherwise) The handset should be moved (translated) away from the cheek perpendicular to the line passes through both "ear reference points" (note: one of these ear reference points may not physically exist on a split head model) for approximate 2-3 cm. While it is in this position, the device handset is tilted away from the mouth with respect to the "test device reference point" until the inside angle between the vertical centerline on the front surface of the phone and the horizontal line passing through the ear reference point is by 15 80°. After the tilt, it is then moved (translated) back toward the head perpendicular to the line passes through both "ear reference points" until the device touches the phantom or the ear spacer. If the antenna touches the head first, the positioning process should be repeated with a tilt angle less than 15° so that the device and its antenna would touch the phantom simultaneously. This test position may require a device holder or positioner to achieve the translation and tilting with acceptable positioning repeatability.

If a device is also designed to transmit with its keypad cover closed for operating in the head position, such positions should also be considered in the SAR evaluation. The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tilt/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s). If the transmission band of the test device is less than 10 MHz, testing at the high and low frequency channels is optional.

Bay Area Compliance Laboratories Corp. (Shenzhen)

Test positions for body-worn and other configurations

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested.

Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components.

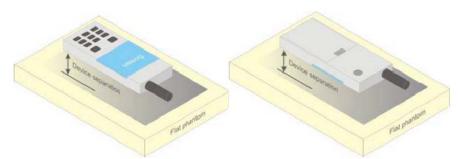


Figure 5 – Test positions for body-worn devices

Test Distance for SAR Evaluation

For this case the EUT(Equipment Under Test) is set 10mm away from the phantom, the test distance is 0mm.

SAR Evaluation Procedure

The evaluation was performed with the following procedure:

Step 1: Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing.

Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or radiating structures of the EUT, the horizontal grid spacing was 15 mm x 15 mm, and the SAR distribution was determined by integrated grid of 1.5mm x 1.5mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.

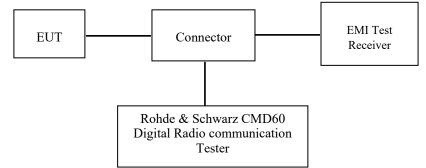
Step 3: Around this point, a volume of 30 mm x 30 mm x 30 mm was assessed by measuring 7x 7 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:

1) The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.

2) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points $(10 \times 10 \times 10)$ were interpolated to calculate the averages.

All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated.


CONDUCTED OUTPUT POWER MEASUREMENT

Provision Applicable

The measured peak output power should be greater and within 5% than EMI measurement.

Test Procedure

The RF output of the transmitter was connected to the input of the EMI Test Receiver through Connector.

Maximum Target Average Output Power

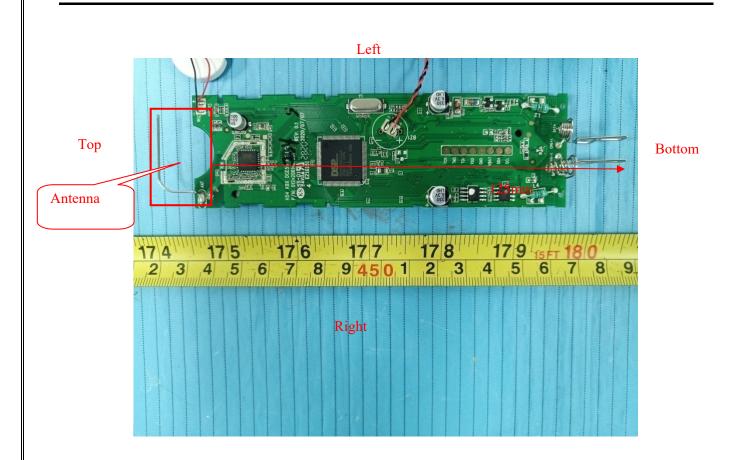
Max Target Power(dBm)							
	Channel						
Mode/Band	Low	Middle	High				
DECT	20.0	20.0	20.0				

Test Results:

DECT:

Mode	Frequency (MHz)	RF Output Peak Power (dBm)	RF Output Peak Power (W)
	1921.536	19.31	0.085
DECT	1924.992	19.36	0.086
	1928.448	19.43	0.088

Note:


- 1. Rohde & Schwarz Radio Communication Tester (CMD60) was used for the measurement of DECT peak output power.
- 2. Duty Cycle=1/24 (From Radio report)
- 3. The EUT belongs to a low duty cycle device.
- 4. Per KDB 447498 D01, 1 Channel shall be tested; the middle channel was selected to test:

$$N_{\rm c} = Round \left\{ \left[100 (f_{\rm high} - f_{\rm low}) / f_{\rm c} \right]^{0.5} \times (f_{\rm c} / 100)^{0.2} \right\},\$$

where f_{high} is the highest frequency in the band and f_{low} , is the lowest f_c is the center frequency in the band.

SAR Test Report

Antennas Location

Antenna Distance To Edge

Antenna Distance To Edge(mm)									
Antenna	Back	Left	Right	Bottom					
DECT Antenna	< 5	< 5	< 5	125					

SAR MEASUREMENT RESULTS

This page summarizes the results of the performed dosimetric evaluation.

SAR Test Data

Environmental Conditions

Temperature:	21.8-22.6 °C
Relative Humidity:	47-52 %
ATM Pressure:	101.3 kPa
Test Date:	2020-11-13

Testing was performed by Ricardo Lan.

