

FCC PART 15 SUBPART C TEST REPORT					
	FCC PART 15.249				
Report Reference No: FCC ID:	GTS20190306001-1-2-RF 2ARPF-T142				
(position+printed name+signature):	File administrators Jimmy Wang	Jond. Mey			
Supervised by (position+printed name+signature):	Test Engineer Aaron Tan	GTS			
Approved by (position+printed name+signature):	Manager Jason Hu	Jaconta			
Date of issue	Jan.14, 2019				
Representative Laboratory Name .:	Shenzhen Global Test Service C	Co.,Ltd.			
Address	No.7-101 and 8A-104, Building 7 a Garden, No.98, Pingxin North Roa Pinghu Street, Longgang District,	and 8, DCC Cultural and Creative ad, Shangmugu Community, Shenzhen, Guangdong, China			
Applicant's name	UNIVERSAL THROUGH(HK) LIN	IITED			
Address	Room 1405C, 14/F, Lucky centre Wanchai, Hongkong, China	e,165-171, Wanchai Road,			
Test specification:					
Standard:	FCC Part 15.249				
TRF Originator	Shenzhen Global Test Service Co	.,Ltd.			
Master TRF	Dated 2014-12				
Shenzhen Global Test Service Co.,Lt This publication may be reproduced in Shenzhen Global Test Service Co.,Ltd. Shenzhen Global Test Service Co.,Ltd. resulting from the reader's interpretation	td. All rights reserved. whole or in part for non-commercia is acknowledged as copyright owr takes no responsibility for and will n of the reproduced material due to	I purposes as long as the her and source of the material. not assume liability for damages b its placement and context.			
Test item description:	2.4G wireless mouse				
Trade Mark	/				
Manufacturer	SHENZHEN UNIEVERSAL THRC	OUGH TECHNOLOGY CO.LTD			
Model/Type reference:	T142				
Listed Models	/				
Modulation Type:	GFSK				
Operation Frequency:	From 2402 - 2480MHz				
Hardware Version	V0.1				
Software Version	V33				
Rating:	DC 1.5V from Battery				
Result:	PASS				

TEST REPORT

Test Report No. :		GTS20190306001-1-2-RF	Mar. 14, 2019 Date of issue
Equipment under Test	:	2.4G wireless mouse	
Model /Type	:	T142	
Listed Models	:	/	
Applicant	:	UNIVERSAL THROUGH(HK) LIM	ITED
Address	:	Room 1405C, 14/F, Lucky centre, Hongkong, China	165-171, Wanchai Road, Wanchai,
Manufacturer	:	SHENZHEN UNIEVERSAL THRO	OUGH TECHNOLOGY CO.LTD
Address	:	4th, Floor, Dong shan Gang indus town, Bao'an district, SZ	trial area, Gusu one road, Xi'xiang

Test Result: PASS	Test Result:	PASS
-------------------	--------------	------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

	<u>ARY</u>	<u>5</u>
General	Remarks	5
Product	Description	5
Equipme	ent Under Test	5
Short de	escription of the Equipment under Test (EUT)	5
EUT ope	eration mode	5
Block Di	iagram of Test Setup	6
Special A	Accessories	6
Related	Submittal(s) / Grant (s)	6
Modifica	ations	6
TEST	ENVIRONMENT	<u></u>
Address	s of the test laboratory	7
Test Fac	sility	7
Environ	mental conditions	7
Test Des	scription	8
Stateme	nt of the measurement uncertainty	8
Equipme	ents Used during the Test	9
	CONDITIONS AND RESULTS	<u>10</u>
<u>test</u>		
<u>TEST</u> 4.1.	AC Power Conducted Emission	10
<u>TEST</u> 4.1. 4.2.	AC Power Conducted Emission Radiated Emission	10 11
<u>TEST</u> 4.1. 4.2. 4.3.	AC Power Conducted Emission Radiated Emission Bandwidth test	
TEST 4.1. 4.2. 4.3. 4.4.	AC Power Conducted Emission Radiated Emission Bandwidth test Band Edge Compliance Test	
TEST 4.1. 4.2. 4.3. 4.4. 4.5.	AC Power Conducted Emission Radiated Emission Bandwidth test Band Edge Compliance Test Antenna Requirements	

1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.249: Operation within the bands 902 - 928 MHz, 2400 - 2483.5 MHz, 5725 - 5875 MHz, and 24.0 - 24.25 GHz.

