
E2E Bluetooth 4.0 Compliant Sensor v1.0

Overview

The E2E sensor (E2ES) is a Bluetooth 4.0-compliant device that logs temperature data. E2ES
was designed to be easy to use and to overcome the shortfalls of other similar devices.

E2ES uses a virtual UART-style communication scheme on top of Bluetooth 4.0 services. E2ES
logs data in a circular fashion and may make use of its single push-button and green LED
for user interaction. E2ES also has provisions for additional sensors such as Light or Vibration.

Bluetooth Attributes

E2ES design is based on the Nordic nRF52832 ARM based device with integrated 2.4 GHz
radio which exhibits the following characteristics:

- Advertise Interval
- Battery Life

1 - 2 Seconds
~3 Years

Logger Attributes

E2ES logging is built on top of the Nordic platform but is an abstraction that can be adapted to
other radio communication devices. Many of the properties of the logging facilities are
governed by the underlying platform and may change in future updates or different hardware.
Logging is mildly configurable. All configurable options can be set over Bluetooth while the
logger is Stopped.

- Data Point Limit
- Data Storage Method
- Temperature Range
- Temperature Accuracy
- Log Interval
- Log Delay

12,000
32 bit word with 3 10-bit temperatures and 2 bits for mark data
-50 to +50 Degrees Celsius
+/- 0.5 Degrees Celsius
1 to 2^16 Seconds
1 to 2^16 Seconds

E2ES Interaction

E2ES Interaction begins with a Bluetooth 4.0 scan. All valid E2ES are Generally Discoverable
and will advertise a packet containing the name ‘E2ESensor’ in the payload. Once found, issue
a Service Discovery to find the transmit and receive services. Communication is now possible
by writing data to the transmit channel and reading from the receive channel.

E2ESensor Bluetooth
Central

RX Char: 00000002-0043-4C4C-5049-5254706D6554

TX Char: 00000003-0043-4C4C-5049-5254706D6554

E2ES communication can be done in two ways. The first way is to do a ‘write verify’ on the TX
line. A write verify will only return once the RX buffer has been filled and you can safely do a
read from the RX channel. The second way would be to write data on the TX channel and await
a ‘notify’ event that indicated the RX channel has data available. The first method is well tested
and the current recommended approach.

© 2018 End2End Sensors LLC, ALL RIGHTS RESERVED

E2ES States

E2ES may be in one of three states:

Idle Started Silenced

In the Idle state, no data is being logged and there is no radio activity. The only way to remove
the E2ES from Idle is to manually push the button.

In the Started state, data is being logged in the circular buffer and the Radio is functioning. The
only way to stop the E2ES from logging is to issue the Halt command.

In the Silenced state, data is being logged in the circular buffer and there is no radio activity.
The only way to go back to Started state is to manually push the button OR the E2ES will revert
to the logging state after X seconds (set when entering Silenced state).

E2ES Commands

Command Format:
 uint8 uint8 up to 16 bytes

Endian Command Args

Response Format:
 uint8 uint8 up to 507 bytes

DataCommand Error

Commands take an endian value which dictates the endian of the command and the endian of
the response data. The second value is the command type followed by any arguments.

Responses are prefaced by their command type for verification and dispatch. The second value
is the error flag and the remaining bytes are any data returned by the command issued.

Endian Values:
 0 = Little, 1 = Big

Commands:
 ‘I’ = Info
 ’T’ = Current Temperature
 ‘R’ = Read Block
 ‘U’ = Unlock
 ’S’ = Silence
 ‘H’ = Halt
 ‘Q’ = Quell

Errors:
 0 = Success
 1 = Unknown Command
 2 = Bad Permissions
 3 = Incorrect Password
 4 = Unknown Error

Permission Level:
 0 = Level 0
 1 = Level 1

States:
 0 = Idle
 1 = Started

© 2018 End2End Sensors LLC, ALL RIGHTS RESERVED

© 2018 End2End Sensors LLC, ALL RIGHTS RESERVED

Info Command
Takes no arguments and returns a known response format containing all available information
about the connected E2ES.
Ex:

 TX ->
0x01 - Endian
0x49 - Command (Info)

 RX <-
0x49 - Command (Info)
0x00 - Error (success)
0x00 - Permission (Level 0)
0x00 - State (Idle)
0x00 0x03 - Version (0.3)
0x5A 0x02 - Power (2.9) - not right, Endian appears backwards
0x00 0x00 - Data Points Logged (0)
0x01 0x00 - Data Bytes per Block (256)
0x00 0xC0 - Data Points per Block (192)
0x02 0x58 - Log Interval (600)
0xD8 0x63 0xE3 0x4D 0xA5 0xD2 0xBE 0x01 0xAB 0x48 0x68 0x8D 0x2C 0x5A 0x93 0x61
 - Remaining 16 bytes are the logon challenge

Discovering Endian of Central system (Example in javascript):

function checkEndian() {

 if (endianness === undefined) {

 var a = new ArrayBuffer(4);
 var c = new Uint32Array(a);

 c[0] = 0x01020304;

 if(b[0] === 0x04) return 0; // Little

 if(b[0] === 0x01) return 1; // Big
 }
}

Current Temperature Command
Takes no arguments and returns a 16 bit response containing the current temperature reported
by the connected E2ES. Value requires conversion - See ‘Parsing Temperature Data’ below.
Ex:

 TX ->
0x01 - Endian
0x54 - Command (Temperature)

 RX <-
0x54 - Command (Temperature)
0x00 - Error (success)
0x02 0x8E - Temperature (15.4 C)

Command List

© 2018 End2End Sensors LLC, ALL RIGHTS RESERVED

© 2018 End2End Sensors LLC, ALL RIGHTS RESERVED

Read Block Command
Takes a single uint8 type argument designating the Block to read. Returns a data payload equal
in bytes to the ‘Data Bytes per Block’ value returned by the Info command.
Ex:

 TX ->
0x01 - Endian
0x52 - Command (Read)
Args… - uint8 value for the sequential block number to read.

