

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

Report No.: KR19-SRF0138

Page (1) of (42)

1. Client

Name

: HOIMYUNG ICT Corporation

Address

: 1203, 8th Daeryungtechnotown, 96, Gamasan-ro, Geumcheon-gu,

Seoul, Republic of Korea

Date of Receipt

: 2019-06-03

2. Use of Report

3. Name of Product and Model

: Telemetics mangement Terminal / DTM-02W

4. Manufacturer and Country of Origin: HOIMYUNG ICT Corporation / Korea

5. FCC ID

: 2ARPKDTM-02W

6. IC Certificate

: 24504-DTM02W

7. Date of Test

: 2019-08-13 to 2019-08-22

8. Test Standards

: FCC Part 15 Subpart C, 15.247

RSS-247 Issue 2 February 2017 RSS-Gen Issue 5 March 2019

9. Test Results

: Refer to the test result in the test report

Tested by

Technical Manager

Affirmation

Name: Heesu Ahn

Name: Jaehyong Lee

2019-09-18

KCTL Inc.

As a test result of the sample which was submitted from the client, this report does not guarantee the whole product quality. This test report should not be used and copied without a written agreement by KCTL Inc.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SRF0138

Page (2) of (42)

Report revision history

,		
Date	Revision	Page No
2019-09-18	Initial report	-
	<u> </u>	

This report shall not be reproduced except in full, without the written approval of KCTL Inc. This document may be altered or revised by KCTL Inc. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by KCTL Inc. will constitute fraud and shall nullify the document. This test report is a General report that does not use the KOLAS accreditation mark and is not related to KOLAS accreditation.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SRF0138

Page (3) of (42)

CONTENTS

Gei	neral information	4
1.	Frequency/channel operations	5
2.	Duty Cycle Correction Factor	5
Ant	enna requirement	7
Sur	mmary of tests	8
Me	asurement uncertainty	9
Me	asurement results explanation example	10
Tes	t results	11
1.	Maximum peak output power	11
2.	Spurious Emission, Band Edge and Restricted bands	14
Me	asurement equipment	42
	Dev 1. 2. Ant Sur Mea Mea Tes 1.	General information Device information 1. Frequency/channel operations 2. Duty Cycle Correction Factor Antenna requirement Summary of tests Measurement uncertainty Measurement results explanation example Test results 1. Maximum peak output power 2. Spurious Emission, Band Edge and Restricted bands Measurement equipment

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SRF0138

Page (4) of (42)

General information

Client : HOIMYUNG ICT Corporation

Address : 1203, 8th Daeryungtechnotown, 96, Gamasan-ro, Geumcheon-gu, Seoul,

Republic of Korea

Manufacturer : HOIMYUNG ICT Corporation

Address : 1203, 8th Daeryungtechnotown, 96, Gamasan-ro, Geumcheon-gu, Seoul,

Republic of Korea

Laboratory : KCTL Inc.

Address : 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea Accreditations : FCC Site Designation No: KR0040, FCC Site Registration No: 687132

VCCI Registration No.: R-3327, G-198, C-3706, T-1849

Industry Canada Registration No.: 8035A

KOLAS No.: KT231

2. Device information

Equipment under test : Telemetics mangement Terminal

Model : DTM-02W

Frequency range : Bluetooth Low Energy_2 402 Mb ~ 2 480 Mb

802.11b/g/n HT20_2 412 Mb ~ 2 462 Mb

Modulation technique : Bluetooth Low Energy_GFSK

802.11b/g/n HT20_DSSS, OFDM

Number of channels : Bluetooth Low Energy _40 ch

802.11b/g/n HT20_11 ch

Power source : DC 12 V, DC 24 V

Antenna specification : Bluetooth Low Energy _Chip Antenna

WIFI_PCB Antenna

Antenna gain : 3.50 dBi (Bluetooth Low Energy)

3.29 dBi (WIFI)

Software version : Ver1.0.1

Hardware version : LIGHTTMS_WIFI_R1.0

Operation temperature : -30 °C ~ 70 °C

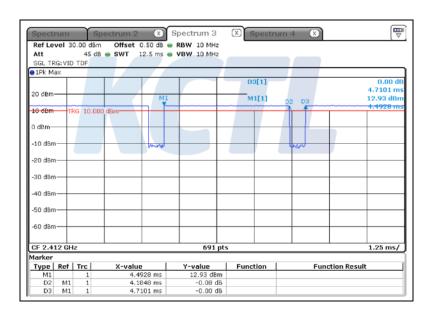
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SRF0138

Page (5) of (42)

2.1. Frequency/channel operations


This device contains the following capabilities: Bluetooth Low Energy, 802.11b/g/n HT20

Ch.	Frequency (舢)
01	2 412
06	2 437
·	
11	2 462

Table 2.1.1. 802.11b/g/n HT20 mode

2.2. Duty Cycle Correction Factor

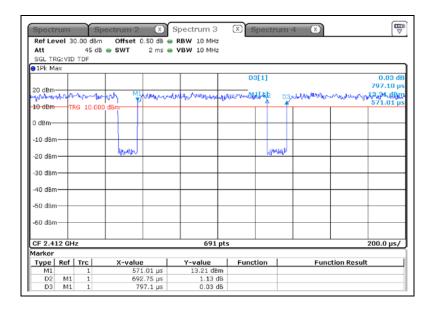
- 802.11b

Note₁₎: Period: 8.52 ms, On time: 8.41 ms

Note₂₎: DCCF = 10 log(1 / x) = 10 log(1/0.987) = 0.056 dB, x = 8.41/8.52 = 0.987

Note₃): 802.11b is a continuous transmission (duty cycle >= 98 %)

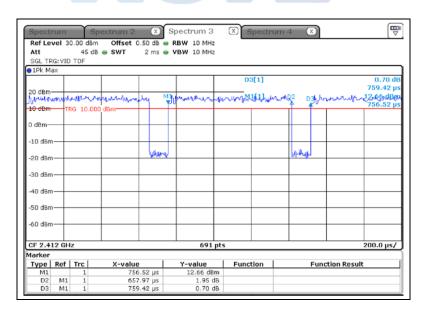
65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311


www.kctl.co.kr

Report No.: KR19-SRF0138

Page (6) of (42)

- 802.11g



Note₁₎: Period: 1.50 ms, On time: 1.38 ms

Note₂): DCCF = $10 \log(1/x) = 10 \log(1/0.923) = 0.349 \text{ dB}, x = 1.38/1.50 = 0.923$

Note₃: 802.11g is a non-continuous transmission (duty cycle < 98 %)

-802.11n HT20

Note₁₎: Period: 1.41 ms, On time: 1.30 ms

Note₂): DCCF = 10 log(1 / x) = 10 log(1/0.923) = 0.348 dB, x = 1.30/1.41 = 0.923 Note₃): 802.11n HT20 is a non-continuous transmission (duty cycle < 98 %)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SRF0138

Page (7) of (42)

3. Antenna requirement

Requirement of FCC part section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Requirement of RSS-Gen Section 6.8:

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

- The transmitter has permanently attached PCB Antenna (internal antenna) on board.
- The E.U.T Complies with the requirement of §15.203, §15.247.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SRF0138

Page (8) of (42)

4. Summary of tests

FCC Part section(s)	IC Rule Reference	Parameter	Test results
15.247(b)(3)	RSS-247 (5.4)(d)	Maximum Peak Output Power	Pass
15.247(e)	RSS-247 (5.2)(b)	Peak Power Spectral Density	N/T ^(Note1)
15.247(a)(2)	RSS-247 (5.2)(a)	6 dB Channel Bandwidth	N/T ^(Note1)
-	RSS-Gen (6.7)	Occupied Bandwidth	N/T ^(Note1)
15.247(d),	RSS-Gen	Spurious emission	Pass
15.205(a), 15.209(a)	(8.9), (8.10) RSS-247(5.5)	Band-edge, restricted band	Pass
15.207(a)	RSS-Gen (8.8)	Conducted Emissions	N/A ^(Note2)

Notes: (N/T: Not Tested, N/A: Not Applicable)

- Test was performed by modular transmitter (Model Name: AMW007, FCC ID: 2ABPY-5B9198, IC: 11685A-5B9198, Test Report No. FR641926 and CR641926 issued on May 31, 2016 by SPORTON International Inc.)
- 2. This test is not applicable because the EUT falls into the automotive device and it's not to be connected to the public utility(AC) power line.
- 3. All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 4. This device tested at 12 V, the worst voltage, as requested by the manufacturer.
- 5. According to exploratory test no any obvious emission were detected from 9 kHz to 30 MHz. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30 m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.
- 6. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z. It was determined that Y orientation was worst-case orientation. Therefore, all final radiated testing was performed with the EUT in Y orientation
- 7. The worst-case data rate were:

802.11b mode : 1 Mbps 802.11g mode : 6 Mbps 802.11n HT20 mode : MCS0

- 8. The test procedure(s) in this report were performed in accordance as following.
 - ANSI C63.10-2013
 - + KDB 558074 D01 V05r01

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SRF0138

Page (9) of (42)

Measurement uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k=2 to indicated a 95 % level of confidence. The measurement data shown herein meets of exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded uncertainty (±)		
Conducted RF power	1.76 dB		
Conducted spurious emissions	4.03 dB		
	9 kHz ~ 30 MHz	2.28 dB	
Radiated spurious emissions	30 MHz ~ 300 MHz	4.98 dB	
	300 MHz ~ 1 000 MHz	5.14 dB	
	1 GHz ~ 6 GHz	6.70 dB	
	Above 6 GHz	6.60 dB	
Conducted emissions	9 kHz ~ 150 kHz	3.66 dB	
	150 kHz ~ 30 MHz	3.26 dB	

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SRF0138

Page (10) of (42)

Measurement results explanation example

The offset level is set in the spectrum analyzer to compensate the RF cable loss factor between EUT conducted output port and spectrum analyzer.