ANSI C63.10:2013 : American National Standard for Testing Unlicensed Wireless Devices

<u>ANSI C63.4: 2014:</u> –American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz Range of 9 kHz to 40GHz

2. <u>SUMMARY</u>

2.1. General Remarks

Date of receipt of test sample	:	Mar. 4, 2019
Testing commenced on	:	Mar. 4, 2019
Testing concluded on	:	Mar. 14, 2019

2.2. Product Description

Product Name:	2.4G wireless mouse
Trade Mark:	1
Model/Type reference:	T142
List Model:	1
Power supply:	DC 1.5V
Antenna Type	Internal Antenna
Operation frequency	2402MHz ~ 2480MHz
Antenna Type:	0dBi
Modulation Type	GFSK

2.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank below	ow	

DC 1.5V

2.4. Short description of the Equipment under Test (EUT)

This is a wireless mouse.

2.5. EUT operation mode

Channel	Frequency	Channel	Frequency
1	2402MHz	10	2410MHz
2	2468MHz	11	2476MHz
3	2432MHz	12	2412MHz
4	2408MHz	13	2454MHz
5	2464 MHz	14	2418MHz
6	2404MHz	15	2470MHz
7	2450MHz	16	2480MHz
8	2420MHz		
9	2440 MHz		

2.6. Block Diagram of Test Setup

2.7. Special Accessories

Manufacturer	Description	Model	Serial Number	Certificate
TOSHIBA	Tablet PC	Satellite S40Dt-A	D26T	DOC

2.8. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **2ARPF-T142** filing to comply with Section 15.249 of the FCC Part 15, Subpart C Rules.

2.9. Modifications

No modifications were implemented to meet testing criteria.

3. <u>TEST ENVIRONMENT</u>

3.1. Address of the test laboratory

Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 165725

Shenzhen Global Test Service Co.,Ltd EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

A2LA-Lab Cert. No.: 4758.01

Shenzhen Global Test Service Co.,Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

CNAS-Lab Code: L8169

Shenzhen Global Test Service Co.,Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4. Test Description

Test Items	Test Requirement	Result
Conducted Emissions	15.207	N/A
Radiated Emissions	15.205(a)/15.209/15.249(d)	PASS
Bandwidth	15.249	PASS
Emissions from out of band	15.249	PASS
Antenna Requirement	15.203	PASS

Remark:

1. The measurement uncertainty is not included in the test result.

2. NA = Not Applicable; NP = Not Performed

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

3.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Global Test Service Co.,Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen GTS laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	3560.6550.08	2018/09/20	2019/09/19
LISN	R&S	ESH2-Z5	893606/008	2018/09/20	2019/09/19
Bilog Antenna	Schwarzbeck	VULB9163	976	2016/09/20	2019/09/19
EMI Test Receiver	R&S	ESCI7	101102	2018/09/20	2019/09/19
Spectrum Analyzer	Agilent	N9020A	MY48010425	2018/09/20	2019/09/19
Spectrum Analyzer	R&S	FSP40	100019	2018/06/05	2019/06/04
Controller	EM Electronics	Controller EM 1000	N/A	N/A	N/A
Horn Antenna	Schwarzbeck	BBHA 9120D	01622	2016/09/20	2019/09/19
Active Loop Antenna	SCHWARZBEC K	FMZB1519	1519-037	2016/09/20	2019/09/19
Broadband Horn Antenna	SCHWARZBEC K	BBHA 9170	971	2016/09/20	2019/09/19
Amplifier	Schwarzbeck	BBV 9743	#202	2018/09/20	2019/09/19
Amplifier	EMCI	EMC051845B	980355	2018/09/20	2019/09/19
Temperature/Humidi ty Meter	Gangxing	CTH-608	02	2018/09/20	2019/09/19
High-Pass Filter	K&L	9SH10- 2700/X12750- O/O	KL142031	2018/09/20	2019/09/19
High-Pass Filter	K&L	41H10- 1375/U12750- O/O	KL142032	2018/09/20	2019/09/19
RF Cable(below 1GHz)	HUBER+SUHNE R	RG214	RE01	2018/09/20	2019/09/19
RF Cable(above 1GHz)	HUBER+SUHNE R	RG214	RE02	2018/09/20	2019/09/19
Data acquisition card	Agilent	U2531A	TW53323507	2018/09/20	2019/09/19
Power Sensor	Agilent	U2021XA	MY5365004	2018/09/20	2019/09/19
EMI Test Software	R&S	ES-K1	V1.7.1	2018/09/20	2019/09/19
EMI Test Software	JS Tonscend	JS32-RE	2.0.1.5	2018/09/20	2019/09/19

