1. RF Exposure Requirements

1.1 General Information

Client Information

Applicant:
Address of applicant:

Manufacturer:
Address of manufacturer:

General Description of EUT:

Product Name:
Trade Name:
Model No.:
Adding Model(s):
Rated Voltage:
Battery Capacity
Power Adapter Model:
FCC ID:
Equipment Type:

Kool Brands, LLC.
1450 Vassar Street Reno, Nevada 89502 United States

Innex, Inc
2/F, BId\#10, TongFuYu Industrial park, Lezhujiao, Xixiang, Ban’an, Shenzhen, China

Wireless Controller for Xbox 360
Retro-Bit
X5811
X5812, X5813, X5814, X5815
Battery DC3.7V
600mAh
/
2ARPV-X5811
Portable device

Technical Characteristics of EUT:
Frequency Range:
Max. Field Strength:
Modulation:
Quantity of Channels:
Channel Separation:
Antenna Type:
Antenna Gain:
$2402 \mathrm{MHz}-2480 \mathrm{MHz}$
92.80dBuV/m

GFSK
40
2 MHz
PCB Antenna
0 dBi

1.2 RF Exposure Exemption

According to §1.1307(b)(3) and KDB 447498 D04 Interim General RF Exposure Guidance v01, system operating under the provisions of this section shall be operating in a manner that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure.

Option A: FCC Rule Part 1.1307 (b)(3)(i)(A):The available maximum time-averaged power is no more than 1 mW , regardless of separation distance.

Option B: FCC Rule Part 1.1307 (b)(3)(i)(B): The available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold $\mathrm{P}_{\mathrm{tt}}(\mathrm{mW})$ described in the following formula. P_{th} is given by:

$$
P_{t h}(\mathrm{~mW})= \begin{cases}E R P_{20 \mathrm{~cm}}(d / 20 \mathrm{~cm})^{x} & d \leq 20 \mathrm{~cm} \\ E R P_{20 \mathrm{~cm}} & 20 \mathrm{~cm}<d \leq 40 \mathrm{~cm}\end{cases}
$$

Where

$$
x=-\log _{10}\left(\frac{60}{E R P_{20 c m} \sqrt{f}}\right) \text { and } f \text { is in } \mathrm{GHz} ;
$$

and

$$
E R P_{20 \mathrm{~cm}}(\mathrm{~mW})= \begin{cases}2040 f & 0.3 \mathrm{GHz} \leq f<1.5 \mathrm{GHz} \\ 3060 & 1.5 \mathrm{GHz} \leq f \leq 6 \mathrm{GHz}\end{cases}
$$

$d=$ the separation distance (cm);

Option C: FCC Rule Part 1.1307 (b)(3)(i)(C): The minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates, the ERP (watts) is no more than the calculated value prescribed for that frequency. R must be at least $\lambda / 2 \pi$, where λ is the free-space operating wavelength in meters.

Single RF Sources Subject to Routine Environmental Evaluation	
RF Source frequency (MHz)	Threshold ERP (watts)
$0.3-1.34$	$1,920 \mathrm{R}^{2}$
$1.34-30$	$3,450 \mathrm{R}^{2} / \mathrm{f}^{2}$
$30-300$	$3.83 \mathrm{R}^{2}$
$300-1,500$	$0.0128 \mathrm{R}^{2} \mathrm{f}$
$1,500-100,000$	$19.2 \mathrm{R}^{2}$

For Multiple RF sources: FCC Rule Part 1.1307(b)(3)(ii):
(A) The available maximum time-averaged power of each source is no more than 1 mW and there is a separation distance of two centimeters between any portion of a radiating structure operating and the nearest portion of any other radiating structure in the same device, except if the sum of multiple sources is less than 1 mW during the time-averaging period, in which case they may be treated as a single source (separation is not required).
(B) In the case of fixed RF sources operating in the same time-averaging period, or of multiple mobile or portable RF sources within a device operating in the same time averaging period, if the sum of the fractional contributions to the applicable thresholds is less than or equal to 1 as indicated in the following equation.

$$
\sum_{i=1}^{a} \frac{P_{i}}{P_{t h, i}}+\sum_{j=1}^{b} \frac{E R P_{j}}{E R P_{t h, j}}+\sum_{k=1}^{c} \frac{\text { Evaluated }_{k}}{\text { Exposure Limit }} k \text { } \leq 1
$$

1.3 Calculated Result

Radio Access Technology	Prediction Frequency	Max. Field Strength	Antenna Gain	Output Power	Tune-Up Power	ERP
	(MHz)	$(\mathbf{d B u V} / \mathrm{m})$	$(\mathbf{d B i})$	$(\mathbf{d B m})$	$(\mathbf{d B m})$	$(\mathbf{d B m})$
SRD	2402	92.80	0	-2.46	-2.00	-4.15

Frequency	Option	Min. Distance	Max	ower	Exposure Limit	Ratio	Result
(MHz)		(cm)	(dBm)	(mW)	(mW)		Pass/Fail
2402	B	0.5	-2.00	0.63	2.788	0.23	Pass

Note: 1. EIRP=E-104.8+20logD; Output Power=EIRP- Antenna Gain;
$E R P=E I R P-2.15 d B$
2. Option A, B and C refers as clause 1.2.
3. For option B, Max (time-averaged power, effective radiated power (ERP)) converts to Max. Power. For option C, ERP converts to Max. Power;
4. For option B, Pth $(m W)$ converts to Exposure Limit (mW); For option C, ERP (W) converts to Exposure Limit (mW).
5. Ratio $=$ Tune-Up ERP $(m W)$ / Exposure Limit ($m W$)

Mode for Simultaneous Multi-band Transmission:

Radio Access Technology	Ratio 1	Ratio 2	Ratio 3	Simultaneous Ratio	Limit	Result
$/$	$/$	$/$	$/$	$/$	$/$	$/$

Result: Pass