With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Frequency (쌘)	Factor(dB)	Frequency (飐)	Factor(dB)
30	10.28	9 000	12.16
50	10.34	10 000	12.39
100	10.36	11 000	12.52
200	10.42	12 000	12.68
300	10.46	13 000	13.22
400	10.54	14 000	13.72
500	10.58	15 000	13.02
600	10.55	16 000	12.81
700	10.62	17 000	13.00
800	10.68	18 000	13.06
900	10.88	19 000	13.32
1 000	10.77	20 000	13.20
2 000	11.04	21 000	13.40
3 000	11.37	22 000	13.48
4 000	11.42	23 000	13.95
5 000	11.81	24 000	14.13
6 000	11.71	25 000	14.19
7 000	12.02	26 000	14.24
8 000	12.43	26 500	14.67

Note.

Offset(dB) = RF cable loss(dB) + Attenuator(dB) + EUT cable loss(dB)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SRF0138

Page (11) of (42)

Power sensor

7.	Test results		
7.1.	Maximum peak or	utput power	
Test s	etup_	<u> </u>	

Limit

EUT

According to §15.247(b)(3), RSS-247(5.4) For systems using digital modulation in the 902-928 Mb, 2 400-2 483.5 Mb, and 5 725-5 850 Mb bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Attenuator

According to §15.247(b)(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

According to RSS-247 5.4(d), For DTSs employing digital modulation techniques operating in the bands 902-928 Mb and 2400-2483.5 Mb, the maximum peak conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

Test procedure

ANSI C63.10-2013 - Section 11.9 and 14.2

Test settings

General

Section 15.247 permits the maximum conducted (average) output power to be measured as an alternative to the maximum peak conducted output power for demonstrating compliance to the limit. When this option is exercised, the measured power is to be referenced to the OBW rather than the DTS bandwidth (see ANSI C63.10 for measurement guidance).

When using a spectrum analyzer or EMI receiver to perform these measurements, it shall be capable of utilizing a number of measurement points in each sweep that is greater than or equal to twice the span/RBW to set a bin-to-bin spacing of ≤ RBW/2 so that narrowband signals are not lost between frequency bins.

If possible, configure or modify the operation of the EUT so that it transmits continuously at its maximum power control level. The intent is to test at 100 % duty cycle; however a small reduction in duty cycle (to no lower than 98 %) is permitted, if required by the EUT for amplitude control purposes. Manufacturers are expected to provide software to the test lab to permit such continuous

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SRF0138

Page (12) of (42)

operation.

If continuous transmission (or at least 98 % duty cycle) cannot be achieved due to hardware limitations (e.g., overheating), the EUT shall be operated at its maximum power control level, with the transmit duration as long as possible, and the duty cycle as high as possible during which sweep triggering/signal gating techniques may be used to perform the measurement over the transmission duration.

Maximum peak conducted output power

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

RBW ≥ DTS bandwidth

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

- a) Set the RBW ≥ DTS bandwidth.
- b) Set VBW \geq [3 \times RBW].
- c) Set span \geq [3 \times RBW].
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

PKPM1 Peak power meter method

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

Measurement using a power meter (PM)

Method AVGPM is a measurement using an RF average power meter, as follows:

- a) As an alternative to spectrum analyzer or EMI receiver measurements, measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied:
 - 1) The EUT is configured to transmit continuously, or to transmit with a constant duty cycle.
 - 2) At all times when the EUT is transmitting, it shall be transmitting at its maximum power control level.
 - 3) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
- b) If the transmitter does not transmit continuously, measure the duty cycle, D, of the transmitter output signal as described in 11.6.
- c) Measure the average power of the transmitter. This measurement is an average over both the ON and OFF periods of the transmitter.
- d) Adjust the measurement in dBm by adding [10 log(1/D)], where D is the duty cycle.

Notes:

A peak responding power sensor is used, where the power sensor system video bandwidth is greater than the occupied bandwidth of the EUT.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SRF0138

Page (13) of (42)

Test results

Test	Frequency	Conducted output power (dBm)		Conducted Power	Ant. Gain		e.i.r.p. m)	Max. e.i.r.p.
mode	(MHz)	Peak	Average	Limit (dBm)	(dBi)	Peak	Average	Limit (dBm)
	2 412	21.78	17.49		3.29	25.07	20.78	
802.11b	2 437	24.09	21.07	30.00	3.29	27.38	24.36	36.02
	2 462	24.29	22.02		3.29	27.58	25.31	
	2 412	24.49	21.37		3.29	27.78	24.66	
802.11g	2 437	24.39	21.45	30.00	3.29	27.68	24.74	36.02
	2 462	24.29	21.56		3.29	27.58	24.85	
	2 412	24.59	21.00		3.29	27.88	24.29	
802.11 n HT20	2 437	24.49	21.11	30.00	3.29	27.78	24.40	36.02
	2 462	24.49	21.34	1	3.29	27.78	24.63	

Notes:

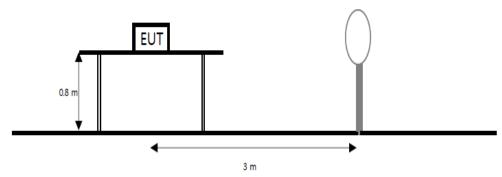
1. e.i.r.p. Calculation:

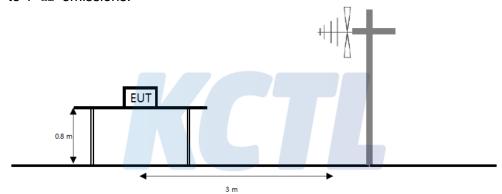
e.i.r.p. (dB m) = Conducted output power (dB m) + Antenna gain (dB i)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

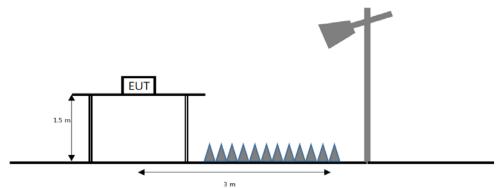
www.kctl.co.kr

Report No.: KR19-SRF0138


Page (14) of (42)


7.2. Spurious Emission, Band Edge and Restricted bands

Test setup


The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 $\, \text{Mz} \,$ to 1 $\, \text{GHz} \,$ emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 $\mbox{ }$ \mb

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SRF0138

Page (15) of (42)

FCC

According to section 15.209(a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (싼)	Field strength (μV/m)	Measurement distance (m)
0.009 - 0.490	2 400/F(kHz)	300
0.490 - 1.705	24 000/F(kHz)	30
1.705 - 30	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

^{**}Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54–72 Mb, 76–88 Mb, 174–216 Mb or 470–806 Mb. However, operation within these frequency bands is permitted under other sections of this part, e.g., Section15.231 and 15.241.

