

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Report No.: SZEM180900849702

Fax: +86 (0) 755 2671 0594 Page: 1 of 41

TEST REPORT

Application No.: SZEM1809008497CR

Applicant / Manufacturer: SHANTOU CITY CHENGHAI DISTRICT ZHICHONG TOYS CO., LTD Address of Applicant / CHENGHAI DISTRICT, SHANTOU CITY, GUANGDONG PROVINCE,

Manufacturer: CHINA

Equipment Under Test (EUT):

EUT Name: FOUR AXIS AIRCRAFT

Model No.: Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10, Z11, Z12, Z13, Z14, Z15, Z16, Z17,

Z18, Z19, Z20, Z21, Z22, Z23, Z24, Z25, Z26, Z27, Z28, Z29, Z30, Z31, Z32, Z33, Z34, Z35, Z36, Z37, Z38, Z39, Z40, Z41, Z42, Z43, Z44, Z45, Z46, Z47, Z48, Z49, Z50, Z51, Z52, Z53, Z54, Z55, Z56, Z57, Z58, Z59, Z60, Z61, Z62, Z63, Z64, Z65, Z66, Z67, Z68, Z69, Z70, Z71, Z72, Z73,

Z74, Z75, Z76, Z77, Z78, Z79, Z80 *

Please refer to section 2 of this report which indicates which model was

actually tested and which were electrically identical.

FCC ID: 2ARPMZCZ2

Standard(s): 47 CFR Part 15, Subpart C 15.249

Date of Receipt: 2018-09-20

Date of Test: 2018-09-20 to 2018-09-25

Date of Issue: 2018-10-11

Test Result: Pass*

EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document dhereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: SZEM180900849702

Page: 2 of 41

	Revision Record					
Version	Version Chapter Date Modifier Rema					
01		2018-10-11		Original		

Authorized for issue by:		
	Biu chen	
	Bill Chen /Project Engineer	
	EvicFu	
	Eric Fu /Reviewer	

Report No.: SZEM180900849702

Page: 3 of 41

2 Test Summary

Radio Spectrum Technical Requirement						
Item	Standard	Method	Requirement	Result		
Antenna Requirement	47 CFR Part 15, Subpart C 15.249	N/A	47 CFR Part 15, Subpart C 15.203	Pass		

Radio Spectrum Matter Part							
Item	Standard	Method	Requirement	Result			
20dB Bandwidth	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.9	47 CFR Part 15, Subpart C 15.215	Pass			
Field Strength of the Fundamental Signal (15.249(a))	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.5&6.6	47 CFR Part 15, Subpart C 15.249(a)	Pass			
Restricted Band Around Fundamental Frequency	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.4&6.5&6.6	47 CFR Part 15, Subpart C 15.205 & 15.249(d) & 15.209	Pass			
Radiated Emissions	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.4&6.5&6.6	47 CFR Part 15, Subpart C 15.209 & 15.249 (a),(d)	Pass			

Remark:

Model No.: Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10, Z11, Z12, Z13, Z14, Z15, Z16, Z17, Z18, Z19, Z20, Z21, Z22, Z23, Z24, Z25, Z26, Z27, Z28, Z29, Z30, Z31, Z32, Z33, Z34, Z35, Z36, Z37, Z38, Z39, Z40, Z41, Z42, Z43, Z44, Z45, Z46, Z47, Z48, Z49, Z50, Z51, Z52, Z53, Z54, Z55, Z56, Z57, Z58, Z59, Z60, Z61, Z62, Z63, Z64, Z65, Z66, Z67, Z68, Z69, Z70, Z71, Z72, Z73, Z74, Z75, Z76, Z77, Z78, Z79, Z80

Only the model Z2 was tested, since the electrical circuit design, layout, components used, internal wiring and functions were identical for the above models, with only difference on color, appearance and packaging.

Report No.: SZEM180900849702

Page: 4 of 41

3 Contents

		rage
1	1 COVER PAGE	1
2	2 TEST SUMMARY	3
3	3 CONTENTS	4
		-
4		
	4.1 DETAILS OF E.U.T.	
	4.2 DESCRIPTION OF SUPPORT UNITS	
	4.3 MEASUREMENT UNCERTAINTY	
	4.5 TEST FACILITY	
	4.6 DEVIATION FROM STANDARDS	
	4.7 ABNORMALITIES FROM STANDARD CONDITIONS	7
5	5 EQUIPMENT LIST	8
6	6 RADIO SPECTRUM TECHNICAL REQUIREMENT	44
O		
	6.1 ANTENNA REQUIREMENT	
	6.1.1 Test Requirement:	
7	7 RADIO SPECTRUM MATTER TEST RESULTS	
•		
	7.1 20DB BANDWIDTH	
	7.1.1 E.U.T. Operation7.1.2 Test Setup Diagram	
	7.1.3 Measurement Procedure and Data	
	7.2 FIELD STRENGTH OF THE FUNDAMENTAL SIGNAL (15.249(A))	
	7.2.1 E.U.T. Operation	
	7.2.2 Test Setup Diagram	
	7.2.3 Measurement Procedure and Data	
	7.3 RESTRICTED BAND AROUND FUNDAMENTAL FREQUENCY	
	7.3.2 Test Setup Diagram	
	7.3.3 Measurement Procedure and Data	
	7.4 RADIATED EMISSIONS	30
	7.4.1 E.U.T. Operation	
	7.4.2 Test Setup Diagram	
	7.4.3 Measurement Procedure and Data	
8	8 PHOTOGRAPHS	41
	8.1 RADIATED EMISSIONS TEST SETUP	
	8.2 EUT CONSTRUCTIONAL DETAILS (EUT PHOTOS)	41

Report No.: SZEM180900849702

Page: 5 of 41

4 General Information

4.1 Details of E.U.T.

Power supply:	TX:DC 6.0V by 1.5V x 4"AA" batteries
Operation Frequency	2440MHz to 2465MHz
Modulation Type	GFSK
Number of Channels	17
Antenna Gain	3.0dBi
Antenna Type	Integral antenna

Operation Frequency each of channel							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2440	6	2448	11	2458	16	2463
2	2442	7	2449	12	2459	17	2465
3	2444	8	2450	13	2460		
4	2445	9	2455	14	2461		
5	2446	10	2456	15	2462		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel(CH1)	2440MHz
The Middle channel(CH8)	2450MHz
The Highest channel(CH17)	2465MHz

Report No.: SZEM180900849702

Page: 6 of 41

4.2 Description of Support Units

The EUT has been tested as an independent unit.

