APPENDIX B PROBE CALIBRATION CERTIFICATES

T-03- EM 401

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

BACL-TW (Auden)

Certificate No: EX3-7522_Nov18

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:7522

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

November 2, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
Reference Probe ES3DV2	SN: 3013	30-Dec-17 (No. ES3-3013_Dec17)	Dec-18
DAE4	SN: 660	21-Dec-17 (No. DAE4-660_Dec17)	Dec-18
Secondary Standards	ID.	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

Calibrated by:

Claudio Leubler

Claudio Leubler

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: November 6, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdiens
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization ϕ ϕ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., $\theta = 0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

 IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

 iEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016

 EC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

November 2, 2018

Probe EX3DV4

SN:7522

Manufactured: Calibrated:

February 26, 2018 November 2, 2018

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.43	0.43	0.52	± 10.1 %
DCP (mV) ⁸	99.1	100.0	97.2	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [±] (k=2)
0	CW	X	0.0	0.0	1.0	0.00	143.2	±3.3 %
		Y	0.0	0.0	1.0		148.1	
		Z	0.0	0.0	1.0		140.5	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^h The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	9.78	9.78	9.78	0.53	0.87	± 12.0 %
850	41.5	0.92	9.46	9.46	9.46	0.44	0.92	± 12.0 %
1750	40.1	1.37	8.20	8.20	8.20	0.34	0.88	± 12.0 %
1900	40.0	1.40	7.91	7.91	7.91	0.34	0.86	± 12.0 %
2000	40.0	1.40	7.78	7.78	7.78	0.35	0.86	± 12.0 %
2300	39.5	1.67	7.35	7.35	7.35	0.33	0.90	± 12.0 %
2450	39.2	1.80	6.97	6.97	6.97	0.30	1.05	± 12.0 %
2600	39.0	1.96	6.79	6.79	6.79	0.35	0.99	± 12.0 %
5250	35.9	4.71	5.05	5.05	5.05	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.48	4.48	4.48	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.76	4.76	4.76	0.40	1.80	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

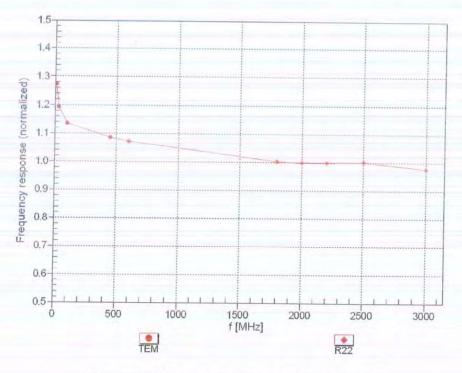
F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	9.80	9.80	9.80	0.44	0.90	± 12.0 %
850	55.2	0.99	9.54	9.54	9.54	0.47	0.84	± 12.0 %
1750	53.4	1.49	7.88	7.88	7.88	0.34	0.88	± 12.0 %
1900	53.3	1.52	7.48	7.48	7.48	0.40	0.85	± 12.0 %
2000	53.3	1.52	7.36	7.36	7.36	0.40	0.85	± 12.0 %
2300	52.9	1.81	7.27	7.27	7.27	0.40	0.90	± 12.0 %
2450	52.7	1.95	7.05	7.05	7.05	0.30	1.10	± 12.0 %
2600	52.5	2.16	6.95	6.95	6.95	0.50	0.90	± 12.0 %
5250	48.9	5.36	4.77	4.77	4.77	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.27	4.27	4.27	0.50	1.90	± 13.1 %
5800	48.2	6.00	4.31	4.31	4.31	0.50	1.90	± 13.1 %

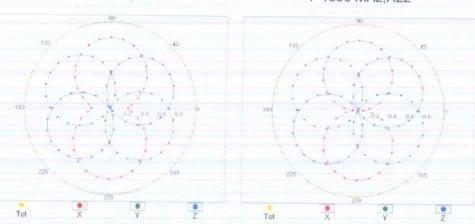

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The requency Valloty above 300 MHz of ± 100 MHz only applies for DAST v4.4 and righter (see Fage 2), ease it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

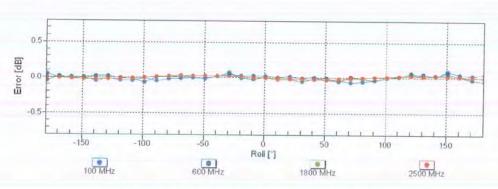
Full frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of

the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration, SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