According to section 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below:

nequency bands listed below.					
MHz	MHz	MHz MHz			
0.009 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15		
0.495 - 0.505	16.694 75 - 16.695 25	608 - 614	5.35 - 5.46		
2.173 5 - 2.190 5	16.804 25 - 16.804 75	960 – 1 240	7.25 - 7.75		
4.125 - 4.128	25.5 - 25.67	1 300 – 1 427	8.025 - 8.5		
4.177 25 - 4.177 75	37.5 - 38.25	1 435 – 1 626.5	9.0 - 9.2		
4.207 25 - 4.207 75	73 - 74.6	1 645.5 – 1 646.5	9.3 - 9.5		
6.215 - 6.218	74.8 - 75.2	1 660 – 1 710	10.6 - 12.7		
6.267 75 - 6.268 25	108 - 121.94	1 718.8 – 1 722.2	13.25 - 13.4		
6.311 75 - 6.312 25	123 - 138	2 200 – 2 300	14.47 - 14.5		
8.291 - 8.294	149.9 - 150.05	2 310 – 2 390	15.35 - 16.2		
8.362 - 8.366	156.524 75 - 156.525	2 483.5 – 2 500	17.7 - 21.4		
8.376 25 - 8.386 75	25	2 690 – 2 900	22.01 - 23.12		
8.414 25 - 8.414 75	156.7 - 156.9	3 260 – 3 267	23.6 - 24.0		
12.29 - 12.293	162.012 5 - 167.17	3 332 – 3 339	31.2 - 31.8		
12.519 75 - 12.520 25	167.72 - 173.2	3 345.8 – 3 358	36.43 - 36.5		
12.576 75 - 12.577 25	240 - 285	3 600 – 4 400	Above 38.6		
13.36 - 13.41	322 - 335.4				

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in section 15.209. At frequencies equal to or less than 1 000 Mb, compliance with the limits in section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1 000 Mb, compliance with the emission limits in section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in section 15.35 apply to these measurements.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SRF0138

Page (16) of (42)

IC

According to RSS-247(5.5), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

According to RSS-Gen(8.9), Except where otherwise indicated in the applicable RSS, radiated emissions shall comply with the field strength limits shown in table 5 and table 6. Additionally, the level of any transmitter unwanted emission shall not exceed the level of the transmitter's fundamental emission.

Table 5- General field strength limits at frequencies above 30 MHz

Frequency(쌘)	Field strength (μV/m at 3 m)
30 to 88	100
88 to 216	150
216 to 960	200
Above 960	500

Table 6- General field strength limits at frequencies below 30 MHz

Frequency	Magnetic field strength (H-Field) (µ A/m)	Measurement distance(m)
9 – 490 kHz 1)	6.37/F (F in kllz)	300
490 – 1705 kHz	63.7/F (F in kllz)	30
1.705 - 30 Mb	0.08	30

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

According to RSS-Gen(8.10), Restricted frequency bands, identified in table 7, are designated primarily for safety-of-life services (distress calling and certain aeronautical activities), certain satellite downlinks, radio astronomy and some government uses. Except where otherwise indicated, the following conditions related to the restricted frequency bands apply:

- (a) The transmit frequency, including fundamental components of modulation, of licence-exempt radio apparatus shall not fall within the restricted frequency bands listed in table 7 except for apparatus compliant with RSS-287, Emergency Position Indicating Radio Beacons (EPIRB), Emergency Locator Transmitters (ELT), Personal Locator Beacons (PLB), and Maritime Survivor Locator Devices (MSLD).
- (b) Unwanted emissions that fall into restricted frequency bands listed in table 7 shall comply with the limits specified in table 5 and table 6.
- (c) Unwanted emissions that do not fall within the restricted frequency bands listed in table 7 shall comply either with the limits specified in the applicable RSS or with those specified in table 5 and table 6.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SRF0138

Page (17) of (42)

Table 7- Restricted frequency bands*

MHz	
0.090 - 0.110	1
0.495 - 0.505	156.5
2.1735 - 2.1905	1
3.020 - 3.026	162
4.125 - 4.128	1
4.17725 - 4.17775	
4.20725 - 4.20775	
5.677 - 5.683	
6.215 - 6.218	
6.26775 - 6.26825	
6.31175 - 6.31225	1
8.291 - 8.294	16
8.362 - 8.366	
8.37625 - 8.38675	17
8.41425 - 8.41475	
12.29 - 12.293	
12.51975 - 12.52025	2
12.57675 - 12.57725	
13.36 - 13.41	
16.42 - 16.423	
16.69475 - 16.69525	3
16.80425 - 16.80475	
25.5 - 25.67	
37.5 - 38.25	:
73 - 74.6	
74.8 - 75.2	
108 - 138	

MHz
149.9 - 150.05
156.52475 - 156.52525
156.7 - 156.9
162.0125 - 167.17
167.72 - 173.2
240 - 285
322 - 335.4
399.9 - 410
608 - 614
960 - 1427
1435 - 1626.5
1645.5 - 1646.5
1660 - 1710
1718.8 - 1722.2
2200 - 2300
2310 - 2390
2483.5 - 2500
2655 - 2900
3260 - 3267
3332 - 3339
3345.8 - 3358
3500 - 4400
4500 - 5150
5350 - 5460
7250 - 7750
8025 - 8500
-

GHz
9.0 - 9.2
9.3 - 9.5
10.6 - 12.7
13.25 - 13.4
14.47 - 14.5
15.35 - 16.2
17.7 - 21.4
22.01 - 23.12
23.6 - 24.0
31.2 - 31.8
36.43 - 36.5
Above 38.6

* Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licenceexempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

Test procedure

ANSI C63.10-2013 - Section 6.6.4.3

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SRF0138

Page (18) of (42)

Test settings

Peak field strength measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = as specified in table
- 3. VBW \geq (3×RBW)
- 4. Detector = peak
- 5. Sweep time = auto
- 6. Trace mode = max hold
- 7. Allow sweeps to continue until the trace stabilizes

Table. RBW as a function of frequency

Frequency	RBW
9 kHz to 150 kHz	200 Hz to 300 Hz
0.15 Mb to 30 Mb	9 kHz to 10 kHz
30 MHz to 1 000 MHz	100 kHz to 120 kHz
> 1 000 MHz	1 MHz

Average field strength measurements

Trace averaging with continuous EUT transmission at full power

If the EUT can be configured or modified to transmit continuously (D ≥ 98%), then the average emission levels shall be measured using the following method (with EUT transmitting continuously):

- 1. RBW = 1 Mb (unless otherwise specified).
- 2. VBW \geq (3×RBW).
- 3. Detector = RMS (power averaging), if [span / (# of points in sweep)] ≤ (RBW / 2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.
- 4. Averaging type = power (i.e., rms):
 - 1) As an alternative, the detector and averaging type may be set for linear voltage averaging.
 - 2) Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.
- 5. Sweep time = auto.
- 6. Perform a trace average of at least 100 traces.

Trace averaging across ON and OFF times of the EUT transmissions followed by duty cycle correction

If continuous transmission of the EUT (D \geq 98%) cannot be achieved and the duty cycle is constant (duty cycle variations are less than \pm 2%), then the following procedure shall be used:

- 1. The EUT shall be configured to operate at the maximum achievable duty cycle.
- 2. Measure the duty cycle D of the transmitter output signal as described in 11.6.
- 3. RBW = 1 Me (unless otherwise specified).
- 4. VBW \geq [3 \times RBW].
- 5. Detector = RMS (power averaging), if [span / (# of points in sweep)] ≤ (RBW / 2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.
- 6. Averaging type = power (i.e., rms):
 - 1) As an alternative, the detector and averaging type may be set for linear voltage averaging.
 - 2) Some instruments require linear display mode to use linear voltage averaging. Log or dB

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SRF0138

Page (19) of (42)

averaging shall not be used.

- 7. Sweep time = auto.
- 8. Perform a trace average of at least 100 traces.
- 9. A correction factor shall be added to the measurement results prior to comparing with the emission limit to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:
 - 1) If power averaging (rms) mode was used in step f), then the applicable correction factor is [10 log (1 / D)], where D is the duty cycle.
 - 2) If linear voltage averaging mode was used in step f), then the applicable correction factor is [20 log (1 / D)], where D is the duty cycle.
 - 3) If a specific emission is demonstrated to be continuous (D ≥ 98%) rather than turning ON and OFF with with the transmit cycle, then no duty cycle correction is required for that emission.