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	± 7.25 x 10 ⁻⁸
2	Duty cycle	± 0.37%
3	Occupied Bandwidth	± 3%
4	RF conducted power	± 0.75dB
5	RF power density	± 2.84dB
6	Conducted Spurious emissions	± 0.75dB
7	DE Dodicted nower	± 4.5dB (below 1GHz)
/	RF Radiated power	± 4.8dB (above 1GHz)
8	Dadiated Courieus emission test	± 4.5dB (Below 1GHz)
٥	Radiated Spurious emission test	± 4.8dB (Above 1GHz)
9	Temperature test	± 1 ℃
10	Humidity test	± 3%
11	Supply voltages	± 1.5%
12	Time	± 3%

Report No.: SZEM180900849702

Page: 7 of 41

4.4 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

· CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC

Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 3m Fully-anechoic chamber for above 1GHz, 10m Semi-anechoic chamber for below 1GHz, Shielded Room for Mains Port Conducted Interference Measurement and Telecommunication Port Conducted Interference Measurement of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-20026, R-14188, C-12383 and T-11153 respectively.

FCC –Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

Innovation, Science and Economic Development Canada

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized by ISED as an accredited testing laboratory.

CAB identifier: CN0006.

IC#: 4620C.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

Report No.: SZEM180900849702

Page: 8 of 41

5 Equipment List

20dB Bandwidth					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2018-09-25	2019-09-24
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2018-09-27	2019-09-26
Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.	N/A	N/A	N/A
Coaxial Cable	SGS	N/A	SEM031-02	2018-07-12	2019-07-11
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2018-09-27	2019-09-26
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2018-09-25	2019-09-24

Restricted Band Around Fundamental Frequency						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2018-03-13	2021-03-12	
Measurement Software	AUDIX	e3 V8.2014-6- 27	N/A	N/A	N/A	
Coaxial Cable	SGS	N/A	SEM026-01	2018-07-12	2019-07-11	
Spectrum Analyzer	Rohde & Schwarz	FSU43	SEM004-08	2018-04-02	2019-04-01	
BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-01	2017-06-27	2020-06-26	
Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2018-04-13	2021-04-12	
Horn Antenna (15GHz-40GHz)	Schwarzbeck	BBHA 9170	SEM003-15	2017-10-17	2020-10-16	
Pre-amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2018-09-25	2019-09-24	
Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEM004-11	2018-09-27	2019-09-26	
Pre-amplifier(18-26GHz)	Rohde & Schwarz	CH14-H052	SEM005-17	2018-04-02	2019-04-01	
Pre-amplifier (26GHz-40GHz)	Compliance Directions Systems Inc.	PAP-2640-50	SEM005-08	2018-04-02	2019-04-01	
DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2018-09-25	2019-09-24	
Active Loop Antenna	ETS-Lindgren	6502	SEM003-08	2017-08-22	2020-08-21	
Band filter	N/A	N/A	SEM023-01	N/A	N/A	

Report No.: SZEM180900849702

Page: 9 of 41

Radiated Emissions						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2018-03-13	2021-03-12	
Measurement Software	AUDIX	e3 V8.2014-6- 27	N/A	N/A	N/A	
Coaxial Cable	SGS	N/A	SEM026-01	2018-07-12	2019-07-11	
Spectrum Analyzer	Rohde & Schwarz	FSU43	SEM004-08	2018-04-02	2019-04-01	
BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-01	2017-06-27	2020-06-26	
Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2018-04-13	2021-04-12	
Horn Antenna (15GHz-40GHz)	Schwarzbeck	BBHA 9170	SEM003-15	2017-10-17	2020-10-16	
Pre-amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2018-09-25	2019-09-24	
Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEM004-11	2018-09-27	2019-09-26	
Pre-amplifier(18-26GHz)	Rohde & Schwarz	CH14-H052	SEM005-17	2018-04-02	2019-04-01	
Pre-amplifier (26GHz-40GHz)	Compliance Directions Systems Inc.	PAP-2640-50	SEM005-08	2018-04-02	2019-04-01	
DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2018-09-25	2019-09-24	
Active Loop Antenna	ETS-Lindgren	6502	SEM003-08	2017-08-22	2020-08-21	
Band filter	N/A	N/A	SEM023-01	N/A	N/A	

RE in Chamber									
Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)				
3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2017-08-05	2020-08-04				
MXE EMI Receiver (20Hz-8.4GHz)	Agilent Technologies	N9038A	SEM004-05	2018-09-25	2019-09-24				
BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2017-06-27	2020-06-26				
Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2018-04-02	2019-04-01				
Measurement Software	AUDIX	e3 V8.2014-6-27	N/A	N/A	N/A				
Coaxial Cable	SGS	N/A	SEM025-01	2018-07-12	2019-07-11				

Report No.: SZEM180900849702

Page: 10 of 41

General used equipment								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Humidity/ Temperature	Shanghai			2017-09-29	2018-09-28			
Indicator	Meteorological Industry Factory	ZJ1-2B	SEM002-03	2018-09-27				
Humidity/ Temperature	Shanghai			2017-09-29	2018-09-28			
Indicator	Meteorological Industry Factory	ZJ1-2B	SEM002-04	2018-09-27	2019-09-26			
Humidity/ Temperature	Minalo	N/A	SEM002-08	2017-09-29	2018-09-28			
Indicator	Mingle	IN/A	SEIVIUU2-08	2018-09-27	2019-09-26			
Barometer	Changchun Meteorological Industry Factory	DYM3	SEM002-01	2018-04-08	2019-04-07			

Report No.: SZEM180900849702

Page: 11 of 41

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 Limit:

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently

attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 3.0dBi.