EUT	Frequency	Test	Max. Meas.	Max. Rated	1g SAR (W/Kg), Limited=1.6W/kg					
Position	Frequency (MHz)	Mode	Power (dBm)	Rated Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Correct SAR	Plot	
	1921.536	GFSK	/	/	/	/	/	/	/	
Head Left Cheek	1924.992	GFSK	19.36	20.0	1.159	0.027	0.03	0.03	1#	
	1928.448	GFSK	/	/	/	/	/	/	/	
	1921.536	GFSK	/	/	/	/	/	/	/	
Head Left Tilt	1924.992	GFSK	19.36	20.0	1.159	0.020	0.02	0.02	2#	
	1928.448	GFSK	/	/	/	/	/	/	/	
	1921.536	GFSK	/	/	/	/	/	/	/	
Head Right Cheek	1924.992	GFSK	19.36	20.0	1.159	0.021	0.02	0.02	3#	
	1928.448	GFSK	/	/	/	/	/	/	/	
	1921.536	GFSK	/	/	/	/	/	/	/	
Head Right Tilt	1924.992	GFSK	19.36	20.0	1.159	0.018	0.02	0.02	4#	
	1928.448	GFSK	/	/	/	/	/	/	/	
	1921.536	GFSK	/	/	/	/	/	/	/	
Body Back	1924.992	GFSK	19.36	20.0	1.159	0.022	0.03	0.03	5#	
	1928.448	GFSK	/	/	/	/	/	/	/	

Note:

 When the SAR value is less than half of the limit, testing for other channels are optional.
 When SAR or MPE is not measured at the maximum power level allowed for production to the individual channels tested to determine compliance.

Corrected SAR Evaluation

62209-2 © IEC:2010

- 89 -

Annex F (normative)

SAR correction for deviations of complex permittivity from targets

F.2 SAR correction formula

From [13] and [14], a linear relationship was found between the percent change in SAR (denoted ΔSAR) and the percent change in the permittivity and conductivity from the target values in Table 1 (denoted $\Delta \varepsilon_r$ and $\Delta \sigma$, respectively). This linear relationship agrees with the results of Kuster and Balzano [48] and Bit-Babik et al. [2]. The relationship is given by:

$$\Delta SAR = c_{\varepsilon} \Delta \varepsilon_{r} + c_{\sigma} \Delta \sigma \tag{F.1}$$

where

$$c_{\varepsilon} = \partial(\Delta SAR)/\partial(\Delta \varepsilon)$$
 is the coefficients representing the sensitivity of SAR to permittivity where SAR is normalized to output power;
 $c_{\sigma} = \partial(\Delta SAR)/\partial(\Delta \sigma)$ is the coefficients representing the sensitivity of SAR to conductivity, where SAR is normalized to output power.

The values of c_{ϵ} and c_{σ} have a simple relationship with frequency that can be described using polynomial equations. For the 1 g averaged SAR c_{ϵ} and c_{σ} are given by

$$c_{\varepsilon} = -7,854 \times 10^{-4} f^{3} + 9,402 \times 10^{-3} f^{2} - 2,742 \times 10^{-2} f - 0,2026$$
 (F.2)

$$c_{\sigma} = 9,804 \times 10^{-3} f^3 - 8,661 \times 10^{-2} f^2 + 2,981 \times 10^{-2} f + 0,782 9$$
 (F.3)

where

f is the frequency in GHz.

For the 10 g averaged SAR, the variables c_{ε} and c_{σ} are given by:

$$c_{\varepsilon} = 3,456 \times 10^{-3} f^3 - 3,531 \times 10^{-2} f^2 + 7,675 \times 10^{-2} f - 0,186 0$$
(F.4)

$$c_{\sigma} = 4,479 \times 10^{-3} f^3 - 1,586 \times 10^{-2} f^2 - 0,197 \ 2f + 0,771 \ 7 \tag{F.5}$$

Bay Area Compliance Laboratories Corp. (Shenzhen)

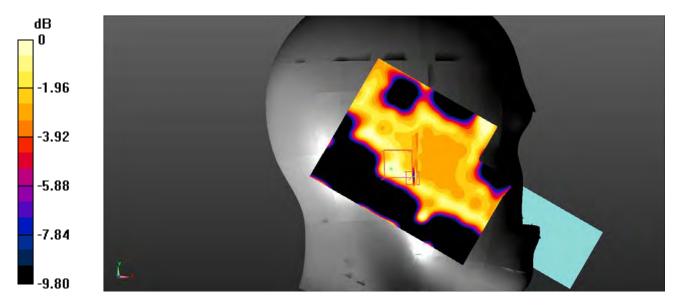
Report No.: RSZ201106009-SA

Calibrate Date	Liquid Type	Frequency (MHz)	Cε	$\Delta \epsilon_r$	C _ð	Δ_{δ}	∆SAR
2020/11/13 Head		1900	-0.226	-0.9	0.594	-2	-0.985
	Head	1921.536	-0.226	-0.52	0.590	-0.43	-0.136
		1924.992	-0.226	-0.92	0.589	-0.64	-0.169
		1928.448	-0.226	0.02	0.589	0.36	0.208

SAT Test Plots:

Plot 1#

DUT: Digital Cordless Telephone; Type: Motorola T6-HS; Serial: RSZ201106009-SA-S1


Communication System: UID 0, DECT (0); Frequency: 1924.99 MHz;Duty Cycle: 1:24 Medium parameters used (interpolated): f = 1924.99 MHz; σ = 1.391 S/m; ϵ_r = 39.633; ρ = 1000 kg/m³ Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7522; ConvF(7.95, 7.95, 7.95) @ 1924.99 MHz;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1562; Calibrated: 3/3/2020
- Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA; Serial: 1962
- Measurement SW: DASY52, Version 52.10 (2);