Note: The Cal.Interval was one year.

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received DC 5V power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT.The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

Frequency range (MHz)	Limit (dBuV)				
Frequency range (Miriz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
* Decreases with the logarithm of the frequency.					

TEST RESULTS

There is no need for conduction emissions test, because the power supply of the EUT is dry battery only.

4.2. Radiated Emission

TEST CONFIGURATION

Frequency range 9 KHz – 30MHz

Frequency range 30MHz – 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

For 9 KHz-30MHz

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				Р
				Р

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

Note:

- 1. Pre-scan all modes and recorded the worst case results in this report.
- 2. Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor
- 3. Margin value = Emission level-Limits

For 1GHz to 25GHz

Frequency (MHz)	Reading (dB µ V)	Antenna Factor (dB)	Preamp factor (dB)	cable loss (dB)	Corrected Amplitude (dB µ V/m)	Limit (dB µ V/m)	Margin (dB)	Remark	Polar (H/V)
		、 ,	Lov	v channe	l(2402MHz)	•,,	l	I	
2402.00	72.15	38.01	30.61	5.62	85.17	114	-28.83	Pk	Vertical
2402.00	62.35	38.01	30.61	5.62	75.37	94	-18.63	AV	Vertical
4804.00	37.85	32.42	30.25	7.95	47.97	74	-26.03	Pk	Vertical
4804.00	26.67	32.42	30.25	7.95	36.79	54	-17.21	AV	Vertical
7206.00	34.12	31.62	30.02	10.45	46.17	74	-27.83	Pk	Vertical
7206.00	24.78	31.62	30.02	10.45	36.83	54	-17.17	AV	Vertical
2402.00	63.50	38.01	30.61	5.62	76.52	114	-37.48	Pk	Horizontal
2402.00	53.05	38.01	30.61	5.62	66.07	94	-27.93	AV	Horizontal
4804.00	35.63	32.42	30.25	7.95	45.75	74	-28.25	Pk	Horizontal
4804.00	25.23	32.42	30.25	7.95	35.35	54	-18.65	AV	Horizontal
7206.00	33.23	31.62	30.02	10.45	45.28	74	-28.72	Pk	Horizontal
7206.00	22.10	31.62	30.02	10.45	34.15	54	-19.85	AV	Horizontal
			Midd	le chann	el(2440MHz))			
2440.00	71.63	37.77	30.54	5.73	84.59	114	-29.41	Pk	Vertical
2440.00	61.14	37.77	30.54	5.73	74.10	94	-19.90	AV	Vertical
4880.00	38.12	32.61	30.31	8.12	48.54	74	-25.46	Pk	Vertical
4880.00	27.34	32.61	30.31	8.12	37.76	54	-16.24	AV	Vertical
7320.00	36.42	32.37	30.14	10.58	49.23	74	-24.77	Pk	Vertical
7320.00	26.35	32.37	30.14	10.58	39.16	54	-16.84	AV	Vertical
2440.00	64.12	37.77	30.54	5.73	77.08	114	-36.92	Pk	Horizontal
2440.00	54.12	37.77	30.54	5.73	67.08	94	-26.92	AV	Horizontal
4880.00	44.62	32.61	30.31	8.12	55.04	74	-18.96	Pk	Horizontal
4880.00	25.62	32.61	30.31	8.12	36.04	54	-17.96	AV	Horizontal
7320.00	34.63	32.37	30.14	10.58	47.44	74	-26.56	Pk	Horizontal
7320.00	23.47	32.37	30.14	10.58	36.28	54	-17.72	AV	Horizontal
			High	n channe	I(2480MHz)				
2480.00	70.57	37.58	30.49	5.84	83.50	114	-30.50	Pk	Vertical
2480.00	59.85	37.58	30.49	5.84	72.78	94	-21.22	AV	Vertical
4960.00	37.56	32.87	30.27	7.88	48.04	74	-25.96	Pk	Vertical
4960.00	28.34	32.87	30.27	7.88	38.82	54	-15.18	AV	Vertical
7440.00	35.12	32.41	30.16	10.62	47.99	74	-26.01	Pk	Vertical
7440.00	25.09	32.41	30.16	10.62	37.96	54	-16.04	AV	Vertical
2480.00	64.12	37.58	30.49	5.84	77.05	114	-36.95	Pk	Horizontal
2480.00	54.35	37.58	30.49	5.84	67.28	94	-26.72	AV	Horizontal
4960.00	35.22	32.87	30.27	7.88	45.70	74	-28.30	Pk	Horizontal
4960.00	25.12	32.87	30.27	7.88	35.60	54	-18.40	AV	Horizontal
7440.00	33.15	32.41	30.16	10.62	46.02	74	-27.98	Pk	Horizontal
7440.00	23.60	32.41	30.16	10.62	36.47	54	-17.53	AV	Horizontal