Antenna location: Refer to Appendix(Internal photos)

Report No.: SZEM180900849702

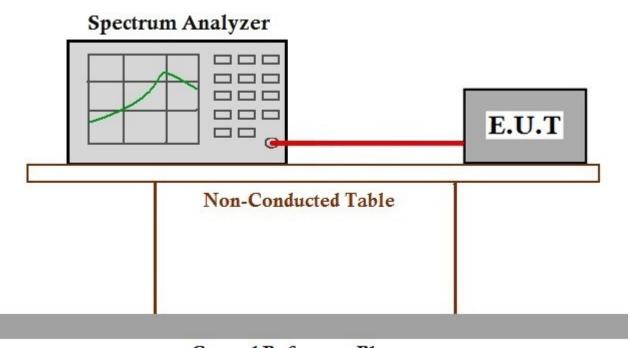
Page: 12 of 41

7 Radio Spectrum Matter Test Results

7.1 20dB Bandwidth

Test Requirement 47 CFR Part 15, Subpart C 15.215 Test Method: ANSI C63.10 (2013) Section 6.9

Limit: N/A


7.1.1 E.U.T. Operation

Operating Environment:

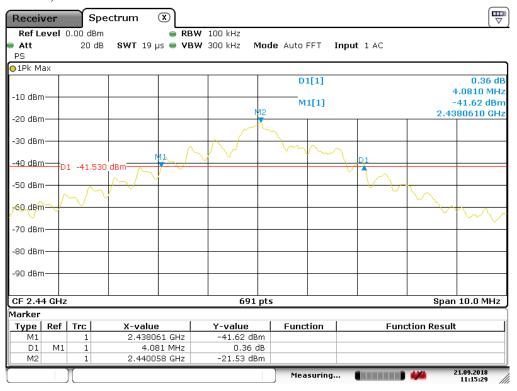
Temperature: 24.1 °C Humidity: 48.2 % RH Atmospheric Pressure: 1010 mbar

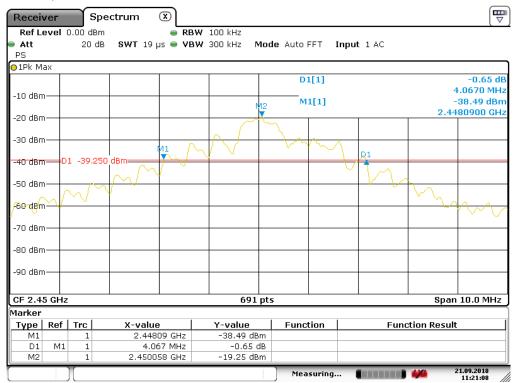
Test mode a:TX mode_Keep the EUT in transmitting with modulation mode.

7.1.2 Test Setup Diagram

Ground Reference Plane

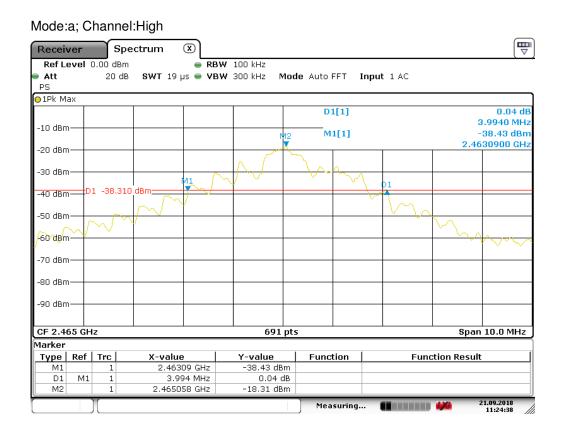
7.1.3 Measurement Procedure and Data


Test channel	20dB bandwidth (MHz)	Results
Lowest	4.081	Pass
Middle	4.067	Pass
Highest	3.994	Pass


Report No.: SZEM180900849702

Page: 13 of 41

Mode:a; Channel:Low


Mode:a; Channel:middle

Report No.: SZEM180900849702

Page: 14 of 41

Report No.: SZEM180900849702

Page: 15 of 41

7.2 Field Strength of the Fundamental Signal (15.249(a))

Test Requirement 47 CFR Part 15, Subpart C 15.249(a)
Test Method: ANSI C63.10 (2013) Section 6.5&6.6

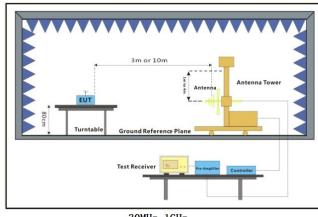
Measurement Distance: 3m

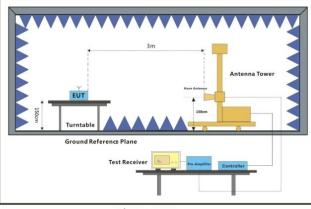
Limit:

Frequency	Limit (dBuV/m @3m)	Remark
2400MHz-2483.5MHz	94.0	Average Value
	114.0	Peak Value

Report No.: SZEM180900849702

Page: 16 of 41


7.2.1 E.U.T. Operation


Operating Environment:

Humidity: 56.3 % RH Temperature: Atmospheric Pressure: 1010 mbar 24.1 °C

Test mode a:TX mode_Keep the EUT in transmitting with modulation mode.

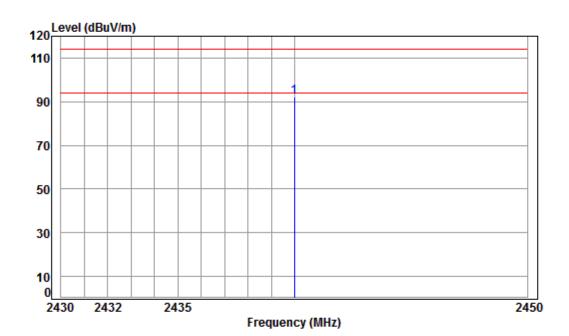
7.2.2 Test Setup Diagram

30MHz-1GHz

Above 1GHz

7.2.3 Measurement Procedure and Data

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.


Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Report No.: SZEM180900849702

Page: 17 of 41

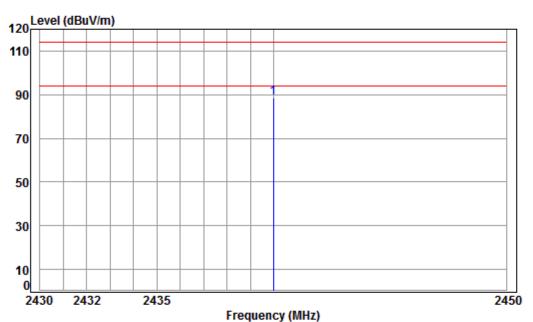
Mode:a; Polarization:Horizontal; Modulation:GFSK; Channel:Low

Condition: 3m HORIZONTAL

Job No : 08497CR

Mode : 2440 Field Strength

: 2.4G


Cable Ant Preamp Read Limit 0ver Freq Loss Factor Factor Level Level Line Limit Remark MHz dΒ dBuV dBuV/m dBuV/m dB dB dB/m 1 pp 2440.000 5.54 29.23 41.89 99.44 92.32 114.00 -21.68 peak

Report No.: SZEM180900849702

Page: 18 of 41

Mode:a; Polarization:Vertical; Modulation:GFSK; Channel:Low

Job No : 08497CR

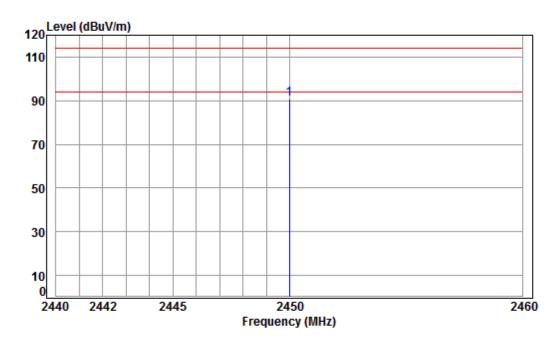
Condition: 3m VERTICAL

Mode : 2440 Field Strength

: 2.4G

Cable Ant Preamp Read Limit Over
Freq Loss Factor Factor Level Level Line Limit Remark

MHz dB dB/m dB dBuV dBuV/m dBuV/m dB


1 pp 2440.000 5.54 29.23 41.89 95.56 88.44 114.00 -25.56 peak

Report No.: SZEM180900849702

Page: 19 of 41

Mode:a; Polarization:Horizontal; Modulation:GFSK; Channel:middle

Condition: 3m HORIZONTAL

Job No : 08497CR

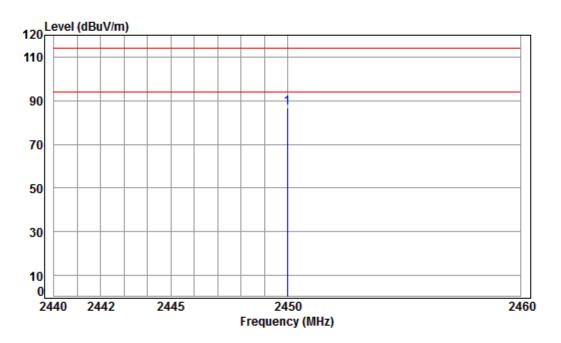
1 pp 2450.000

Mode : 2450 Field Strength

: 2.4G

Cable Ant Preamp Read Limit Over
Freq Loss Factor Factor Level Level Line Limit Remark

MHz dB dB/m dB dBuV dBuV/m dBuV/m dB


5.55 29.26 41.90 97.74 90.65 114.00 -23.35 Peak

Report No.: SZEM180900849702

Page: 20 of 41

Mode:a; Polarization:Vertical; Modulation:GFSK; Channel:middle

Condition: 3m VERTICAL

Job No : 08497CR

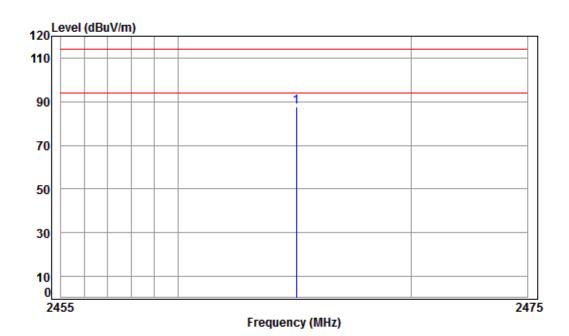
1 pp 2450.000

Mode : 2450 Field Strength

: 2.4G

Cable Ant Preamp Read Limit Over
Freq Loss Factor Factor Level Level Line Limit Remark

MHz dB dB/m dB dBuV dBuV/m dBuV/m dB


5.55 29.26 41.90 93.87 86.78 114.00 -27.22 Peak

Report No.: SZEM180900849702

Page: 21 of 41

Mode:a; Polarization:Horizontal; Modulation:GFSK; Channel:High

Condition: 3m HORIZONTAL

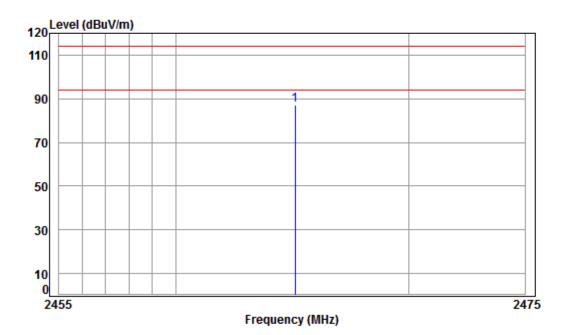
Job No : 08497CR

1 pp 2465.084

Mode : 2465 Field Strength

: 2.4G

Cable Ant Preamp Read Limit 0ver Freq Loss Factor Factor Level Level Line Limit Remark MHz dΒ dBuV dBuV/m dBuV/m dB dB dB/m