Head Left Cheek/DECT Mid/Area Scan (71x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0543 W/kg

Head Left Cheek/DECT Mid/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.031 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.0430 W/kg SAR(1 g) = 0.027 W/kg; SAR(10 g) = 0.019 W/kg Maximum value of SAR (measured) = 0.0365 W/kg

0 dB = 0.0365 W/kg = -14.38 dBW/kg

SAR Test Report

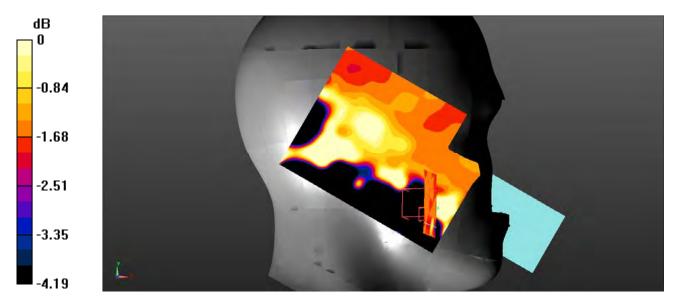
Plot 2#

DUT: Digital Cordless Telephone; Type: Motorola T6-HS; Serial: RSZ201106009-SA-S1

Communication System: UID 0, DECT (0); Frequency: 1924.99 MHz;Duty Cycle: 1:24 Medium parameters used (interpolated): f = 1924.99 MHz; $\sigma = 1.391$ S/m; $\epsilon_r = 39.633$; $\rho = 1000$ kg/m³ Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7522; ConvF(7.95, 7.95, 7.95) @ 1924.99 MHz;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1562; Calibrated: 3/3/2020
- Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA ; Serial: 1962
- Measurement SW: DASY52, Version 52.10 (2);


Head Left Tilt/DECT Mid/Area Scan (71x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.101 W/kg

Head Left Tilt/DECT Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.626 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.0610 W/kg

SAR(1 g) = 0.020 W/kg; SAR(10 g) = 0.018 W/kg

Maximum value of SAR (measured) = 0.0259 W/kg

0 dB = 0.0259 W/kg = -15.87 dBW/kg

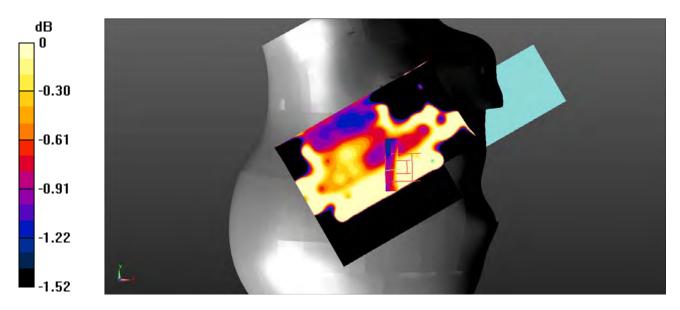
Plot 3#

DUT: Digital Cordless Telephone; Type: Motorola T6-HS; Serial: RSZ201106009-SA-S1

Communication System: UID 0, DECT (0); Frequency: 1924.99 MHz;Duty Cycle: 1:24 Medium parameters used (interpolated): f = 1924.99 MHz; $\sigma = 1.391$ S/m; $\epsilon_r = 39.633$; $\rho = 1000$ kg/m³ Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7522; ConvF(7.95, 7.95, 7.95) @ 1924.99 MHz;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1562; Calibrated: 3/3/2020
- Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA ; Serial: 1962
- Measurement SW: DASY52, Version 52.10 (2);


Head Right Cheek/DECT Mid/Area Scan (71x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0489 W/kg

Head Right Cheek/DECT Mid/Zoom Scan (8x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.480 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.0580 W/kg

SAR(1 g) = 0.021 W/kg; SAR(10 g) = 0.019 W/kg

Maximum value of SAR (measured) = 0.0213 W/kg

0 dB = 0.0213 W/kg = -16.72 dBW/kg

Plot 4#

DUT: Digital Cordless Telephone; Type: Motorola T6-HS; Serial: RSZ201106009-SA-S1

Communication System: UID 0, DECT (0); Frequency: 1924.99 MHz;Duty Cycle: 1:24 Medium parameters used (interpolated): f = 1924.99 MHz; $\sigma = 1.391$ S/m; $\epsilon_r = 39.633$; $\rho = 1000$ kg/m³ Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7522; ConvF(7.95, 7.95, 7.95) @ 1924.99 MHz;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1562; Calibrated: 3/3/2020
- Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA ; Serial: 1962
- Measurement SW: DASY52, Version 52.10 (2);

Head Right Tilt/DECT Mid/Area Scan (71x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0662 W/kg

Head Right Tilt/DECT Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.166 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.0420 W/kg

SAR(1 g) = 0.018 W/kg; SAR(10 g) = 0.013 W/kg

Maximum value of SAR (measured) = 0.0193 W/kg

0 dB = 0.0193 W/kg = -17.14 dBW/kg

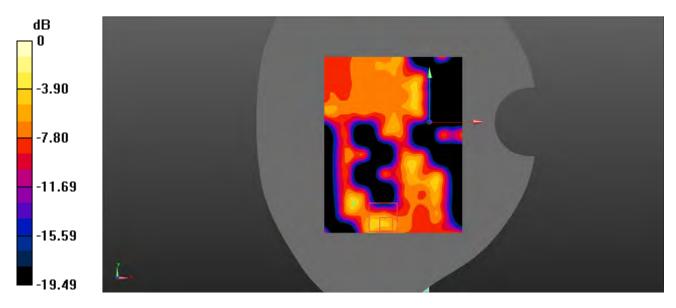
Plot 5#

DUT: Digital Cordless Telephone; Type: Motorola T6-HS; Serial: RSZ201106009-SA-S1