NOTE:

Corrected Amplitude=Reading+ Antenna Factor+cable loss-Preamp factor Margin= Absolute Level – Limit

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has not to be reported.

4.3. Bandwidth test

TEST PROCEDURE

a. The EUT was directly connected to the spectru analyzer and antenna output port as show in the

block diagram below.

b.Spectrum Setting:RBW=100KHz, VBW \geq RBW, Sweep=Auto.

Test setup

Test data:

Channel Frequency (MHz)	20dB Bandwidth (MHz)	Result
2402	1.7645	Pass
2440	1.8059	Pass
2480	1.8602	Pass

Test plot as follows:

🤤 Keysight Spectrum Analyzer - Occupied BW								
RF 50 Ω AC	CH- Center	SENSE:INT	ALIGN AUTO 04:23:	32 PM Mar 14, 2019	Frequency			
Center Freq 2.40200000	Trig: Free Run Avg Hold:>10/10							
	#FGain:Low #Atten: 10 dB Radio Device: BTS							
10 dB/div Ref -20.00 dBr	n							
-30.0					Center Freq			
-40.0					2 402000000 GHz			
-50.0	A A A A A A A A A A A A A A A A A A A	mmmm						
-60.0	mon .		man					
-70.0			1 Martin	man an an an				
80.0								
-90.0								
-30.0								
-100								
-110								
Center 2.402 GHz				Span 2 MHz	CE Sten			
#Res BW 100 kHz	#	VBW 300 kHz	S	weep 1ms	200.000 kHz			
Occurried Developidat		Total Power	-40.2 dBm		<u>Auto</u> Man			
Occupied Bandwidt		Total Fower	-40.2 UBIII					
1.1	Freq Offset							
Transmit Freg Error	17,126 kHz	% of OBW Pow	ver 99.00 %		0 Hz			
			00.00 -10					
x dB Bandwidth	2.000 MHZ	X dB	-20.00 dB					
MSG STATUS								

Keysight Spectrum Analyzer - Occupied B	N				
IX RF 50 Ω AC Center Freq 2.44000000 2.440000000 0.00000000000000000000000000000000000	CHz Cente	SENSE:INT	ALIGN AUTO 04:24 Radio	4:00 PM Mar 14, 2019 Std: None	Frequency
	Trig: F	Free Run Avg Hole	d:>10/10 Radic	Device: BTS	
	#IFGain:Low #Atter	1. 10 08	Raulo	S Device. B TS	
40 JELE Pot 20.00 dB	P 0				
Log					
-30.0					Center Freq
-40.0					2.440000000 GHz
-50.0	- acan mana	when when a start when a start when when when when when when when when			
-60.0			Mar Marken	how man a	
-70.0					
-80.0					
-90.0					
-100					
-110					
Center 2 44 GHz				Span 2 MHz	
#Res BW 100 kHz	#	VBW 300 kHz		Sweep 1 ms	200.000 kHz
					Auto Man
Occupied Bandwid	th	Total Power	-41.0 dBn	n	
1.	8059 MHz				Freg Offset
Transmit From Error	24 964 647	% of OBW Bow	or 00.00 %	,	0 Hz
	-34.004 KHZ		ei 39.00 /	-	
x dB Bandwidth	2.000 MHz	x dB	-20.00 di	3	
MSG			STATUS		