Notes:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 № for Peak detection and frequency above 1 №. The resolution bandwidth of test receiver/spectrum analyzer is 1 № and the video bandwidth is 1 №(≥1/T) for Average detection (AV) at frequency above 1 №. (where T = pulse width)
- 2. f < 30 MHz, extrapolation factor of 40 dB/decade of distance. $F_d = 40log(D_m/Ds)$ $f \ge 30$ MHz, extrapolation factor of 20 dB/decade of distance. $F_d = 20log(D_m/Ds)$ Where:

F_d= Distance factor in dB

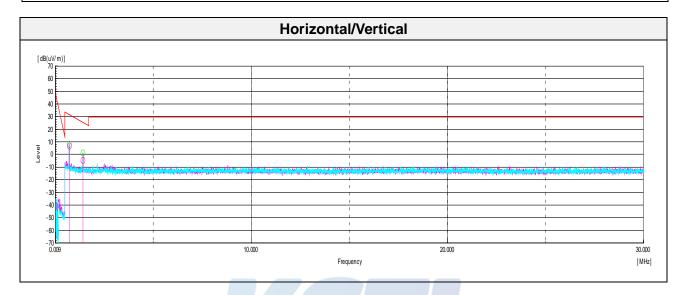
D_m= Measurement distance in meters

D_s= Specification distance in meters

- 3. Factors(dB) = Antenna factor(dB/m) + Cable loss(dB) + or Amp. gain(dB) + or $F_d(dB)$
- 4. The worst-case emissions are reported however emissions whose levels were not within 20 $\,\mathrm{d}\mathrm{B}$ of respective limits were not reported.
- 5. Average test would be performed if the peak result were greater than the average limit.
- 6. 1) mean is restricted band.
- 7. According to part 15.31(f)(2), an extrapolation factor of 40 dB/decade is applied because measured distance of radiated emission is 3 m.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr


Report No.: KR19-SRF0138

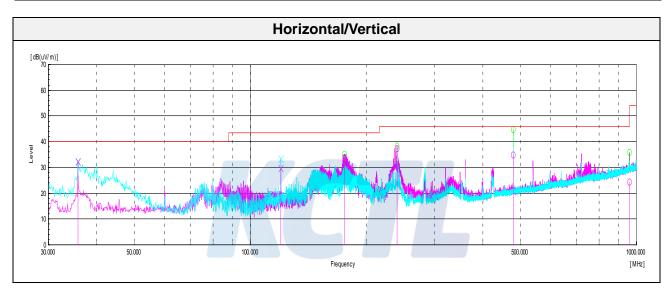
Page (20) of (42)

Test results (Below 30 Mb) - Worst case: 802.11b

Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	DCCF	Result	Limit	Margin	
(MHz)	(V/H)	(dB(μV))	(dB)	(dB)	(dB)	(dB(μV/m))	(dB(μV/m))	(dB)	
No spurious emissions were detected within 20 dB of the limit.									

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr


Report No.: KR19-SRF0138

Page (21) of (42)

Test results (Below 1 000 №) - Worst case: 802.11b

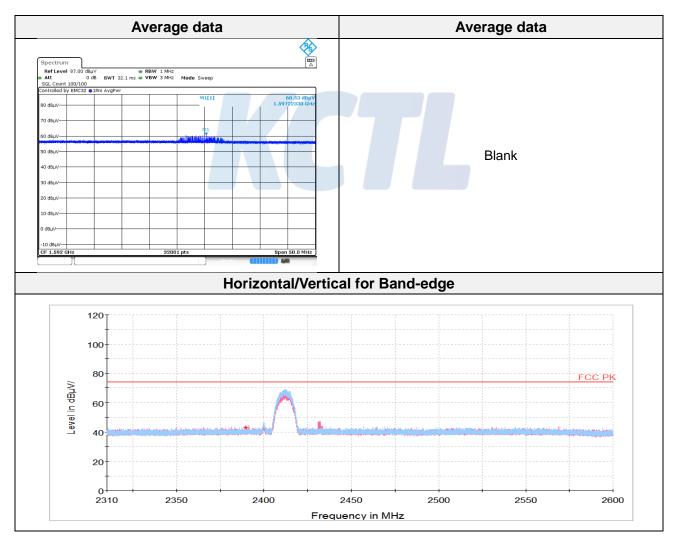
Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	DCCF	Result	Limit	Margin		
(MHz)	(V/H)	(dB(μV))	(dB)	(dB)	(dB)	(dB(μV/m))	(dB(μV/m))	(dB)		
	Quasi peak data									
35.82	V	45.10	17.56	-30.46	-	32.20	40.00	7.80		
119.97	V	41.50	17.20	-28.90	-	29.80	43.50	13.70		
175.14	Н	44.40	17.98	-28.68	-	33.70	43.50	9.80		
240.01	Н	48.50	17.30	-28.40	-	37.40	46.00	8.60		
480.08	Н	37.90	23.40	-26.50	-	34.80	46.00	11.20		

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SRF0138

Page (22) of (42)

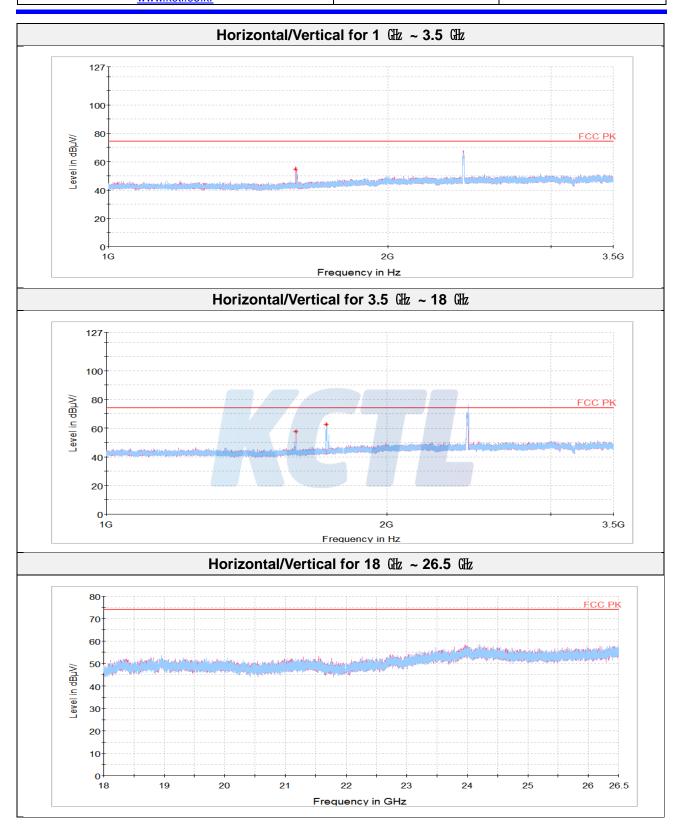


Test results (Above 1 000 账)

802.11b

Lowest Channel

Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	DCCF	Result	Limit	Margin		
(MHz)	(V/H)	(dB(μV))	(dB)	(dB)	(dB)	(dB(μV/m))	(dB(μV/m))	(dB)		
	Peak data									
1 597.22 ¹⁾	V	76.18	28.72	-49.87	-	55.03	74.00	18.97		
2 389.781)	Н	40.21	32.01	-29.04	-	43.18	74.00	30.82		
4 829.471)	Н	69.98	33.80	-53.61	-	50.17	74.00	23.83		
	Average Data									
1 597.221)	V	60.53	28.72	-49.87	0.51	39.89	54.00	14.11		


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

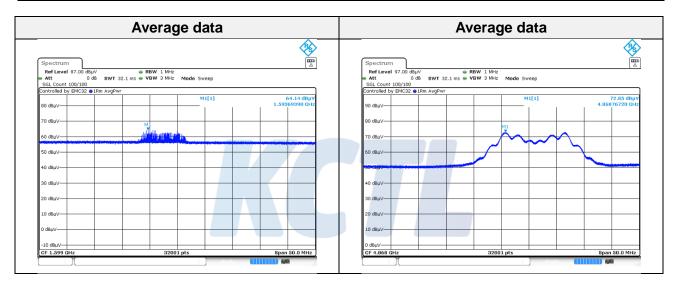
www.kctl.co.kr

Report No.: KR19-SRF0138

Page (23) of (42)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

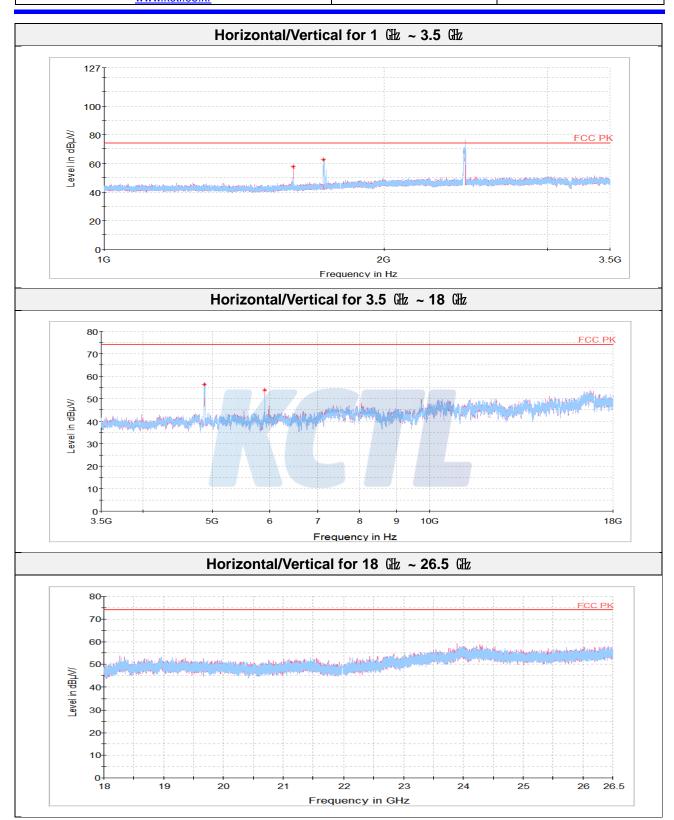
www.kctl.co.kr


Report No.: KR19-SRF0138

Page (24) of (42)