Communication System: UID 0, DECT (0); Frequency: 1924.99 MHz;Duty Cycle: 1:24 Medium parameters used (interpolated): f = 1924.99 MHz; $\sigma = 1.391$ S/m; $\epsilon_r = 39.633$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7522; ConvF(7.95, 7.95, 7.95) @ 1924.99 MHz;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1562; Calibrated: 3/3/2020
- Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA ; Serial: 1962
- Measurement SW: DASY52, Version 52.10 (2);


Body Back/DECT Mid/Area Scan (71x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0459 W/kg

Body Back/DECT Mid/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.591 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 0.111 W/kg

SAR(1 g) = 0.022 W/kg; SAR(10 g) = 0.00941 W/kg

Maximum value of SAR (measured) = 0.111 W/kg

0 dB = 0.111 W/kg = -9.55 dBW/kg

SAR Test Report

SAR Measurement Variability

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz v01. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results

- Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Note: The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

The Highest Measured SAR Configuration in Each Frequency Band

Body

SAR probe	Frequency Bread Freq.(MHz)		EUT Desition	Meas. SA	Largest to	
calibration point	Band	rieq.(Miriz)	EUT Position	Original	Repeated	Smallest SAR Ratio
/	/	/	/	/	/	/

Note:

- 1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20.
- 2. The measured SAR results **do not** have to be scaled to the maximum tune-up tolerance to determine if repeated measurements are required.

3. SAR measurement variability must be assessed for each frequency band, which is determined by the **SAR probe calibration point and tissue-equivalent medium** used for the device measurements..

APPENDIX A MEASUREMENT UNCERTAINTY

The uncertainty budget has been determined for the measurement system and is given in the following Table. Measurement uncertainty evaluation for IEEE1528-2013 SAR test

Source of uncertainty	Tolerance/ uncertainty ± %	Probability distribution	Divisor	ci (1 g)	ci (10 g)	Standard uncertainty ± %, (1 g)	Standard uncertainty ± %, (10 g)
		Measureme	nt system				
Probe calibration	6.55	Ν	1	1	1	6.6	6.6
Axial Isotropy	4.7	R	$\sqrt{3}$	1	1	2.7	2.7
Hemispherical Isotropy	9.6	R	$\sqrt{3}$	0	0	0.0	0.0
Boundary effect	1.0	R	$\sqrt{3}$	1	1	0.6	0.6
Linearity	4.7	R	$\sqrt{3}$	1	1	2.7	2.7
Detection limits	1.0	R	$\sqrt{3}$	1	1	0.6	0.6
Readout electronics	0.3	Ν	1	1	1	0.3	0.3
Response time	0.0	R	$\sqrt{3}$	1	1	0.0	0.0
Integration time	0.0	R	$\sqrt{3}$	1	1	0.0	0.0
RF ambient conditions – noise	1.0	R	$\sqrt{3}$	1	1	0.6	0.6
RF ambient conditions-reflections	1.0	R	$\sqrt{3}$	1	1	0.6	0.6
Probe positioner mech. Restrictions	0.8	R	$\sqrt{3}$	1	1	0.5	0.5
Probe positioning with respect to phantom shell	6.7	R	$\sqrt{3}$	1	1	3.9	3.9
Post-processing	2.0	R	$\sqrt{3}$	1	1	1.2	1.2
		Test sample	e related				
Test sample positioning	2.8	Ν	1	1	1	2.8	2.8
Device holder uncertainty	6.3	Ν	1	1	1	6.3	6.3
Drift of output power	5.0	R	$\sqrt{3}$	1	1	2.9	2.9
		Phantom ar	nd set-up				
Phantom uncertainty (shape and thickness tolerances)	4.0	R	$\sqrt{3}$	1	1	2.3	2.3
Liquid conductivity target)	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2
Liquid conductivity meas.)	2.5	N	1	0.64	0.43	1.6	1.1
Liquid permittivity target)	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4
Liquid permittivity meas.)	2.5	N	1	0.6	0.49	1.5	1.2
Combined standard uncertainty		RSS				12.2	12.0
Expanded uncertainty 95 % confidence interval)						24.3	23.9