5.57 29.30 41.90 94.55 87.52 114.00 -26.48 peak

Report No.: SZEM180900849702

Page: 22 of 41

Mode:a; Polarization:Vertical; Modulation:GFSK; Channel:High

Condition: 3m VERTICAL

Job No : 08497CR

Mode : 2465 Field Strength

: 2.4G

Cable Ant Preamp Read Limit 0ver Loss Factor Factor Level Level Line Limit Remark Freq dBuV dBuV/m dBuV/m MHz dB dΒ dB dB/m 1 pp 2465.124 5.57 29.30 41.90 94.19 87.16 114.00 -26.84 peak

Remark:

1)The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

2)The peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the above measurement data were shown in the report.

Report No.: SZEM180900849702

Page: 23 of 41

7.3 Restricted Band Around Fundamental Frequency

Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.249(d) & 15.209

Test Method: ANSI C63.10 (2013) Section 6.4&6.5&6.6

Measurement Distance: 3m

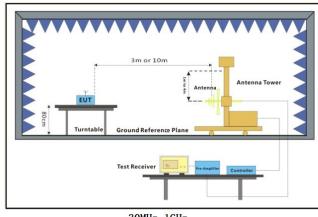
Limit:

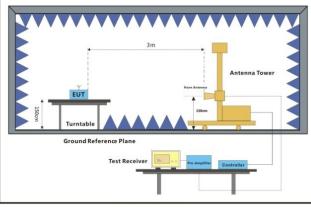
Frequency	Limit (dBuV/m @3m)	Remark
30MHz-88MHz	40.0	Quasi-peak Value
88MHz-216MHz	43.5	Quasi-peak Value
216MHz-960MHz	46.0	Quasi-peak Value
960MHz-1GHz	54.0	Quasi-peak Value
Above 1GHz	54.0	Average Value
Above 1GHz	74.0	Peak Value

Emission radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

Report No.: SZEM180900849702

Page: 24 of 41


7.3.1 E.U.T. Operation


Operating Environment:

Temperature: 22.6 °C Humidity: 58.5 % RH Atmospheric Pressure: 1010 mbar

Test mode a:TX mode_Keep the EUT in transmitting with modulation mode.

7.3.2 Test Setup Diagram

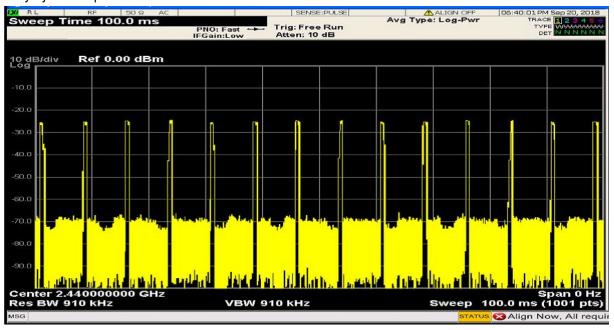
30MHz-1GHz

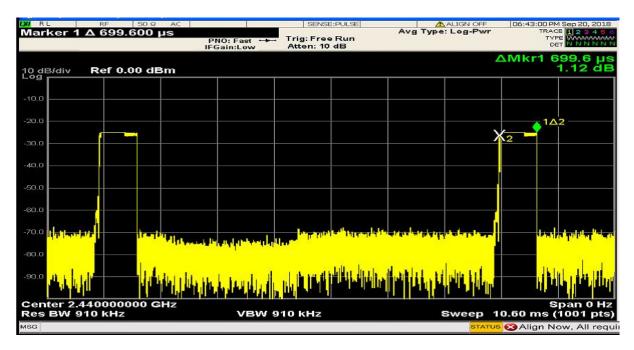
Above 1GHz

7.3.3 Measurement Procedure and Data

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

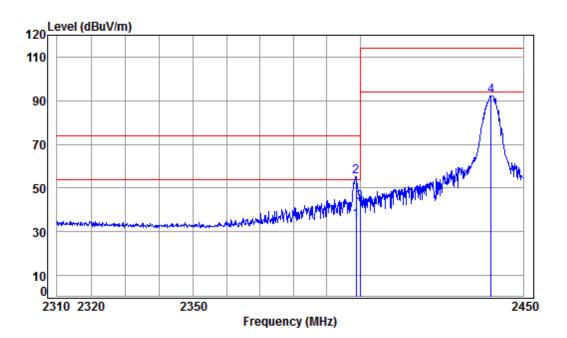

Report No.: SZEM180900849702


Page: 25 of 41

Average value:

	Average value=Peak value + PDCF
Calculate Formula:	PDCF=20 log(Duty cycle)
	Duty cycle= T on time / T period
	Ton time =9.8ms
Test data:	T period =100ms
	PDCF value= -20.18dB

Duty cycle test plots:



Report No.: SZEM180900849702

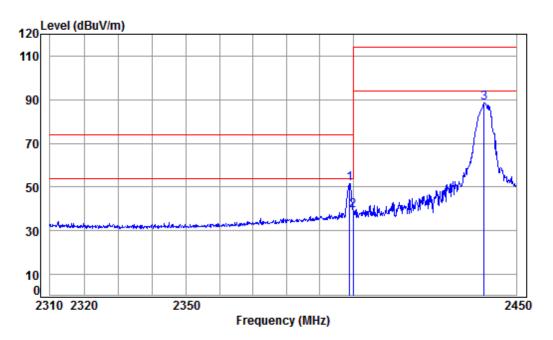
Page: 26 of 41

Mode:a; Polarization:Horizontal; Modulation:GFSK; Channel:Low

Condition: 3m HORIZONTAL

Job No : 08497CR

Mode : 2440 Band edge


			_							
		Frea			Preamp Factor					Remark
		1129	2033	, ac coi	, accor	LCVCI	LCVCI	Line	LIMIL	Kellidi K
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	av	2398.790	5.49	29.10	41.88	42.26	34.97	54.00	-19.03	Average
2	pp	2398.790	5.49	29.10	41.88	62.44	55.15	74.00	-18.85	peak
3		2400.000	5.49	29.11	41.88	50.46	43.18	74.00	-30.82	peak
4		2440.000	5.54	29.23	41.89	99.44	92.32	114.00	-21.68	peak