Middle Channel

Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	DCCF	Result	Limit	Margin		
(MHz)	(V/H)	(dB(μV))	(dB)	(dB)	(dB)	(dB(μV/m))	(dB(μV/m))	(dB)		
	Peak data									
1 593.69 ¹⁾	V	78.60	28.69	-49.88	-	57.41	74.00	16.59		
1 724.30	Н	82.65	29.66	-49.78	-	62.53	74.00	11.47		
4 868.771)	Н	76.94	33.82	-54.35	•	56.41	74.00	17.59		
	Average Data									
1 593.69 ¹⁾	V	64.14	28.69	-49.88	0.51	43.46	54.00	10.54		
4 868.771)	Н	72.85	33.82	-54.35	0.51	52.83	54.00	1.17		


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

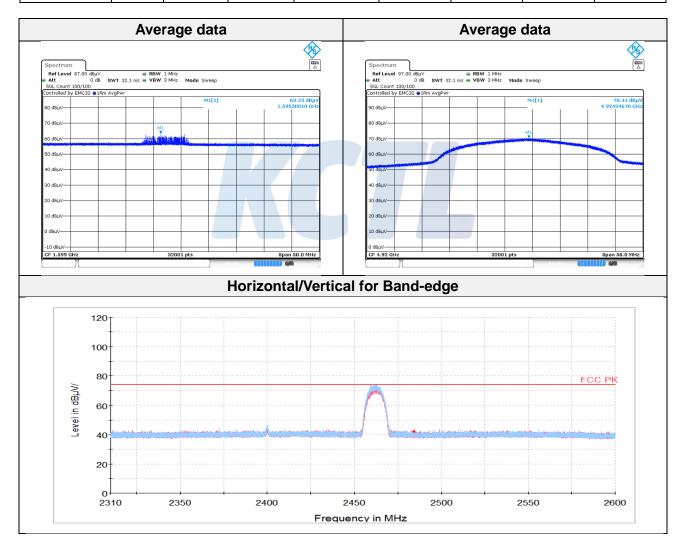
www.kctl.co.kr

Report No.: KR19-SRF0138

Page (25) of (42)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

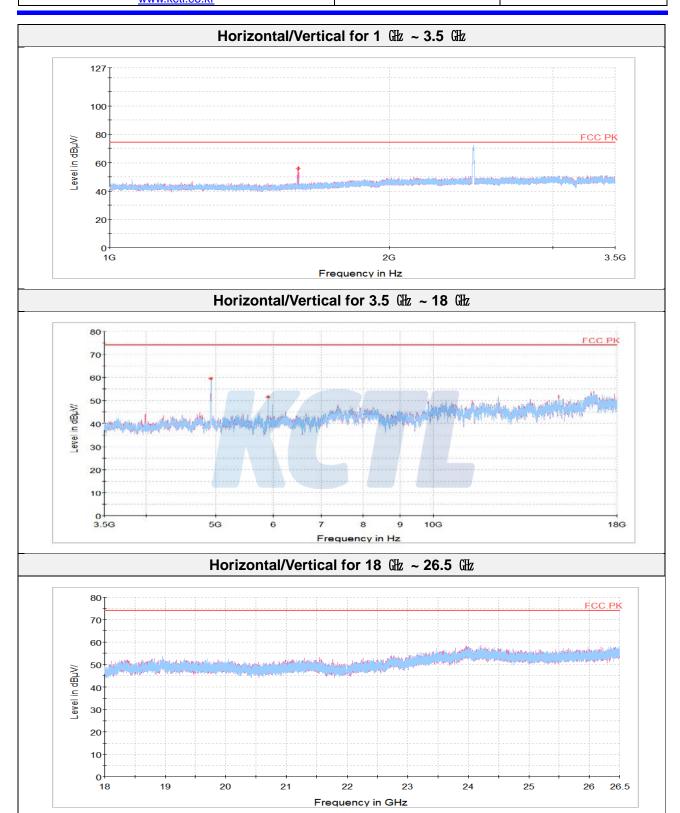

Report No.: KR19-SRF0138

Page (26) of (42)

Highest Channel

.g.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	DCCF	Result	Limit	Margin	
(MHz)	(V/H)	(dB(μV))	(dB)	(dB)	(dB)	(dB(μV/m))	(dB(μV/m))	(dB)	
Peak data									
1 595.85 ¹⁾	V	77.05	28.71	-49.87	-	55.89	74.00	18.11	
2 484.171)	V	39.46	32.09	-29.22	-	42.33	74.00	31.67	
4 929.591)	Н	80.43	33.86	-54.76	-	59.53	74.00	14.47	
Average Data									
1 595.85 ¹⁾	V	61.53	28.71	-49.87	0.51	40.88	54.00	13.12	
4 929.591)	Н	72.39	33.86	-54.76	0.51	52.00	54.00	2.00	

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311


Page (27) of (42)

Report No.:

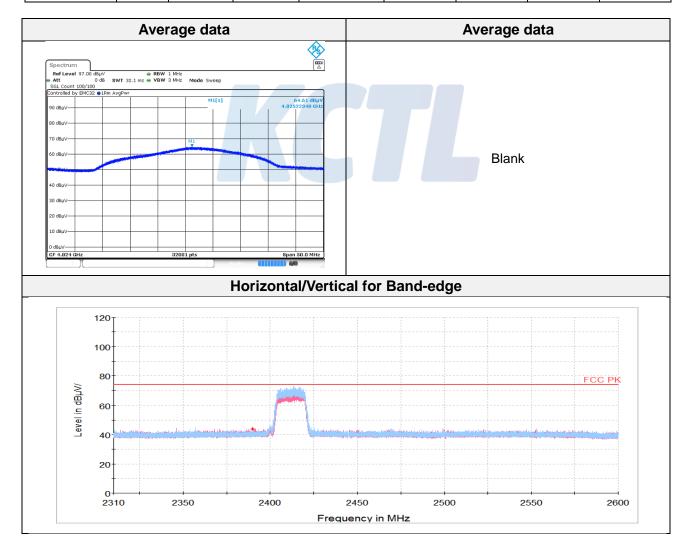
KR19-SRF0138

<u>www.kctl.co.kr</u>

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

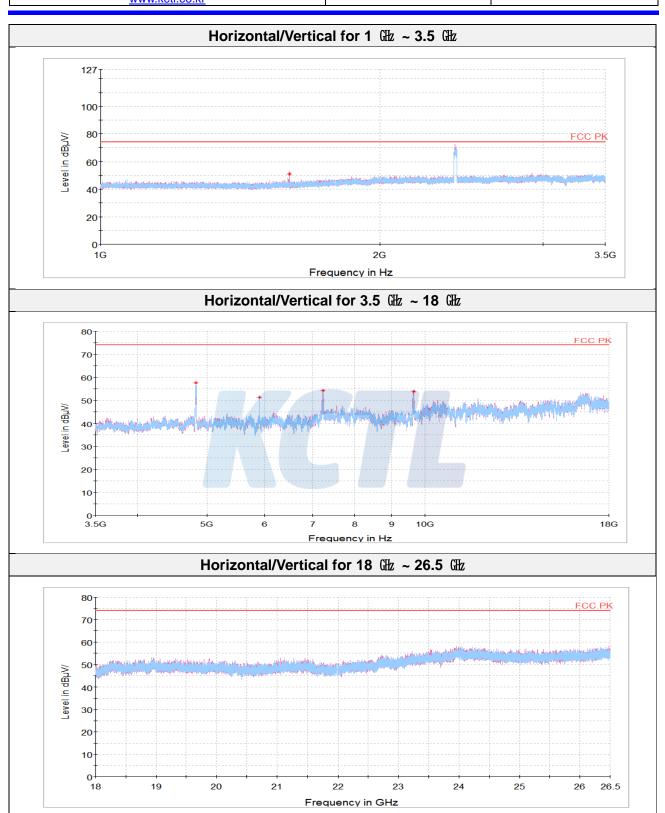
Report No.: KR19-SRF0138


Page (28) of (42)