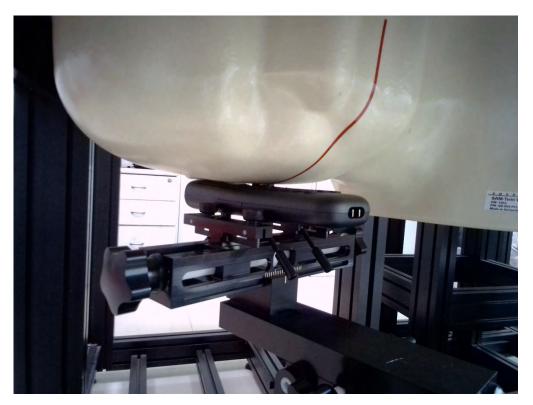
Source of uncertainty	Tolerance/ uncertainty ± %	Probability distribution	Divisor	ci (1 g)	ci (10 g)	Standard uncertainty ± %, (1 g)	Standard uncertainty ± %, (10 g)
		Measureme	nt system	1	,	1	
Probe calibration	6.55	Ν	1	1	1	6.6	6.6
Axial Isotropy	4.7	R	$\sqrt{3}$	1	1	2.7	2.7
Hemispherical Isotropy	9.6	R	$\sqrt{3}$	0	0	0.0	0.0
Linearity	4.7	R	$\sqrt{3}$	1	1	2.7	2.7
Modulation Response	0.0	R	$\sqrt{3}$	1	1	0.0	0.0
Detection limits	1.0	R	$\sqrt{3}$	1	1	0.6	0.6
Boundary effect	1.0	R	$\sqrt{3}$	1	1	0.6	0.6
Readout electronics	0.3	Ν	1	1	1	0.3	0.3
Response time	0.0	R	$\sqrt{3}$	1	1	0.0	0.0
Integration time	0.0	R	$\sqrt{3}$	1	1	0.0	0.0
RF ambient conditions – noise	1.0	R	$\sqrt{3}$	1	1	0.6	0.6
RF ambient conditions-reflections	1.0	R	$\sqrt{3}$	1	1	0.6	0.6
Probe positioner mech. Restrictions	0.8	R	$\sqrt{3}$	1	1	0.5	0.5
Probe positioning with respect to phantom shell	6.7	R	$\sqrt{3}$	1	1	3.9	3.9
Post-processing	2.0	R	$\sqrt{3}$	1	1	1.2	1.2
		Test sample	e related				
Device holder Uncertainty	6.3	Ν	1	1	1	6.3	6.3
Test sample positioning	2.8	Ν	1	1	1	2.8	2.8
Power scaling	4.5	R	$\sqrt{3}$	1	1	2.6	2.6
Drift of output power	5.0	R	$\sqrt{3}$	1	1	2.9	2.9
		Phantom an	d set-up				
Phantom uncertainty (shape and thickness tolerances)	4.0	R	$\sqrt{3}$	1	1	2.3	2.3
Algorithm for correcting SAR for deviations in permittivity and conductivity	1.9	Ν	1	1	0.84	1.1	0.9
Liquid conductivity (meas.)	2.5	Ν	1	0.64	0.43	1.6	1.1
Liquid permittivity (meas.)	2.5	N	1	0.6	0.49	1.5	1.2
Temp. unc Conductivity	1.7	R	√3	0.78	0.71	0.8	0.7
Temp. unc Permittivity	0.3	R	$\sqrt{3}$	0.23	0.26	0.0	0.0
Combined standard uncertainty		RSS				12.2	12.1
Expanded uncertainty 95 % confidence interval)						24.5	24.2

Measurement uncertainty evaluation for IEC62209-2 SAR test

APPENDIX B EUT TEST POSITION PHOTOS

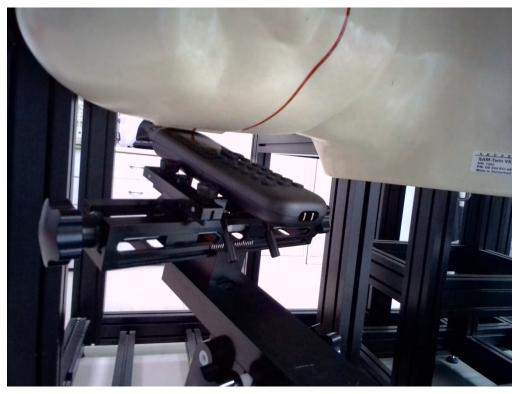
Liquid depth ≥ 15cm Phantom: SAM-Twin V8.0 P1aP2a; Type: QD 000 P41 AA ; Serial: 1962

