FCC RADIO TEST REPORT

FCC ID：2ARPEACA－002－S

Product ：Wake－Up Light
Trade Name ：N／A
Model Name ：ACA－002
Serial Model ：ACA－002－S，ACA－002－B， ACA－002－M
Report No．：UNIA2018102516FR－01

Prepared for

Shenzhen Juku Intelligent Technology Co．，Ltd．
1113，11／F，Baicai Yungu Building，No．1，Industrial Garden Road，Dalang， Longhua，Shenzhen，China

Prepared by

Shenzhen United Testing Technology Co．，Ltd．
2F，Annex Bldg，Jiahuangyuan Tech Park，\＃365 Baotian 1 Rd，Tiegang Community，Xixiang Str，Bao＇an District，Shenzhen，China

TEST RESULT CERTIFICATION

Applicant＇s name

\qquad
Shenzhen Juku Intelligent Technology Co．，Ltd．

\qquad
1113，11／F，Baicai Yungu Building，No．1，Industrial Garden Road，
Dalang，Longhua，Shenzhen，China
Manufacture＇s Name

\qquad
Shenzhen HongTaiDingYe Electronics Co．Ltd．

Address
\qquad
$6^{\text {th }}$ Floor，Block 8，LongBi Industrial Zone，BanTian Street， LongGang Dist，ShenZhen
Product description
Product name． Wake－Up Light
Trade Mark N／A
Model and／or type reference ACA－002，ACA－002－S，ACA－002－B，ACA－002－M
FCC Rules and Regulations Part 15 Subpart C Section 15.247
ANSI C63．10： 2013
This device described above has been tested by Shenzhen United Testing Technology Co．，Ltd．，and the test results show that the equipment under test（EUT）is in compliance with the FCC requirements．And it is applicable only to the tested sample identified in the report．
This report shall not be reproduced except in full，without the written approval of UNI，this document may be altered or revised by Shenzhen United Testing Technology Co．，Ltd．， personnel only，and shall be noted in the revision of the document．
Date of Test
Date（s）of performance of tests：Oct．26， 2018 ～Nov．08， 2018
Date of Issue ：Nov．08， 2018Test Result．
\qquadPassPrepared by：

Liuze／Manager
Table of Contents

1．TEST SUMMARY5
2．GENERAL INFORMATION 6
2．1 GENERAL DESCRIPTION OF EUT 6
2．2 Carrier Frequency of Channels 7
2．3 Operation of EUT during testing 7
2．4 DESCRIPTION OF TEST SETUP 7
2．5 MEASUREMENT INSTRUMENTS LIST 8
3．CONDUCTED EMISSIONS TEST 9
3．1 Conducted Power Line Emission Limit 9
3．2 Test Setup 9
3．3 Test Procedure 9
3．4 Test Result 9
4 RADIATED EMISSION TEST 12
4．1 Radiation Limit 12
4．2 Test Setup 12
4．3 Test Procedure 13
4．4 Test Result 13
5 BAND EDGE 25
5．1 Limits 25
5．2 Test Procedure 25
5．3 Test Result 25
6 OCCUPIED BANDWIDTH MEASUREMENT 31
6．1 Test Limit 31
6．2 Test Procedure 31
6．3 Measurement Equipment Used 31
6．4 Test Result 31
7 POWER SPECTRAL DENSITY TEST 38
7．1 Test Limit 38
7．2 Test Procedure 38
7．3 Measurement Equipment Used 38
7．4 Test Result 38
8 PEAK OUTPUT POWER TEST 45
8．1 Test Limit 45
8．2 Test Procedure 45
8．3 Measurement Equipment Used 45
Table of Contents Page
8．4 Test Result 45
9 OUT OF BAND EMISSIONS TEST 46
9．1 Test Limit 46
9．2 Test Procedure 46
9．3 Test Setup 46
9．4 Test Result 46
10 ANTENNA REQUIREMENT 50
11 PHOTOGRAPH OF TEST 51
11．1 Radiated Emission 51
11．2 Conducted Emission 52