802.11g

Lowest Channel

Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	DCCF	Result	Limit	Margin		
(MHz)	(V/H)	(dB(μV))	(dB)	(dB)	(dB)	(dB(μV/m))	(dB(μV/m))	(dB)		
	Peak data									
1 598.75 ¹⁾	V	72.07	28.73	-49.87	-	50.93	74.00	23.07		
2 389.951)	V	40.76	32.01	-29.04	-	43.73	74.00	30.27		
4 825.221)	Н	77.34	33.79	-53.52	-	57.61	74.00	16.39		
7 235.56	V	71.74	35.50	-52.96	-	54.28	74.00	19.72		
9 649.36	V	69.99	36.68	-52.90	-	53.77	74.00	20.23		
	Average Data									
4 825.221)	Н	64.61	33.80	-53.53	0.61	45.49	54.00	8.51		


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

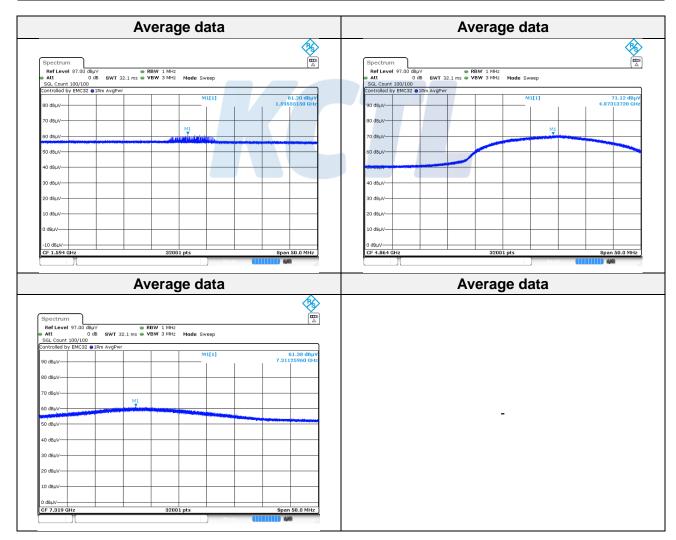
www.kctl.co.kr

Report No.: KR19-SRF0138

Page (29) of (42)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

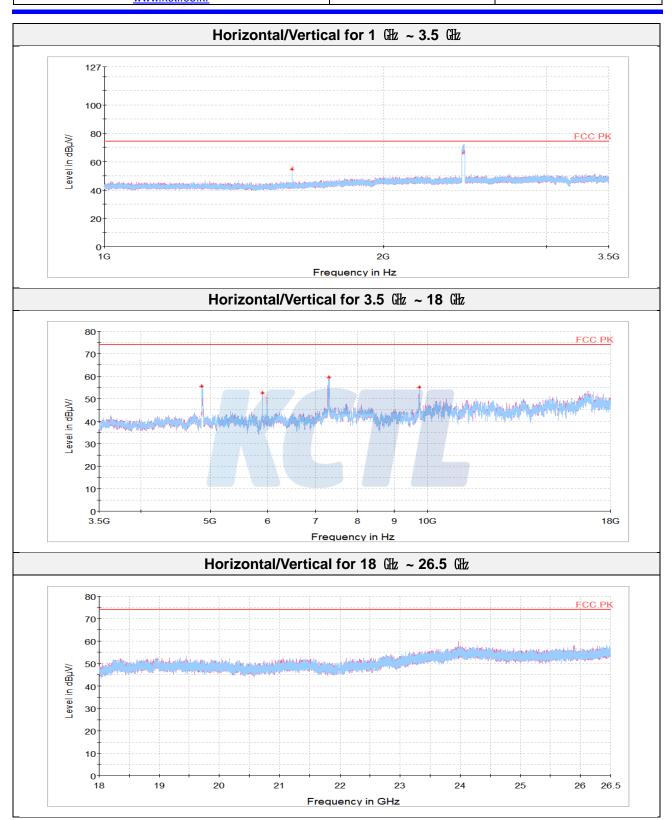
www.kctl.co.kr


Report No.: KR19-SRF0138

Page (30) of (42)

Middle Channel

Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	DCCF	Result	Limit	Margin		
(MHz)	(V/H)	(dB(μV))	(dB)	(dB)	(dB)	(dB(μV/m))	(dB(μV/m))	(dB)		
	Peak data									
1 595.55 ¹⁾	Н	75.87	28.71	-49.87	-	54.71	74.00	19.29		
4 873.14 ¹⁾	Н	76.16	33.82	-54.43	-	55.55	74.00	18.45		
7 311.26 ¹⁾	Н	76.70	35.50	-52.57	-	59.63	74.00	14.37		
9 754.94	V	70.66	36.81	-52.36	-	55.11	74.00	18.89		
				Average Dat	a					
1 595.55 ¹⁾	Н	61.20	28.71	-49.87	0.61	40.65	54.00	13.35		
4 873.141)	Н	71.12	33.82	-54.43	0.61	51.12	54.00	2.88		
7 311.26 ¹⁾	Н	61.38	35.50	-52.57	0.61	44.92	54.00	9.08		


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

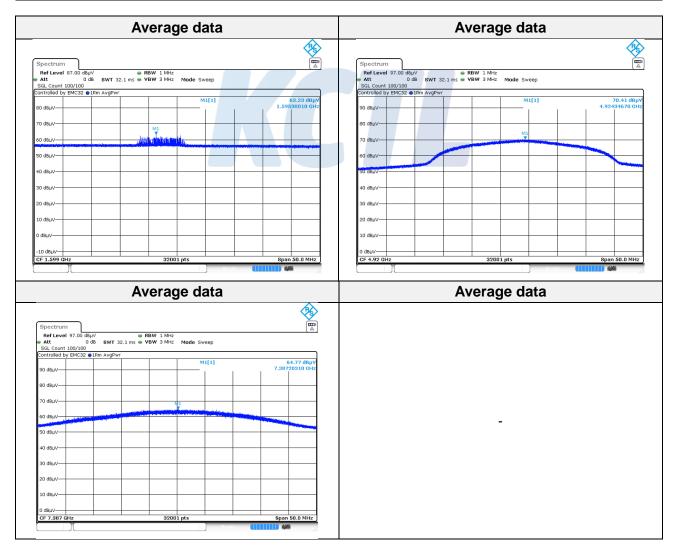
www.kctl.co.kr

Report No.: KR19-SRF0138

Page (31) of (42)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

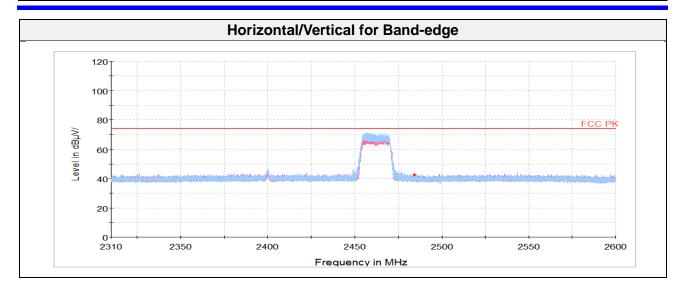
www.kctl.co.kr


Report No.: KR19-SRF0138

Page (32) of (42)

Highest Channel

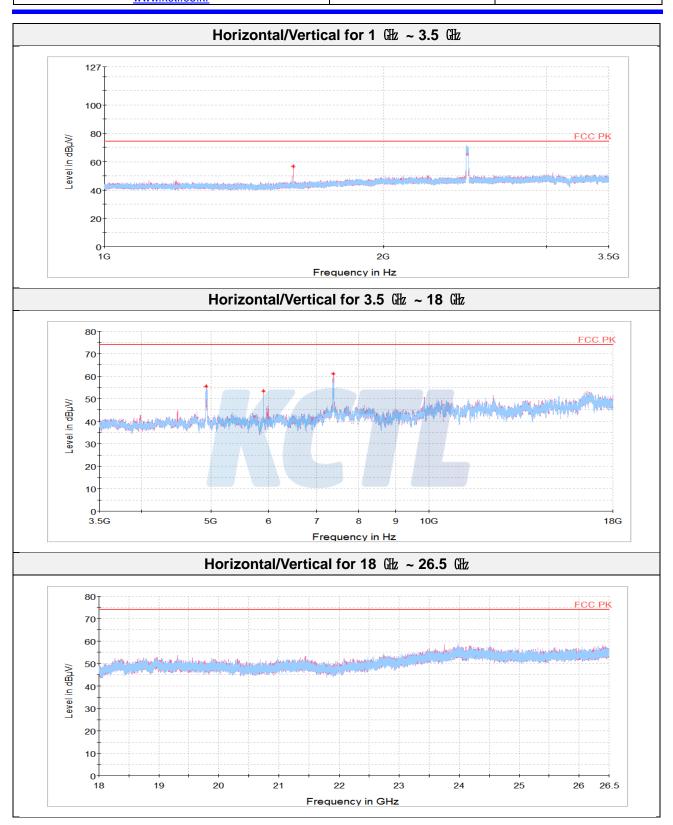
Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	DCCF	Result	Limit	Margin		
(MHz)	(V/H)	(dB(μV))	(dB)	(dB)	(dB)	(dB(μV/m))	(dB(μV/m))	(dB)		
	Peak data									
1 595.30 ¹⁾	V	77.65	28.71	-49.87	-	56.49	74.00	17.51		
2 484.201)	Н	39.74	32.09	-29.22	-	42.61	74.00	31.39		
4 924.35 ¹⁾	Н	76.32	33.85	-54.79	-	55.38	74.00	18.62		
5 910.17	V	72.56	34.99	-54.12	-	53.43	74.00	20.57		
7 387.201)	V	77.65	35.50	-52.17	-	60.98	74.00	13.02		
				Average Dat	a					
1 595.30 ¹⁾	V	63.23	28.71	-49.87	0.61	42.68	54.00	11.32		
4 924.35 ¹⁾	Н	70.41	33.85	-54.79	0.61	50.08	54.00	3.92		
7 387.201)	V	64.77	35.50	-52.17	0.61	48.71	54.00	5.29		