 RX <-
0x52 - Command (Read)
0x00 - Error (success)
0x04 - Block Number (4)

Unlock Command
Takes a 16 byte argument that must be the calculated challenge response. All commands
except the Info command require Unlock Level 1! Current prototypes do not check the
response code so you can send any sequence of bytes, for now.
Ex:

 TX ->
0x01 - Endian
0x55 - Command (Unlock)
0x00 - 16 byte challenge response
….
0x0F

 RX <-
0x55 - Command (Unlock)
0x00 - Error (success)

Silence Command
Takes a single uint16 type argument representing the time in seconds the radio should be
offline. Passing in a value of 0 will have no effect.
Ex:

 TX ->
0x01 - Endian
0x53 - Command (Silence)
0x01 - Silence time (0x012C = 300 seconds)
0x2C

 RX <-
0x53 - Command (Silence)
0x00 - Error (success)

Halt Command
Takes no arguments. Issuing the Halt command will cause the E2ES to enter Idle mode. Data
will not be logged and the Radio interface will be down.
Ex:

 TX ->
0x01 - Endian
0x48 - Command (Halt)

 RX <-
0x48 - Command (Halt)
0x00 - Error (success)

© 2018 End2End Sensors LLC, ALL RIGHTS RESERVED

© 2018 End2End Sensors LLC, ALL RIGHTS RESERVED

Quell Command
Takes two uint16 type arguments. The first argument represents the Logging Interval in
seconds and the second represents the Log Delay in seconds. If the Log Interval is not
supplied (0x0000) The E2ES will use its internal default value of 600 seconds. Log Delay
functionality is optional and accepts a value of 0. Quelling the E2ES causes all data to be
cleared and starts device logging with an optionally new Log Interval.
Ex:

 TX ->
0x01 - Endian
0x51 - Command (Quell)
0x01 - Log Interval (300 seconds)
0x2C
0x00 - Log Delay (0 seconds)
0x00

 RX <-
0x51 - Command (Quell)
0x00 - Error (success)

Parsing Temperature Data

The individual temperature points are shifted so that their resolution fits in their given bit size for
an ideal range. With the current logging scheme, 10 bit values are ‘normalized’ via the following
formula:
 (temp - 500) / 10.0

For example, in the Temperature command we received a value of 0x028E which is decimal
value 654:
 (654 - 500) / 10.0 = 15.4 Degrees C

Logged data is parsed in the same manner but must first be extracted from its 32 bit Word.
Every Block will be a byte count that is equally divisible by 4. This is because the data is
compacted into 4 byte (32 bit) Words:

 2 bits 10 bits 10 bits 10 bits

Parsing Mark events is easy; just line up the count to the temperature:

0 = No Mark
1 = Mark between Start and Temp 1
2 = Mark between Temp 1 and Temp 2
3 = Mark between Temp 2 and Temp 3

Temperatures are parsed in the same manner as before, the only trick here is removing the 10
bit values from the 32 bit word. This is accomplished with a simple bit shift.

As an example, let’s say we have a Block starting with Word 0xA8BA2285:

0xA8BA2285 >> 30 = 2 => There was a Mark Event between Temp 1 and Temp 2.

(0xA8BA2285 >> 20) & 0x3FF = 651 => 15.1 Degrees C

(0xA8BA2285 >> 10) & 0x3FF = 648 => 14.8 Degrees C

(0xA8BA2285) & 0x3FF = 645 => 14.5 Degrees C

This procedure is repeated for every Word in every Block, sequentially, until all data has been
converted.

Marks Temp 1 Temp 2 Temp 3

© 2018 End2End Sensors LLC, ALL RIGHTS RESERVED

E2ES Common Operation

The general use case for E2ES is to find it, read some or all of the data available, and then
optionally Quell it and/or silence it. If going into storage, Halting is also an option. Since the
data storage method and block size may change with future firmware or new hardware it is
best to write code that is dynamic based on information from the Info command.

Reading all E2ES data can be accomplished simply by taking the ‘Data Points Logged’ value
and dividing by the ‘Data Points per Block’ and reading the necessary number of blocks via the
Read command.

Reading partial data can be accomplished in a similar fashion as before but only Read the last
blocks totaling the number of points you would like to read.

Fresh E2ES Idle Logging
@600 SecondsPower On Press Button

Quick Start

Read Procedure

Bluetooth 4
Scan E2ES Found Initialize

Connection

Connected Initialize Service
Discovery

Services
Discovered

Send Info
Command

Info Command
Response

Send Unlock
Command

Unlock Command
Response

Send Read
Command

Read Command
Response

Send Temp
Command

Temp Command
Response

Send Quell
Command

Quell Command
Response

Send Halt
Command

Halt Command
Resp

Bluetooth 4.0 General Procedure

Need
Current
Temp?

Need Data
Block?

Disconnect

Silence
E2ES?

Quell
E2ES?

Send Silence
Command

Silence Command
Response

Halt
E2ES?

© 2018 End2End Sensors LLC, ALL RIGHTS RESERVED

© 2018 End2End Sensors LLC, ALL RIGHTS RESERVED

Known Issues

Planned Future Changes

- All Arguments that have values in time (seconds) will be increased to 32 bit types.
- Security Challenge will be calculated and enforced.
- Info command will return seconds since last data point was logged for increased time
accuracy.
- Data will be stored in non-volatile memory so it is not lost on error.
- Light Sensor will be added with similar functionality to the button Mark.

© 2018 End2End Sensors LLC, ALL RIGHTS RESERVED