Head Left Cheek Setup Photo



SAR Test Report

Head Left Tilt Setup Photo



Head Right Cheek Setup Photo

SAR Test Report

Head Right Tilt Setup Photo

Body Back Setup Photo

APPENDIX C PROBE CALIBRATION CERTIFICATES

		a g lac-mra C	
Add: No.51 Xue Tel: +86-10-6230 E-mail: cttl@chiu	yuan Road, Haidian District, 1 04633-2512 Fax: +86-10	Beijing, 100191, China 0-62304633-2504	CALIBRA CNAS LO
Client BAC			20-60085
CALIBRATION C			
Object	EX3DV4 - S	201 • 7522	
	270014-0	514 , 7522	
Calibration Procedure(s)	FF-Z11-004	-01	
		Procedures for Dosimetric E-field Probes	
Online the dat			
Calibration date:	April 01, 20	20	
	en conducted in the	closed laboratory facility: environment ter	nperature(22±3)'C and
humidity<70%.			nperature(22±3)℃ and
humidity<70%. Calibration Equipment use Primary Standards	ed (M&TE critical for ca	libration)	nperature(22±3)℃ and Scheduled Calibration
humidity<70%. Calibration Equipment use Primary Standards Power Meter NRP2	ed (M&TE critical for ca ID # 101919	libration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05125)	
humidity<70%. Calibration Equipment use Primary Standards Power Meter NRP2 Power sensor NRP-291	ed (M&TE critical for ca ID # 101919 1 101547	libration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125)	Scheduled Calibration
humidity<70%. Calibration Equipment use Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	ed (M&TE critical for ca ID # 101919 1 101547 1 101548	libration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125)	Scheduled Calibration Jun-20 Jun-20 Jun-20 Jun-20
humidity<70%. Calibration Equipment use Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua	ed (M&TE critical for ca ID # 101919 1 101547 1 101548 ator 18N50W-10dB	libration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525)	Scheduled Calibration Jun-20 Jun-20 Jun-20 Feb-22
humidity<70%. Calibration Equipment use Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua Reference 20dBAttenua	ed (M&TE critical for ca ID # 101919 1 101547 1 101548 ator 18N50W-10dB ator 18N50W-20dB	libration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526)	Scheduled Calibration Jun-20 Jun-20 Jun-20 Feb-22 Feb-22
humidity<70%. Calibration Equipment use Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua	ed (M&TE critical for ca ID # 101919 1 101547 1 101548 ator 18N50W-10dB ator 18N50W-20dB	libration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525)	Scheduled Calibration Jun-20 Jun-20 Jun-20 Feb-22 Feb-22 /2) May-20
humidity<70%. Calibration Equipment use Primary Standards Power Meter NRP2 Power sensor NRP-291 Power sensor NRP-291 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3D	ed (M&TE critical for ca ID # 101919 1 101547 1 101548 ator 18N50W-10dB ator 18N50W-20dB V4 SN 7307	libration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 24-May-19(SPEAG, No.EX3-7307_May19) 26-Aug-19(SPEAG, No.DAE4-1525_Aug19)	Scheduled Calibration Jun-20 Jun-20 Jun-20 Feb-22 Feb-22 /2) May-20
humidity<70%. Calibration Equipment use Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3D DAE4	ed (M&TE critical for ca ID # 101919 1 101547 1 101548 ator 18N50W-10dB ator 18N50W-20dB V4 SN 7307 SN 1525 ID #	libration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 24-May-19(SPEAG, No.EX3-7307_May19) 26-Aug-19(SPEAG, No.DAE4-1525_Aug19)	Scheduled Calibration Jun-20 Jun-20 Jun-20 Feb-22 Feb-22 /2) May-20 9) Aug-20
humidity<70%. Calibration Equipment use Primary Standards Power Meter NRP2 Power sensor NRP-291 Power sensor NRP-291 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3D DAE4 Secondary Standards	ed (M&TE critical for ca ID # 101919 101547 101548 ator 18N50W-10dB ator 18N50W-20dB V4 SN 7307 SN 1525 ID # 00A 6201052605 1C MY46110673	libration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 24-May-19(SPEAG, No.EX3-7307_May19) 26-Aug-19(SPEAG, No.DAE4-1525_Aug19) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration Jun-20 Jun-20 Jun-20 Feb-22 Feb-22 /2) May-20 9) Aug-20 cheduled Calibration
humidity<70%. Calibration Equipment use Primary Standards Power Meter NRP2 Power sensor NRP-291 Power sensor NRP-291 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3D DAE4 Secondary Standards SignalGenerator MG370 Network Analyzer E507	ed (M&TE critical for ca ID # 101919 1 101547 1 101548 ator 18N50W-10dB ator 18N50W-20dB V4 SN 7307 SN 1525 ID # 00A 6201052605	libration) Cal Date(Calibrated by, Certificate No.) 3 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 24-May-19(SPEAG, No.EX3-7307_May19, 26-Aug-19(SPEAG, No.DAE4-1525_Aug19, 26-Aug-19(SPEAG, No.DAE4-1525_Aug19, Cal Date(Calibrated by, Certificate No.) S 18-Jun-19(CTTL, No.J19X05127)	Scheduled Calibration Jun-20 Jun-20 Feb-22 Feb-22 /2) May-20 9) Aug-20 cheduled Calibration Jun-20
humidity<70%. Calibration Equipment use Primary Standards Power Meter NRP2 Power sensor NRP-291 Power sensor NRP-291 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3D DAE4 Secondary Standards SignalGenerator MG370 Network Analyzer E507	ed (M&TE critical for ca ID # 101919 101547 101548 ator 18N50W-10dB ator 18N50W-20dB V4 SN 7307 SN 1525 ID # 00A 6201052605 1C MY46110673	libration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00526) 24-May-19(SPEAG, No.EX3-7307_May19) 26-Aug-19(SPEAG, No.DAE4-1525_Aug19) Cal Date(Calibrated by, Certificate No.) S 18-Jun-19(CTTL, No.J19X05127) 10-Feb-20(CTTL, No.J19X05127)	Scheduled Calibration Jun-20 Jun-20 Feb-22 Feb-22 /2) May-20 9) Aug-20 cheduled Calibration Jun-20 Feb-21
humidity<70%. Calibration Equipment use Primary Standards Power Meter NRP2 Power sensor NRP-291 Power sensor NRP-291 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3D DAE4 Secondary Standards SignalGenerator MG37	ed (M&TE critical for ca ID # 101919 101547 101548 ator 18N50W-10dB ator 18N50W-20dB W4 SN 7307 SN 1525 ID # 00A 6201052605 1C MY46110673 Name	Ibbration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 24-May-19(SPEAG, No.EX3-7307_May19) 26-Aug-19(SPEAG, No.DAE4-1525_Aug19) Cal Date(Calibrated by, Certificate No.) S 18-Jun-19(CTTL, No.J19X05127) 10-Feb-20(CTTL, No.J20X00515)	Scheduled Calibration Jun-20 Jun-20 Feb-22 Feb-22 /2) May-20 9) Aug-20 cheduled Calibration Jun-20 Feb-21
humidity<70%. Calibration Equipment use Primary Standards Power Meter NRP2 Power sensor NRP-291 Power sensor NRP-291 Reference 10dBAttenua Reference 20dBAttenua Reference Probe EX3D DAE4 Secondary Standards SignalGenerator MG370 Network Analyzer E507 Calibrated by:	ed (M&TE critical for ca ID # 101919 101547 101548 ator 18N50W-10dB ator 18N50W-20dB NV4 SN 7307 SN 1525 ID # 00A 6201052605 1C MY46110673 Name Yu Zongying	libration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 18-Jun-19(CTTL, No.J19X05125) 10-Feb-20(CTTL, No.J20X00526) 24-May-19(SPEAG, No.EX3-7307_May19) 26-Aug-19(SPEAG, No.DAE4-1525_Aug19) 26-Aug-19(SPEAG, No.DAE4-1525_Aug19) Cal Date(Calibrated by, Certificate No.) S 18-Jun-19(CTTL, No.J19X05127) 10-Feb-20(CTTL, No.J20X00515) Function SAR Test Engineer	Scheduled Calibration Jun-20 Jun-20 Feb-22 Feb-22 /2) May-20 9) Aug-20 cheduled Calibration Jun-20 Feb-21