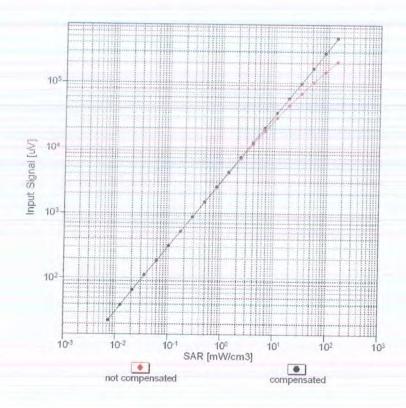
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

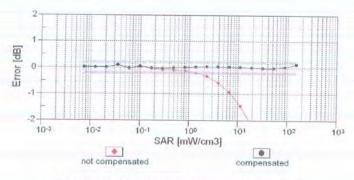



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

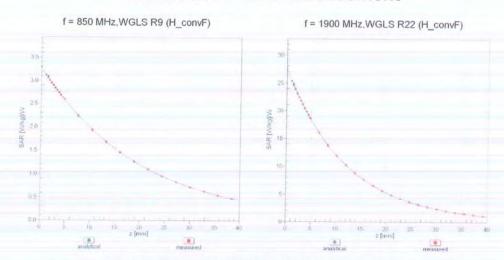
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

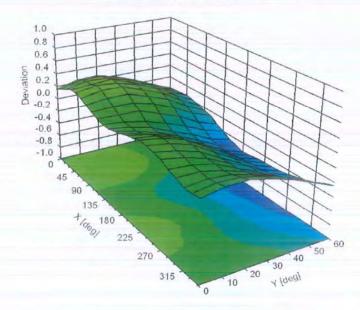
f=600 MHz,TEM

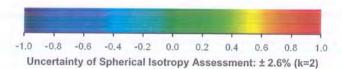

f=1800 MHz,R22



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	30.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

DIPOLE CALIBRATION CERTIFICATES

NCL CALIBRATION LABORATORIES

Calibration File No: DC-1748 Project Number: 5822

Client.: BACL Corp.

Address: 6/F, the 3rd Phase of Wan Li Industrial Bldg., Shihua Rd.,
FuTian Free Trade Zone, Shenzhen, China

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Validation Dipole (Head & Body)

Manufacturer: APREL Laboratories
Part number: ALS-D-1900-S-2
Frequency: 1900 MHz
Serial No: 210-00710

Calibrated: 20th September 2017 Released on: 27th September 2017

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

Art Brennan, Quality Manager

NCL CALIBRATION LABORATORIES

Suite 102, 303 Terry Fox E Kanata, ONTARIO CANADA K2K 3J1 Division of APREL Lab. TEL: (613) 435-8300 FAX: (613)435-8306 Division of APREL Laboratories

DC-1748

Conditions

Dipole 210-00710 was a re-calibration.

Ambient Temperature of the Laboratory: 21 $^{\circ}$ C +/- 0.5 $^{\circ}$ C Temperature of the Tissue: 21 $^{\circ}$ C +/- 0.5 $^{\circ}$ C

Attestation

The below named signatories have conducted the calibration and review of the data which is presented in this calibration report.

We the undersigned attest that to the best of our knowledge the calibration of this system has been accurately conducted and that all information contained within this report has been reviewed for accuracy).

Art Brennan QM

Maryna Nesterova R&D Engineer

Primary Measurement Standards

 Instrument
 Serial Number
 Cal due date

 Tektronix USB Power Meter
 11C940
 April 13, 2019

 Network Analyzer Anritsu 37347C
 002106
 Jan. 26, 2019

 Agilent Signal Generator
 MY45094463
 Dec. 11, 2017

Dipole SN 210-00710

NCL Calibration Laboratories

Division of APREL Laboratories

DC-1748

Calibration Results Summary

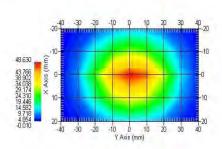
The following results relate the Calibrated Dipole and should be used as a quick reference for the user.