1．TEST SUMMARY

1．1 TEST PROCEDURES AND RESULTS

DESCRIPTION OF TEST

CONDUCTED EMISSIONSTEST RADIATED EMISSION TEST
BAND EDGE
OCCUPIED BANDWIDTH MEASUREMENT
POWER SPECTRAL DENSITY
PEAK OUTPUT POWER
OUT OF BAND EMISSIONS
ANTENNA REQUIREMENT

RESULT

COMPLIANT
COMPLIANT COMPLIANT COMPLIANT COMPLIANT COMPLIANT COMPLIANT COMPLIANT

1．2 TEST FACILITY

Test Firm ：Shenzhen United Testing Technology Co．，Ltd．
Address ：2F，Annex Bldg，Jiahuangyuan Tech Park，\＃365 Baotian 1 Rd，Tiegang Community，Xixiang Str，Bao＇an District，Shenzhen，China

The testing quality ability of our laboratory meet with＂Quality Law of People＇s Republic of China＂Clause 19．The testing quality system of our laboratory meets with ISO／IEC－17025 requirements，which is approved by CNAS．This approval result is accepted by MRA of APLAC．

Our test facility is recognized，certified，or accredited by the following organizations：
CNAS－LAB Code：L6494
The EMC Laboratory has been assessed and in compliance with CNAS－CL01 accreditation criteria for testing Laboratories（identical to ISO／IEC 17025：2017 General Requirements）for the Competence of testing Laboratories．

Designation Number：CN1227
Test Firm Registration Number： 674885
The EMC Laboratory has been registered and fully described in a report filed with the（FCC） Federal Communications commission．The acceptance letter from the FCC is maintained in our files．

1．3 MEASUREMENT UNCERTAINTY

Measurement Uncertainty
Conducted Emission Expanded Uncertainty $\quad=2.23 \mathrm{~dB}, \mathrm{k}=2$
Radiated emission expanded uncertainty $(9 \mathrm{kHz}-30 \mathrm{MHz})=3.08 \mathrm{~dB}, \mathrm{k}=2$
Radiated emission expanded uncertainty $(30 \mathrm{MHz}-1000 \mathrm{MHz})=4.42 \mathrm{~dB}, \mathrm{k}=2$
Radiated emission expanded uncertainty（Above 1 GHz$)=4.06 \mathrm{~dB}, \mathrm{k}=2$

2．GENERAL INFORMATION

2．1 GENERAL DESCRIPTION OF EUT

Equipment	Wake－Up Light
Trade Mark	N／A
Model Name	ACA－002
Serial No．	ACA－002－S，ACA－002－B，ACA－002－M
Model Difference	All model＇s the function，software and electric circuit are the same，only with a product color and model named different．Test sample model：ACA－002．
FCC ID	2ARPEACA－002－S
Antenna Type	PCB Antenna
Antenna Gain	1 dBi
Frequency Range	$802.11 \mathrm{~b} / \mathrm{g} / \mathrm{n} 20: 2412 \sim 2462 \mathrm{MHz}$
Number of Channels	$802.11 \mathrm{~b} / \mathrm{g} / \mathrm{n} 20: 11 \mathrm{CH}$
Modulation Type	CCK，OFDM，DBPSK，DAPSK
Battery	N／A
Power Source	DC 5V from adapter with AC $120(240) \mathrm{V} / 60 \mathrm{~Hz}$
Adapter Model	M／N：TPA－46050200UU Input：AC $100-240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}, 0.3 \mathrm{~A}$ Output：DC 5V，2．0A

2．2 Carrier Frequency of Channels

Channel List for 802．11b／g／n（20MHz）							
Channel	Frequency (MHz)						
01	2412	04	2427	07	2442	10	2457
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452		

2．3 Operation of EUT during testing
Operating Mode
The mode is used：Transmitting mode for $802.11 \mathrm{~b} / \mathrm{g} / \mathrm{n}(20 \mathrm{MHz})$
Low Channel： 2412 MHz
Middle Channel： 2437 MHz
High Channel：2462MHz