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SRF0138

Page (33) of (42)


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

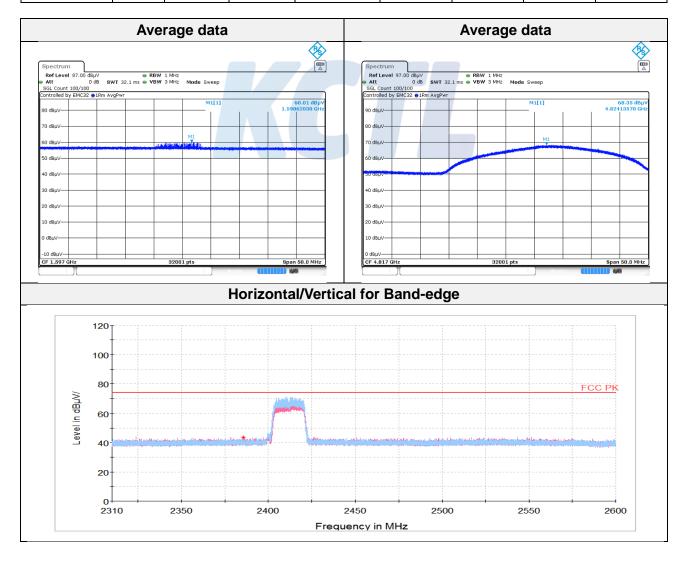
Report No.: KR19-SRF0138

Page (34) of (42)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

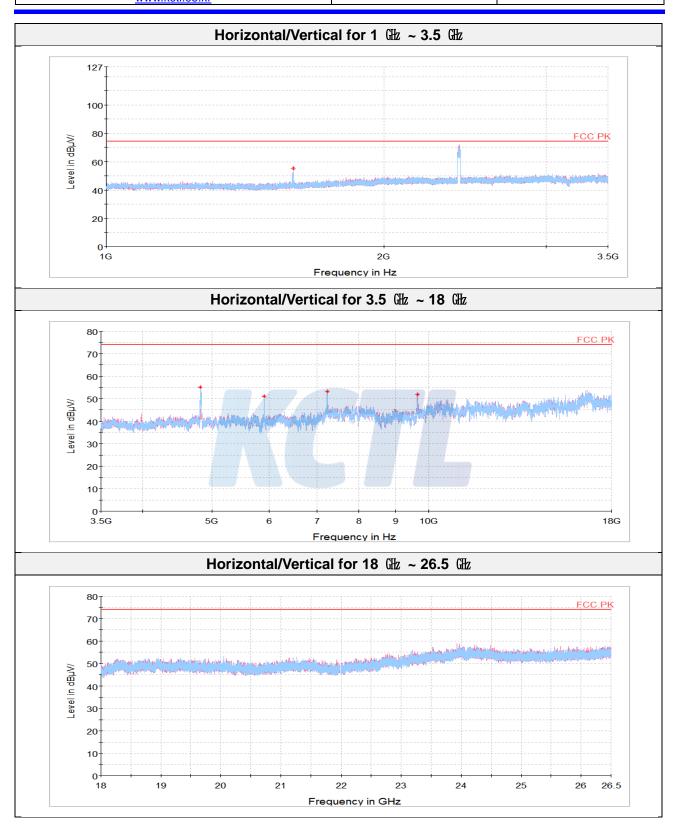
Report No.: KR19-SRF0138


Page (35) of (42)

802.11n HT20

Lowest Channel

Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	DCCF	Result	Limit	Margin	
(MHz)	(V/H)	(dB(μV))	(dB)	(dB)	(dB)	(dB(μV/m))	(dB(μV/m))	(dB)	
	Peak data								
1 598.62 ¹⁾	Н	76.45	28.73	-49.87	-	55.31	74.00	18.69	
2 385.60	V	40.47	32.01	-29.06	-	43.42	74.00	30.58	
4 824.141)	Н	74.83	33.79	-53.51	-	55.11	74.00	18.89	
7 248.70	V	70.51	35.50	-52.89	-	53.12	74.00	20.88	
9 648.45	Н	68.09	36.68	-52.90	-	51.87	74.00	22.13	
Average Data									
1 598.621)	Н	60.01	28.73	-49.87	0.62	39.49	54.00	14.51	
4 824.141)	Н	68.35	33.79	-53.51	0.62	49.25	54.00	4.75	


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

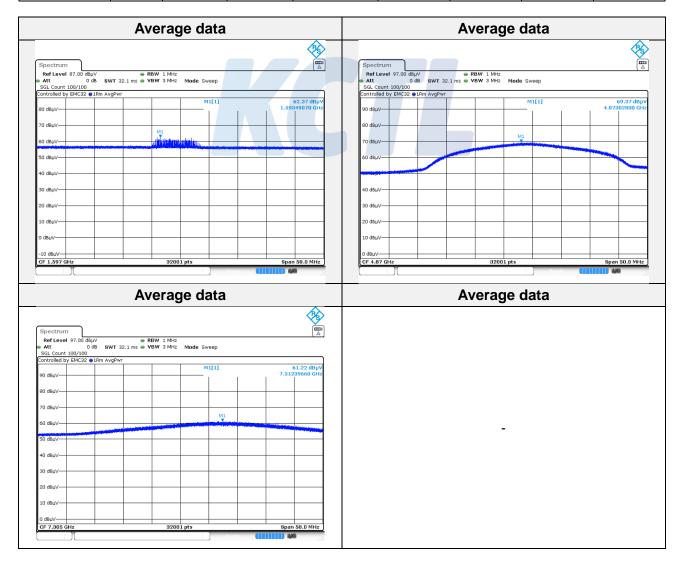
www.kctl.co.kr

Report No.: KR19-SRF0138

Page (36) of (42)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

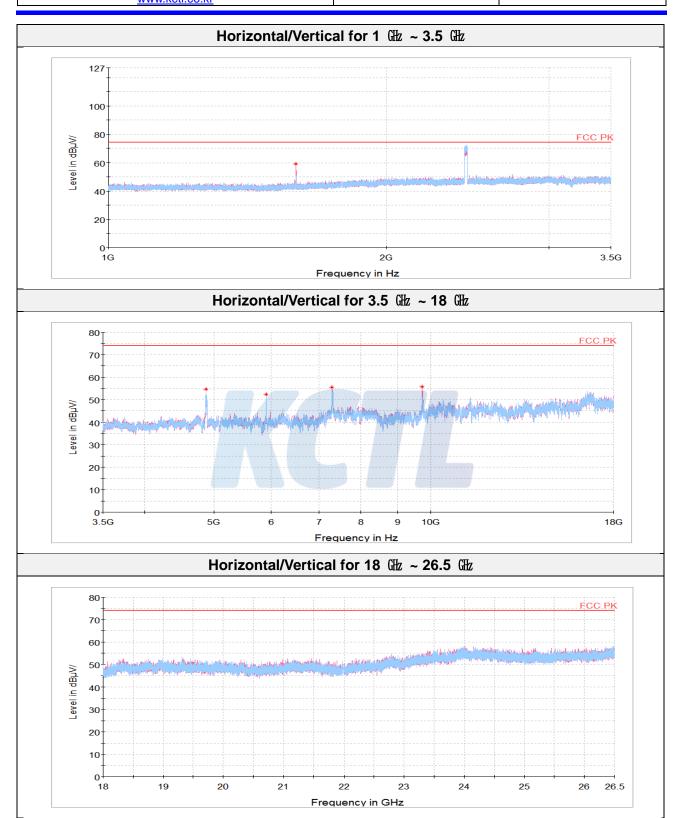
www.kctl.co.kr


Report No.: KR19-SRF0138

Page (37) of (42)