Keysight Sp	pectrum Analyzer - Oc	cupied BW								
LXI	RF 50 Ω	AC		SENSE:INT		ALIGN AUTO	04:24:35 PI	M Mar 14, 2019	Er	equency
Center F	req 2.48000	00000 GHz	z <u>c</u>	enter Freg: 2.4800	00000 GHz		Radio Std:	None		equency
			🗣 💾	rig: Free Run	Avg Hold:	>10/10	Dadia Dav			
		#IFGa	ain:Low #/	Atten. 10 dB			Radio Dev	ICE. BIS		
	Pof -20 (0 dBm								
Loa										
-30.0										Contor From
										senter Freq
-40.0				~ -					2.48	0000000 GHz
-50.0			and the second	man where	WWW an					
60.0		www.www	vin v		· · · · · · · · · · · · · · · · · · ·	mon	m			
	Mar and a second						W. WWW	and the second		
-70.0										
-80.0										
00.0										
-90.0										
-100										
-110										
Center 2	2.48 GHZ						sp	an 2 WiHz		CF Step
#Res BW	100 kHz			#VBW 3001	(Hz		SWe	ep 1 ms		200.000 kHz
									Auto	Man
Occu	pied Band	width		Total F	ower	-39.8	dBm			
		4.000								
		1.860	JZ MHZ							Freq Offset
										0 Hz
Trans	mit Freq Err	or	-9.410 kHz	% of O	BW Powe	er 99	.00 %			0 112
	De se al così al Ala		4 006 MUL			20.0				
хавь	sanawiaan		1.990 WHZ	хав		-20.0	ло u Б			
MSG						STATUS				

4.4. Band Edge Compliance Test

Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

Test setup

The EUT was placed on a turn table which was 1.5 m above the ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was set 3 m away from the receiving antenna which was mounted on an antenna tower. The measuring antenna moved up and down to find out the maximum emission level. It moved from 1 m to 4 m for both horizontal and vertical polarizations.

Set to span from the lowest frequency generated in the device up to and including the tenth harmonic of the highest fundamental frequency

The bandwidth of the Spectrum's VBW is set at 3MHz and RBW is set at 1MHz for peak emissions measurement above 1GHz and 1MHz RBW, 10Hz VBW for average emissions measure. For all test, used peak detector.

Note: If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

For radiated test as follows:

EUT :	2.4G Wireless Mouse	Model Name :	T142	
Temperature :	25 °C	Relative		
	25 C	Humidity :	54%	
Pressure :	1010hPa	Test Voltage :	DC 1.5V	
Test Mode :	GFSK			

Frequency	Meter Reading	Antenna Factor	Preamp factor	cable loss	Emission Level	Limits	Margin	Detector Type	Comment		
(MHz)	(dBµV)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)				
2390	37.24	37.88	30.45	5.63	50.30	74.00	-23.70	peak	Vertical		
2390	36.55	37.88	30.45	5.63	49.61	74.00	-24.39	peak	Horizontal		
2483.5	37.59	37.45	30.38	5.71	50.37	74.00	-23.63	peak	Vertical		
2483.5	37.14	37.45	30.38	5.71	49.92	74.00	-24.08	peak	Horizontal		
hopping											
2390	36.44	37.88	30.45	5.63	49.50	74.00	-24.50	peak	Vertical		
2390	35.28	37.88	30.45	5.63	48.34	74.00	-25.66	peak	Horizontal		
2483.5	37.79	37.45	30.38	5.71	50.57	74.00	-23.43	peak	Vertical		
2483.5	38.58	37.45	30.38	5.71	51.36	74.00	-22.64	peak	Horizontal		

If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

4.5. Antenna Requirements

Limits

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

<u>Result</u>

The antenna used for this product is PCB antenna and that no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is only 0dBi.

5. Test Setup Photos of the EUT

Radiated Emission Test

6. External and Internal Photos of the EUT

.....End of Report.....