2．4 DESCRIPTION OF TEST SETUP

Operation of EUT during Conducted testing：

Operation of EUT during Radiation and Above1GHz Radiation testing：

Table for auxiliary equipment：

Equipment Description	Manufacturer	Model	Calibration Due Date
N／A	N／A	N／A	N／A

2．5 MEASUREMENT INSTRUMENTS LIST

Item	Equipment	Manufacturer	Model No ．	Serial No．	Calibrated until
CONDUCTED EMISSIONS TEST					
1	AMN	Schwarzbeck	NNLK8121	8121370	2019．9．9
2	AMN	ETS	3810／2	00020199	2019．9．9
3	EMI TEST RECEIVER	Rohde\＆Schwarz	ESCI	101210	2019．9．9
4	AAN	TESEQ	T8－Cat6	38888	2019．9．9
RADIATED EMISSION TEST					
1	Horn Antenna	Sunol	DRH－118	A101415	2019．9．29
2	BicoNiLog Antenna	Sunol	JB1 Antenna	A090215	2019．9．29
3	PREAMP	HP	8449B	3008A00160	2019．9．9
4	PREAMP	HP	8447D	2944A07999	2019．9．9
5	EMI TEST RECEIVER	Rohde\＆Schwarz	ESR3	101891	2019．9．9
6	VECTOR Signal Generator	Rohde\＆Schwarz	SMU200A	101521	2019．9．28
7	Signal Generator	Agilent	E4421B	MY4335105	2019．9．28
8	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2019．9．28
9	MXA Signal Analyzer	Agilent	N9020A	MY51110104	2019．9．9
10	ANT Tower\＆Turn table Controller	Champro	EM 1000	60764	2019．9．28
11	Anechoic Chamber	Taihe Maorui	$9 \mathrm{~m} * 6 \mathrm{~m} * 6 \mathrm{~m}$	966A0001	2019．9．9
12	Shielding Room	Taihe Maorui	$6.4 \mathrm{~m}^{*} 4 \mathrm{~m} * 3 \mathrm{~m}$	643A0001	2019．9．9
13	RF Power sensor	DARE	RPR3006W	15100041 SNO88	2019．3．14
14	RF Power sensor	DARE	RPR3006W	15100041SNO89	2019．3．14
15	RF power divider	Anritsu	K241B	992289	2019．9．28
16	Wideband radio communication tester	Rohde\＆Schwarz	CMW500	154987	2019．9．28
17	Biconical antenna	Schwarzbeck	VHA 9103	91032360	2019．9．8
18	Biconical antenna	Schwarzbeck	VHA 9103	91032361	2019．9．8
19	Broadband Hybrid Antennas	Schwarzbeck	VULB9163	VULB9163\＃958	2019．9．8
20	Horn Antenna	Schwarzbeck	BBHA9120D	9120D－1680	2019．1．12
21	Active Receive Loop Antenna	Schwarzbeck	FMZB 1919B	00023	2019．9．8
22	Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170651	2019．03．14
23	Microwave Broadband Preamplifier	Schwarzbeck	BBV 9721	100472	2019．9．8
24	Active Loop Antenna	Com－Power	AL－130R	10160009	2019．05．10
25	Power Meter	KEYSIGHT	N1911A	MY50520168	2019．05．10
26	Frequency Meter	VICTOR	VC2000	997406086	2019．05．10
27	DC Power Source	HYELEC	HY5020E	055161818	2019．05．10

Page 9 of 52
Report No．：UNIA2018102516FR－01

3．CONDUCTED EMISSIONS TEST

3．1 Conducted Power Line Emission Limit
For unintentional device，according to § 15．107（a）Line Conducted Emission Limits is as following

$*$ Frequency (MHz)	Maximum RF Line Voltage $(\mathrm{dB} \mu \mathrm{V})$			
	CLASS A		CLASS B	
$0.15 \sim 0.50$	79	Ave．	Q．P．	Ave．
$0.50 \sim 5.00$	73	66	$66 \sim 56^{*}$	$56 \sim 46^{*}$
$5.00 \sim 30.0$	73	60	56	46