Middle Channel

Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	DCCF	Result	Limit	Margin	
(MHz)	(V/H)	(dB(μV))	(dB)	(dB)	(dB)	(dB(μV/m))	(dB(μV/m))	(dB)	
	Peak data								
1 593.49 ¹⁾	V	80.18	28.69	-49.88	-	58.99	74.00	15.01	
4 873.031)	Н	75.23	33.82	-54.43	-	54.62	74.00	19.38	
5 908.36	V	71.41	34.99	-54.10	-	52.30	74.00	21.70	
7 312.40 ¹⁾	Н	72.44	35.50	-52.56	-	55.38	74.00	18.62	
9 739.08	V	71.24	36.79	-52.44	-	55.59	74.00	18.41	
Average Data									
1 593.491)	V	62.37	28.69	-49.88	0.62	41.80	54.00	12.20	
4 873.031)	Н	69.37	33.82	-54.43	0.62	49.38	54.00	4.62	
7 312.40 ¹⁾	Н	61.22	35.50	-52.56	0.62	44.78	54.00	9.22	


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

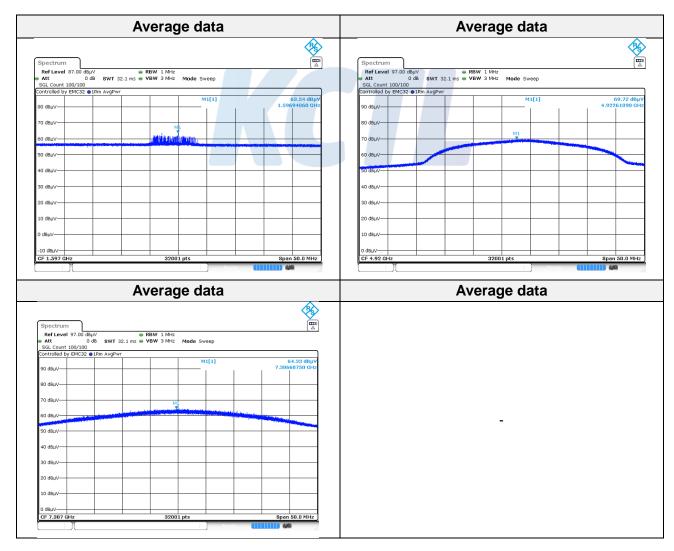
www.kctl.co.kr

Report No.: KR19-SRF0138

Page (38) of (42)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

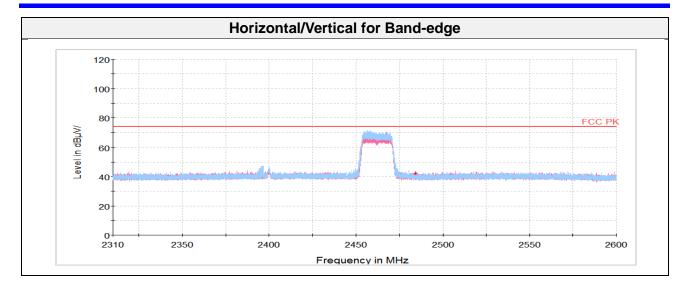
www.kctl.co.kr


Report No.: KR19-SRF0138

Page (39) of (42)

Highest Channel

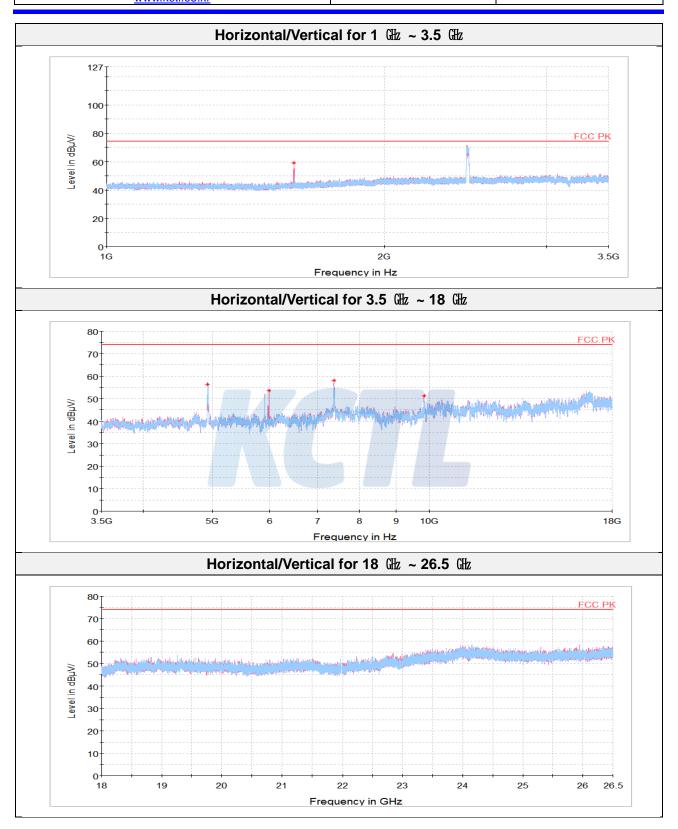
Frequency	Pol.	Reading	Ant. Factor	Amp. + Cable	DCCF	Result	Limit	Margin
(MHz)	(V/H)	(dB(μV))	(dB)	(dB)	(dB)	(dB(μV/m))	(dB(μV/m))	(dB)
Peak data								
1 596.94 ¹⁾	V	80.20	28.72	-49.87	-	59.05	74.00	14.95
2 484.14	Н	39.43	32.09	-29.22	-	42.30	74.00	31.70
4 922.61 ¹⁾	Н	77.33	33.85	-54.80	-	56.38	74.00	17.62
7 386.691)	V	74.78	35.50	-52.17	-	58.11	74.00	15.89
9 844.66	Н	66.12	36.91	-51.90	-	51.13	74.00	22.87
Average Data								
1 596.94 ¹⁾	V	63.54	28.72	-49.87	0.62	43.01	54.00	10.99
4 922.61 ¹⁾	Н	69.72	33.85	-54.80	0.62	49.39	54.00	4.61
7 386.691)	V	64.33	35.50	-52.17	0.62	48.28	54.00	5.72


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SRF0138

Page (40) of (42)


65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SRF0138

Page (41) of (42)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR19-SRF0138

Page (42) of (42)

8. Measurement equipment

Equipment Name	Manufacturer	Model No.	Serial No.	Next Cal. Date
Spectrum Analyzer	R&S	FSV30	101437	20.07.30
Wideband Power Sensor	R&S	NRP-Z81	102398	20.01.25
Coaxial Attenuator	Weinschel ENGINEERING	56-10	53206	20.01.28
ATTENUATOR	R&S	DNF Dämpfungsglied 10 dB in N-50 Ohm	31212	20.05.13
EMI TEST RECEIVER	R&S	ESCI7	100732	20.08.22
Bi-Log Antenna	SCHWARZBECK	VULB 9168	583	20.05.04
Amplifier	SONOMA INSTRUMENT	310N	284608	20.08.22
COAXIAL FIXED ATTENUATOR	Agilent	8491B-003	2708A18758	20.05.04
Horn antenna	ETS.lindgren	3116	00086632	20.02.15
Horn antenna	ETS.lindgren	3117	155787	19.10.23
AMPLIFIER	L-3 Narda-MITEQ	AMF-7D-01001800 -22-10P	2031196	20.02.21
AMPLIFIER	L-3 Narda-MITEQ	JS44-18004000-33 -8P	2000997	20.01.28
LOOP Antenna	R&S	HFH2-Z2	100355	20.08.24
Antenna Mast	Innco Systems	MA4640-XP-ET	-	-
Turn Table	Innco Systems	DT2000	79	-
Antenna Mast	Innco Systems	MA4000-EP	303	-
Turn Table	Innco Systems	DT2000	79	-
Highpass Filter	WT	WT-A1698-HS	WT160411001	20.05.14
Spectrum Analyzer	R&S	FSV40	100988	20.01.04
Vector Signal Generator	R&S	SMBV100A	257566	20.07.16
Signal Generator	R&S	SMR40	100007	20.05.13
Cable Assembly	RadiAll	2301761768000PJ	1724.659	-
Cable Assembly	gigalane	RG-400	-	-
Cable Assembly	HUER+SUHNER	SUCOFLEX 104	MY4342/4	-

End of test report