Certificate No: Z20-60085

Page 1 of 9

In Collaboration with

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i $\theta=0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat
 phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:Z20-60085

Page 2 of 9

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7522

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	0.43	0.44	0.51	±10.0%
DCP(mV) ^B	99.1	99.3	102.4	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Unc ^E (k=2)
0 CW	0	X	0.0	0.0	1.0	0.00	149.8	±2.7%
	P 22	Y	0.0	0.0	1.0		153.0	
		Z	0.0	0.0	1.0		174.8	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4).

^B Numerical linearization parameter: uncertainty not required.

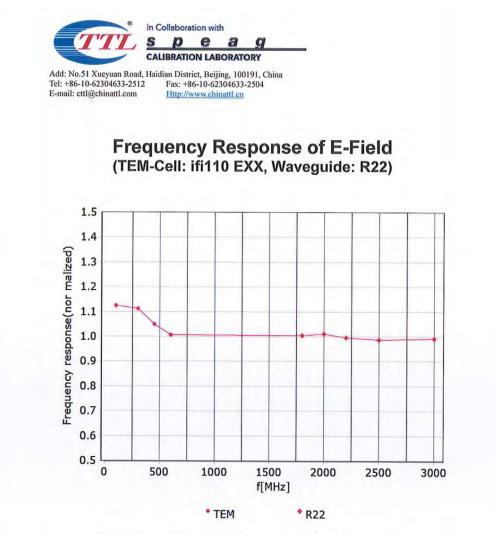
^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No:Z20-60085

Page 3 of 9

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7522

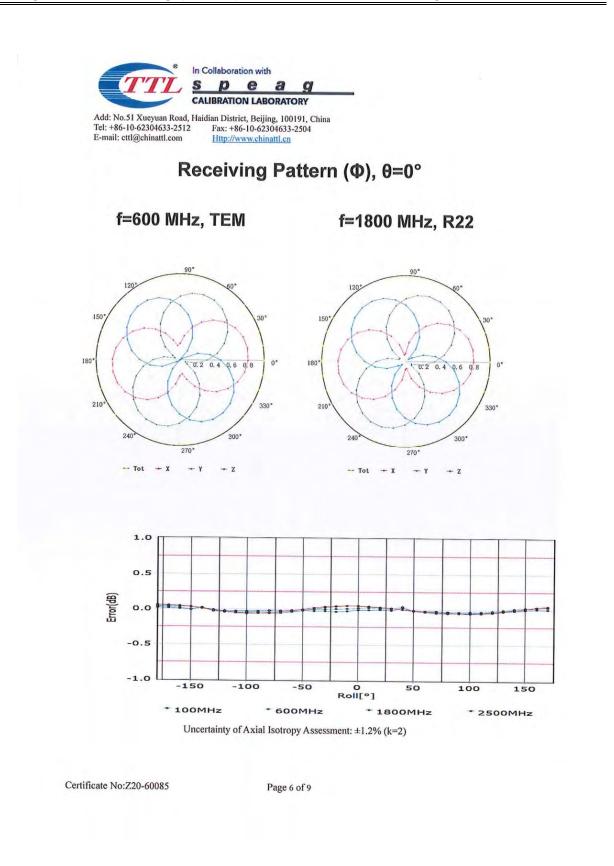
Calibration Parameter Determined in Head Tissue Simulating Media

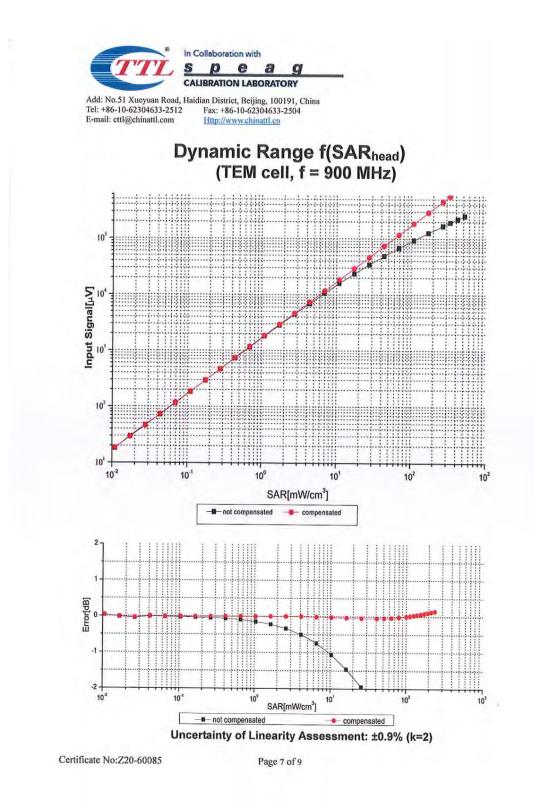

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.92	9.92	9.92	0.40	0.75	±12.1%
900	41.5	0.97	9.40	9.40	9.40	0.13	1.95	±12.1%
1750	40.1	1.37	8.21	8.21	8.21	0.22	1.08	±12.1%
1900	40.0	1.40	7.95	7.95	7.95	0.21	1.22	±12.1%
2300	39.5	1.67	7.53	7.53	7.53	0.44	0.81	±12.1%
2450	39.2	1.80	7.15	7.15	7.15	0.48	0.79	±12.1%
2600	39.0	1.96	7.04	7.04	7.04	0.59	0.72	±12.1%
5200	36.0	4.66	5.20	5.20	5.20	0.45	1.75	±13.3%
5300	35.9	4.76	4.96	4.96	4.96	0.45	1.75	±13.3%
5600	35.5	5.07	4.55	4.55	4.55	0.45	1.60	±13.3%
5800	35.3	5.27	4.65	4.65	4.65	0.45	1.65	±13.3%