＊Decreasing linearly with the logarithm of the frequency
For intentional device，according to §15．207（a）Line Conducted Emission Limit is same as above table．

3．2 Test Setup

3．3 Test Procedure

1，The equipment was set up as per the test configuration to simulate typical actual usage per the user＇s manual．A wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63．10．
2，Support equipment，if needed，was placed as per ANSIC63．10．
3，All I／O cables were positioned to simulate typical actual usage as per ANSI C63．10．
4，If a EUT received DC power from the USB Port of Notebook PC，the PC＇s adapter received AC120V／60Hz power through a Line Impedance Stabilization Network（LISN）which supplied power source and was grounded to the ground plane．
5，All support equipments received AC power from a second LISN，if any．
6，The EUT test program was started．Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer／Receiver connected to the LISN powering the EUT．The LISN has two monitoring points：Line 1 （Hot Side）and Line 2 （Neutral Side）．Two scans were taken：one with Line 1 connected to Analyzer／Receiver and Line 2 connected to a 50 ohm load；the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer／Receiver．
7，Analyzer／Receiver scanned from 150 KHz to 30 MHz for emissions in each of the test modes．

3．4 Test Result

Pass

Remark：
1．All modes were tested at AC 120 V and 240 V ，only the worst result of AC 120 V was reported．
2．All modes were tested at Low，Middle，and High channel，only the worst result of 802．11b High
Channel was reported as below：

Temperature：	$26^{\circ} \mathrm{C}$	Relative Humidity：	48%
Test Date：	Nov． 01,2018	Pressure：	1010 hPa
Test Voltage：	AC $120 \mathrm{~V}, 60 \mathrm{~Hz}$	Phase：	Line
Test Mode：	Transmitting mode of 802.11 b 2462 MHz		

No．Frequency QuasiPeak Average Correction QuasiPeak Average QuasiPeak Average QuasiPeak Average Remark

		reading	reading	factor	result	result	limit	limit	margin	margin
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)
1P	0.1580	26.49	5.75	9.54	36.03	15.29	65.56	55.57	-29.53	-40.28
Pass										
2P	0.2660	23.47	4.48	9.67	33.14	14.15	61.24	51.24	-28.10	-37.09
3P	0.6660	21.66	5.32	9.71	31.37	15.03	56.00	46.00	-24.63	-30.97
4P	1.0940	18.61	1.32	9.75	28.36	11.07	56.00	46.00	-27.64	-34.93
5P	1.8140	17.39	-0.08	9.78	27.17	9.70	56.00	46.00	-28.83	-36.30
6^{*}	14.9100	37.46	17.22	0.30	37.76	17.52	60.00	50.00	-22.24	-32.48
Pass										

Remark：Factor $=$ Insertion Loss + Cable Loss，Result $=$ Reading + Factor，Margin $=$ Result - Limit．

Temperature：	$26^{\circ} \mathrm{C}$	Relative Humidity：	48%
Test Date：	Nov．01， 2018	Pressure：	1010 hPa
Test Voltage：	AC $120 \mathrm{~V}, 60 \mathrm{~Hz}$	Phase：	Neutral
Test Mode：	Transmitting mode of 802.11 b 2462 MHz		

No．	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	nark
	（MHz）	（dBuV）	（dBuV）	（dB）	（dBuV）	（dBuV）	（dBuV）	（dBuV）	（dB）	（dB）	
1 P	0.1500	27.55	8.76	9.53	37.08	18.29	65.99	56.00	－28．91	－37．71	Pass
2 P	0.2460	27.42	8.63	9.66	37.08	18.29	61.89	51.89	－24．81	－33．60	Pass
3 P	0.4380	20.58	10.59	9.69	30.27	20.28	57.10	47.10	－26．83	－26．82	Pass
4＊	0.6740	25.18	19.26	9.71	34.89	28.97	56.00	46.00	－21．11	－17．03	Pass
5P	1.1180	18.22	9.83	9.75	27.97	19.58	56.00	46.00	－28．03	－26．42	Pass
6P	14.4420	34.38	15.77	0.29	34.67	16.06	60.00	50.00	－25．33	－33．94	Pass

Remark：Factor $=$ Insertion Loss + Cable Loss，Result $=$ Reading + Factor，Margin $=$ Result - Limit.