Mechanical Dimensions

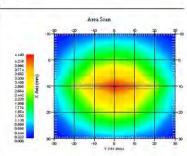
Length	Height	Diameter
67.5 mm	39.5 mm	3.6 mm

Tissue Validation

Tissue	Frequency	Dielectric constant, er	Conductivity, σ [S/m]
Head	1900 MHz	39.44	1.41
Body	1900 MHz	52.70	1.57


Electrical Specification

Tissue	Frequency	Return Loss	SWR	Impedance
Head	1900 MHz	-28.662 dB	1.077 U	52.368 Ω
Body	1900 MHz	-22.498 dB	1.162 U	55.211 Ω


System Validation Results

Tissue	Frequency	1 Gram, W/kg	10 Gram, W/kg
Head	1900 MHz	42.14	21.89
Body	1900 MHz	42.11	22.12

Head

Body

Dipole 210-00710

Page 3 of 7
This page has been reviewed for content and attested to on Page 2 of this document.

Introduction

This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole 210-00710. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 30 MHz to 6 GHz E-Field Probe Serial Number 225.

References

- IEEE Standard 1528:2013
 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- EN 62209-1:2006
 Human Exposure to RF Fields from hand-held and body-mounted wireless communication devices Human models. instrumentation, and procedures Part 1: Procedure to measure the Specific Absorption Rate (SAR) for hand-held mobile wireless devices
 - EC 62209-2:2010

 Human exposure to RF fields from hand-held and body-mounted wireless devices Human models, instrumentation, and procedures Part 2: specific absorption rate
 (SAR) for wireless communication devices (30 MHz 6 GHz)
- D22-012-Tissue dielectric tissue calibration procedure
- o D28-002-Dipole procedure for validation of SAR system using a dipole
- IEEE 1309 Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9 kHz to 40 GHz

Conditions

Ambient Temperature of the Laboratory: 21 °C +/- 0.5°C Temperature of the Tissue: 21 °C +/- 0.5°C

Dipole Calibration uncertainty

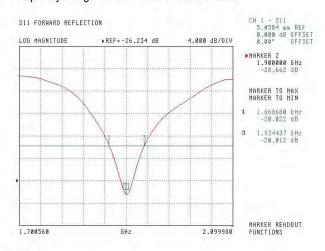
The calibration uncertainty for the dipole is made up of various parameters presented below.

Mechanical1%Positioning Error1.22%Electrical1.7%Tissue2.2%Dipole Validation2.2%

Combined Standard Uncertainty 3.88% (7.76% K=2)

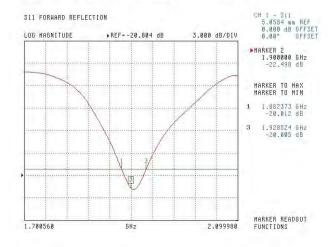
The Following Graphs are the results as displayed on the Vector Network Analyzer.

Dipole 210-00710


Page 4 of 7

This page has been reviewed for content and attested to on Page 2 of this document.

S11 Parameter Return Loss


Head

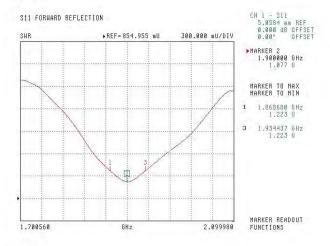
Frequency Range 1868.68 MHz to 1934.44 MHz

Body

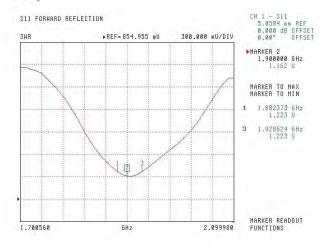
Frequency Range 1882.37 MHz to 1928.52 MHz

Dipole 210-00710

Page 5 of 7
This page has been reviewed for content and attested to on Page 2 of this document.


NCL Calibration Laboratories

Division of APREL Laboratories

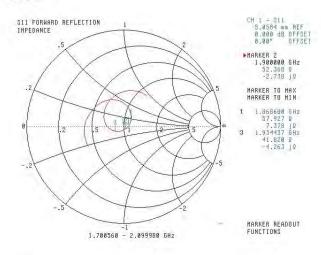

DC-1748

SWR

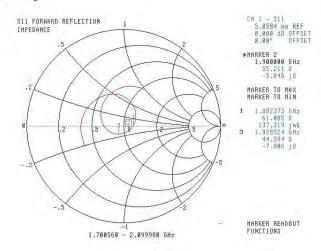
Head

Body

Dipole 210-00710


Page 6 of 7
This page has been reviewed for content and attested to on Page 2 of this document.

Division of APREL Laboratories


DC-1748

Smith Chart Dipole Impedance

Head

Body

Dipole 210-00710

Page 7 of 7

This page has been reviewed for content and attested to on Page 2 of this document.