Report No.: SZEM180900849702

Page: 27 of 41

Mode:a; Polarization:Vertical; Modulation:GFSK; Channel:Low

Condition: 3m VERTICAL Job No : 08497CR

Mode : 2440 Band edge

: 2.4G

Cable Ant Preamp Read Limit 0ver Freq Loss Factor Factor Level Level Line Limit Remark dΒ MHz dBuV dBuV/m dBuV/m dB dB dB/m 1 pp 2399.072 5.49 29.10 41.88 58.70 51.41 74.00 -22.59 peak 29.11 41.88 46.36 39.08 74.00 -34.92 peak 2400.000 5.49 3 2440.000 5.54 29.23 41.89 95.56 88.44 114.00 -25.56 peak

Report No.: SZEM180900849702

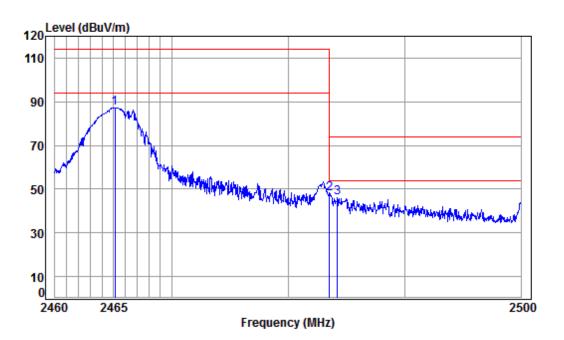
Page: 28 of 41

Mode:a; Polarization:Horizontal; Modulation:GFSK; Channel:High

Condition: 3m HORIZONTAL

Job No : 08497CR

Mode : 2465 Band edge


			_							
		Freq			Preamp Factor					Remark
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
		2465.084								-
2		2483.500	5.60	29.35	41.91	54.04	47.08	74.00	-26.92	peak
3		2484.604	5.60	29.36	41.91	53.02	46.07	74.00	-27.93	peak

Report No.: SZEM180900849702

Page: 29 of 41

Mode:a; Polarization:Vertical; Modulation:GFSK; Channel:High

Condition: 3m VERTICAL Job No : 08497CR

Mode : 2465 Band edge

: 2.4G

			_								
		_			Preamp						
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Kemark	
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1		2465.124	5.57	29.30	41.90	94.19	87.16	114.00	-26.84	peak	
2	pp	2483.500	5.60	29.35	41.91	55.06	48.10	74.00	-25.90	peak	
3		2484.163	5.60	29.35	41.91	53.05	46.09	74.00	-27.91	peak	

Remark:

1)The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

2)The peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the above measurement data were shown in the report.

Report No.: SZEM180900849702

Page: 30 of 41

7.4 Radiated Emissions

Test Requirement 47 CFR Part 15, Subpart C 15.209 & 15.249 (a),(d)

Test Method: ANSI C63.10 (2013) Section 6.4&6.5&6.6

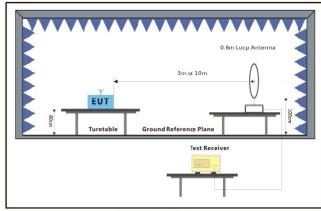
Measurement Distance: 3m

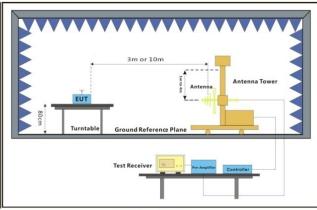
Limit:

Frequency(MHz)	Field strength	Limit	Detector	Measurement Distance
	(microvolts/meter)	(dBuV/m)		(meters)
0.009-0.490	2400/F(kHz)	-	-	300
0.490-1.705	24000/F(kHz)	-	-	30
1.705-30	30	-	-	30
30-88	100	40.0	QP	3
88-216	150	43.5	QP	3
216-960	200	46.0	QP	3
960-1000	500	54.0	QP	3
Above 1000	500	54.0	AV	3

Report No.: SZEM180900849702

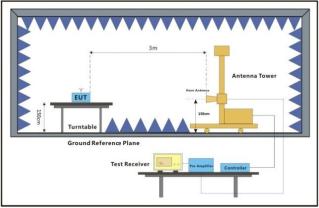
Page: 31 of 41


7.4.1 E.U.T. Operation


Operating Environment:

Temperature: 24.1 °C Humidity: 56.2 % RH Atmospheric Pressure: 1010 mbar

Test mode a:TX mode_Keep the EUT in transmitting with modulation mode.


7.4.2 Test Setup Diagram

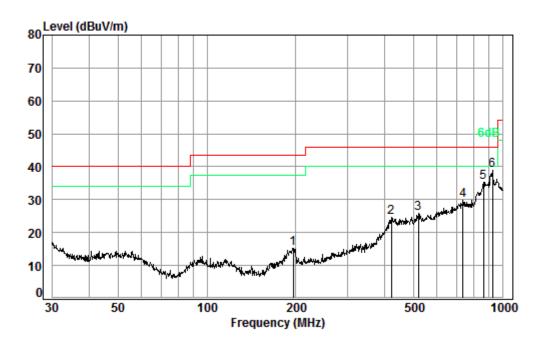
Below 30MHz

30MHz-1GHz

Above 1GHz

7.4.3 Measurement Procedure and Data

For testing performed with the loop antenna, the center of the loop was positioned 1 m above the ground and positioned with its plane vertical at the specified distance from the EUT. During testing the loop was rotated about its vertical axis for maximum response at each azimuth and also investigated with the loop positioned in the horizontal plane. Only the worst position of vertical was shown in the report.