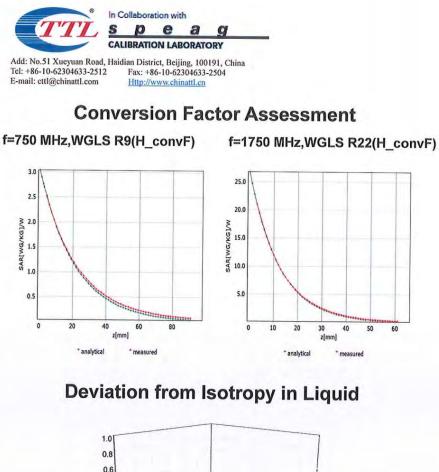

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

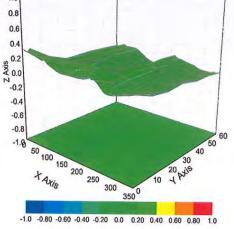
^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No:Z20-60085


Page 4 of 9




Certificate No:Z20-60085


Page 5 of 9

60

Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2)

Certificate No:Z20-60085

Page 8 of 9

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7522

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	31.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No:Z20-60085

Page 9 of 9

SAR Test Report

APPENDIX D DIPOLE CALIBRATION CERTIFICATES

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: D1900V2-5d231_Jan20

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

BACL USA Client

CALIBRATION CERTIFICATE D1900V2 - SN:5d231 Object QA CAL-05.v11 Calibration procedure(s) Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: January 14, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)"C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Primary Standards ID # Cal Date (Certificate No.) Power meter NRP SN: 104778 03-Apr-19 (No. 217-02892/02893) Apr-20 03-Apr-19 (No. 217-02892) Apr-20 Power sensor NBP-Z91 SN: 103244 Power sensor NRP-Z91 SN: 103245 03-Apr-19 (No. 217-02893) Apr-20 Apr-20 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-19 (No. 217-02894) SN: 5047.2 / 06327 04-Apr-19 (No. 217-02895) Apr-20 Type-N mismatch combination Reference Probe EX3DV4 SN: 7349 31-Dec-19 (No. EX3-7349_Dec19) Dec-20 27-Dec-19 (No. DAE4-601_Dec19) Dec-20 DAE4 SN: 601 Scheduled Check Secondary Standards ID # Check Date (in house) SN: GB39512475 30-Oct-14 (in house check Feb-19) In house check: Oct-20 Power meter E4419B SN: US37292783 07-Oct-15 (in house check Oct-18) In house check: Oct-20 Power sensor HP 8481A Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-18) In house check: Oct-20 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-18) In house check: Oct-20 Network Analyzer Agilent E8358A In house check: Oct-20 SN: US41080477 31-Mar-14 (in house check Oct-19) Function Name Signature Laboratory Technician

Approved by:

Calibrated by:

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Claudio Leubler

Katja Pokovic

Certificate No: D1900V2-5d231_Jan20

Page 1 of 6

Technical Manager

Issued: January 15, 2020

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

S

C

S

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d231_Jan20

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.3
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.4 ± 6 %	1.39 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.96 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.3 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	5.19 W/kg

Page 3 of 6

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.5 Ω + 4.3 jΩ
Return Loss	- 26.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.200 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

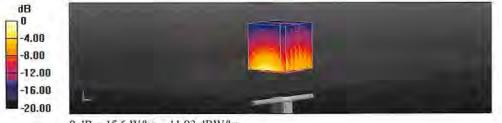
Page 4 of 6

DASY5 Validation Report for Head TSL

Date: 14.01.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d231

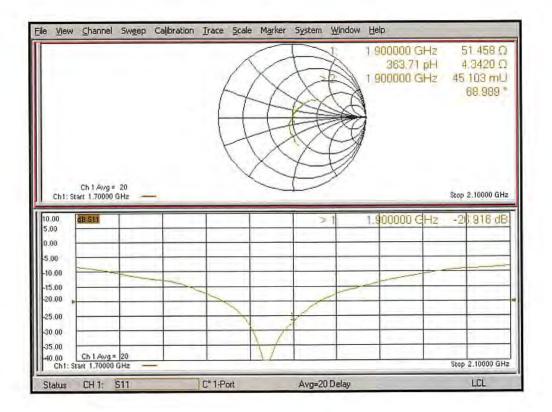

Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.39$ S/m; $\varepsilon_r = 41.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63,19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.6, 8.6, 8.6) @ 1900 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- · Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.0 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 18.7 W/kg SAR(1 g) = 9.96 W/kg; SAR(10 g) = 5.19 W/kg Smallest distance from peaks to all points 3 dB below = 9.8 mm Ratio of SAR at M2 to SAR at M1 = 53.9% Maximum value of SAR (measured) = 15.6 W/kg



0 dB = 15.6 W/kg = 11.93 dBW/kg

Certificate No: D1900V2-5d231_Jan20

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-5d231_Jan20

Page 6 of 6

***** END OF REPORT *****

SAR Test Report

53 of 53