Report No.: SZEM180900849702

Page: 32 of 41

 $30MHz{\scriptstyle \sim} 1GHz$

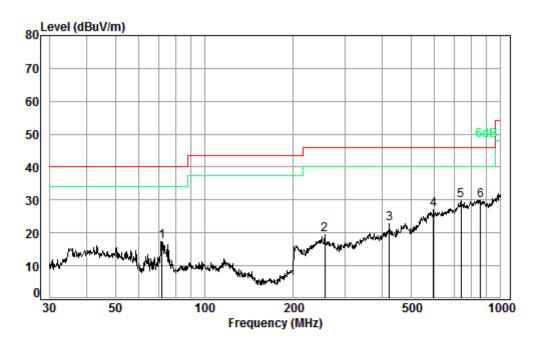
QP value:

Mode: a; Polarization: Horizontal;

Condition: 3m HORIZONTAL

Job No. : 08497CR

Mode : a


		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	105 93	1 20	16 39	27 52	24.00	15 22	42 EQ	20 27
1	195.82	1.39	10.30	27.53	24.99	15.23	43.50	-20.2/
2	420.58	2.29	22.89	27.76	27.24	24.66	46.00	-21.34
3	519.06	2.62	25.01	27.84	25.97	25.76	46.00	-20.24
4	734.49	3.01	28.12	27.50	26.13	29.76	46.00	-16.24
5	860.04	3.45	29.30	27.21	29.80	35.34	46.00	-10.66
6 pp	922.52	3.62	29.92	27.00	32.43	38.97	46.00	-7.03

Report No.: SZEM180900849702

Page: 33 of 41

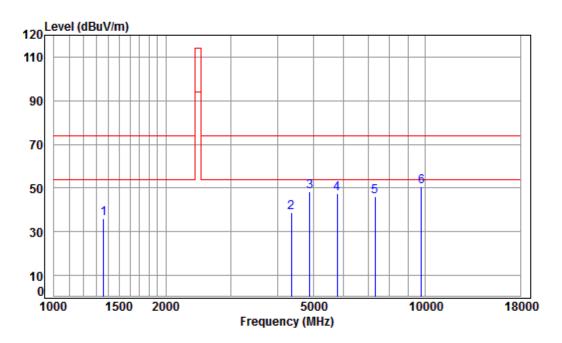
Mode :a; Polarization: Vertical

Condition: 3m VERTICAL

Job No. : 08497CR

Mode : a

		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	72.08	0.86	12.62	27.52	31.44	17.40	40.00	-22.60
2	255.62	1.70	19.04	27.54	26.21	19.41	46.00	-26.59
3	422.06	2.30	22.93	27.77	25.28	22.74	46.00	-23.26
4	595.13	2.70	26.51	27.71	25.62	27.12	46.00	-18.88
5	737.07	3.02	28.13	27.50	26.03	29.68	46.00	-16.32
6 pp	857.02	3.44	29.26	27.22	24.45	29.93	46.00	-16.07



Report No.: SZEM180900849702

Page: 34 of 41

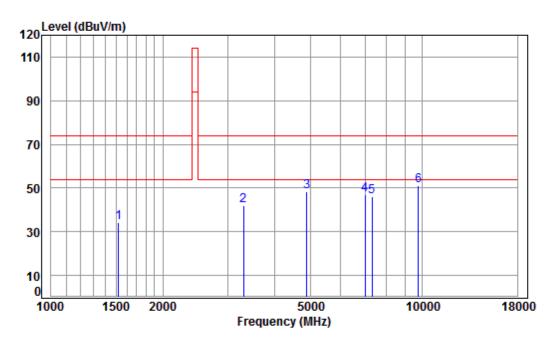
Above 1GHz

Mode:a; Polarization:Horizontal; Modulation:GFSK; Channel:Low

Condition: 3m HORIZONTAL

Job No : 08497CR

Mode : 2440 TX RSE


			_							
			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
		4350 400	F 04	25 24	44 34	47.00	35.00	74.00	20.04	
	L	1358.498	5.01	25.21	41.31	47.08	35.99	74.00	-38.01	peak
2	2	4354.454	7.40	33.60	42.39	40.26	38.87	74.00	-35.13	peak
3	3	4880.000	7.97	34.29	42.48	48.66	48.44	74.00	-25.56	peak
4	1	5780.300	9.83	34.57	41.79	44.75	47.36	74.00	-26.64	peak
	5	7320.000	10.05	36.37	40.63	40.33	46.12	74.00	-27.88	peak
6	5 рр	9760.000	10.82	37.55	37.53	40.01	50.85	74.00	-23.15	peak

Report No.: SZEM180900849702

Page: 35 of 41

Mode:a; Polarization:Vertical; Modulation:GFSK; Channel:Low

Condition: 3m VERTICAL

Job No : 08497CR

Mode : 2440 TX RSE


			_							
			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	_									
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		1520.598	5.45	25.89	41.42	44.39	34.31	74.00	-39.69	peak
2		3299.344	6.28	31.86	42.17	45.83	41.80	74.00	-32.20	peak
3		4880.000	7.97	34.29	42.48	48.68	48.46	74.00	-25.54	peak
4		6995.172	10.14	36.49	40.86	41.28	47.05	74.00	-26.95	peak
5		7320.000	10.05	36.37	40.63	40.15	45.94	74.00	-28.06	peak
6	pp	9760.000	10.82	37.55	37.53	40.28	51.12	74.00	-22.88	peak

Report No.: SZEM180900849702

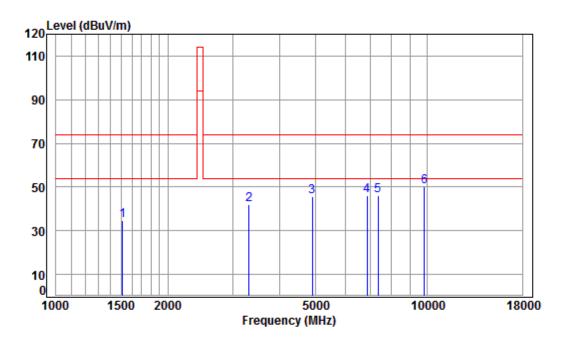
Page: 36 of 41

Mode:a; Polarization:Horizontal; Modulation:GFSK; Channel:middle

Condition: 3m HORIZONTAL

Job No : 08497CR

Mode : 2450 TX RSE


			_							
		Freq			Preamp Factor					Remark
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	——dB	
1		1339.006	4.94	25.13	41.29	47.57	36.35	74.00	-37.65	peak
2		4495.125	7.55	33.60	42.42	40.56	39.29	74.00	-34.71	peak
3		4900.000	7.99	34.33	42.48	44.12	43.96	74.00	-30.04	peak
4		6322.136	11.20	34.96	41.35	42.70	47.51	74.00	-26.49	peak
5		7350.000	10.04	36.36	40.61	40.29	46.08	74.00	-27.92	peak
6	pp	9800.000	10.84	37.56	37.47	39.18	50.11	74.00	-23.89	peak

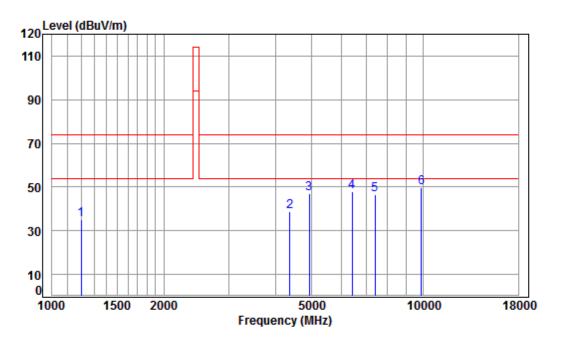
Report No.: SZEM180900849702

Page: 37 of 41

Mode:a; Polarization:Vertical; Modulation:GFSK; Channel:middle

Condition: 3m VERTICAL Job No : 08497CR

Job No : 08497CR Mode : 2450 TX RSE


		_							
	F			Preamp					DI-
	Freq	LOSS	Factor	Factor	rever	rever	Line	Limit	Kemark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1511.833	5.46	25.85	41.41	44.63	34.53	74.00	-39.47	peak
2	3308.894	6.29	31.87	42.18	45.77	41.75	74.00	-32.25	peak
3	4900.000	7.99	34.33	42.48	45.77	45.61	74.00	-28.39	peak
4	6874.906	10.47	36.16	40.94	40.51	46.20	74.00	-27.80	peak
5	7350.000	10.04	36.36	40.61	40.35	46.14	74.00	-27.86	peak
6	pp 9800.000	10.84	37.56	37.47	39.34	50.27	74.00	-23.73	peak

Report No.: SZEM180900849702

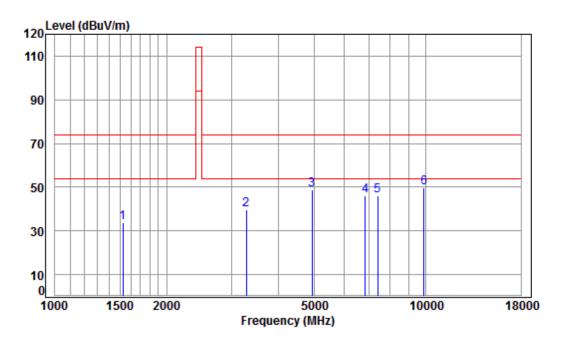
Page: 38 of 41

Mode:a; Polarization:Horizontal; Modulation:GFSK; Channel:High

Condition: 3m HORIZONTAL

Job No : 08497CR

Mode : 2465 TX RSE


			_							
					Preamp					
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
		MHz	dB	dB/m	——dB	dBuV	dBuV/m	dBuV/m	dB	
				,						
1	L	1199.726	4.42	24.48	41.18	47.56	35.28	74.00	-38.72	peak
2	<u>)</u>	4367.058	7.41	33.60	42.39	40.00	38.62	74.00	-35.38	peak
3	3	4930.000	8.02	34.38	42.49	47.29	47.20	74.00	-26.80	peak
4	ļ	6432.732	11.41	35.05	41.27	42.50	47.69	74.00	-26.31	peak
	5	7395.000	10.03	36.34	40.58	40.95	46.74	74.00	-27.26	peak
6	, рр	9860.000	10.87	37.57	37.39	38.80	49.85	74.00	-24.15	peak

Report No.: SZEM180900849702

Page: 39 of 41

Mode:a; Polarization:Vertical; Modulation:GFSK; Channel:High

Condition: 3m VERTICAL Job No : 08497CR

Mode : 2465 TX RSE

			_							
		Freq			Preamp Factor					Remark
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	——dB	
1		1525.000	5.45	25.91	41.42	43.80	33.74	74.00	-40.26	peak
2		3280.326	6.26	31.82	42.17	43.64	39.55	74.00	-34.45	peak
3		4930.000	8.02	34.38	42.49	49.13	49.04	74.00	-24.96	peak
4		6855.063	10.53	36.10	40.96	40.48	46.15	74.00	-27.85	peak
5		7395.000	10.03	36.34	40.58	40.34	46.13	74.00	-27.87	peak
6	pp	9860.000	10.87	37.57	37.39	38.59	49.64	74.00	-24.36	peak

Report No.: SZEM180900849702

Page: 40 of 41

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

2)Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

3)As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only above measurement data were shown in the report.

Report No.: SZEM180900849702

Page: 41 of 41

8 Photographs

8.1 Radiated Emissions Test Setup

Please refer to setup photos.

8.2 EUT Constructional Details (EUT Photos)

Please refer to external and internal photos for details.

- End of the Report -