4 RADIATED EMISSION TEST

4．1 Radiation Limit

For unintentional device，according to § 15．109（a），except for Class A digital devices，the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values：

Frequency (MHz)	Distance $($ Meters $)$	Radiated $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Radiated $(\mu \mathrm{V} / \mathrm{m})$
$30-88$	3	40	100
$88-216$	3	43.5	150
$216-960$	3	46	200
Above 960	3	54	500

For intentional device，according to § $15.209(\mathrm{a})$ ，the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table．

4．2 Test Setup

1．Radiated Emission Test－Up Frequency Below 30MHz

2．Radiated Emission Test－Up Frequency $30 \mathrm{MHz} \sim 1 \mathrm{GHz}$

3．Radiated Emission Test－Up Frequency Above 1GHz

4．3 Test Procedure

1．Below 1 GHz measurement the EUT is placed on turntable which is 0.8 m above ground plane． And above 1 GHz measure ment EUT was placed on low permittivity and low tangent turn table which is 1.5 m above ground plane．
2．The turntable shall be rotated for 360 degrees to determine the position of maximum emission level．
3．EUT is set 3 m away from the receiving antenna，which is varied from 1 m to 4 m to find out the highest emissions．
4．Maximum procedure was performed on the six highest emissions to ensure EUT compliance．
5．And also，each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical．
6．Repeat above procedures until the measurements for all frequencies are complete．
7．The test frequency range from 9 KHz to 25 GHz per FCC PART $15.33(\mathrm{a})$ ．
Note：
For battery operated equipment，the equipment tests shall be performed using a new battery．

4．4 Test Result

PASS

Remark：
1．All modes of $802.11 \mathrm{~b} / \mathrm{g} / \mathrm{n} 20$ were test at Low，Middle，and High channel，only the worst result of 802.11 b High Channel was reported for below 1 GHz test．
2．By preliminary testing and verifying three axis（ X, Y and Z ）position of EUT transmitted status，it was found that＂Z axis＂position was the worst，and test data recorded in this report．

Below 1GHz Test Results：

Temperature：	$24^{\circ} \mathrm{C}$	Relative Humid ity：	45%
Test Date：	Nov． 01,2018	Pressure：	1010 hPa
Test Voltage：	AC $120 \mathrm{~V}, 60 \mathrm{~Hz}$	Polarization：	Horizontal
Test Mode：	Transmitting mode of 802.11 b 2462 MHz		

Remark：Absolute Level＝Reading Level + Factor，Margin＝Absolute Level - Limit Factor $=$ Ant．Factor + Cable Loss - Pre－amplifier

Temperature：	$24^{\circ} \mathrm{C}$	Relative Humidity：	45%
Test Date：	Nov． 01,2018	Pressure：	1010 hPa
Test Voltage：	AC $120 \mathrm{~V}, 60 \mathrm{~Hz}$	Polarization：	Vertical
Test Mode：	Transmitting mode of 802.11 b 2462 MHz		

Remark：Absolute Level $=$ Reading Level + Factor，Margin $=$ Absolute Level - Limit
Factor $=$ Ant．Factor + Cable Loss - Pre－amplifier
Remark：
（1）Measuring frequencies from 9 KHz to the 1 GHz ，Radiated emission test from 9 KHz to 30 MHz was verified， and no any emission was found except system noise floor．
（2）＊denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205 ，then the general radiated emission limits in 15.209 apply．
（3）The IF bandwidth of EMI Test Receiver between 30 MHz to 1 GHz was $120 \mathrm{KHz}, 1 \mathrm{MHz}$ for measuring above 1 GHz ，below 30 MHz was 10 KHz ．

Above 1 GHz Test Results：

CH Low of 802．11b Mode（2412MHz）
Horizontal：

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	$(\mathrm{dB} \mu \mathrm{V})$	(dB)	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	(dB)	Type
4824	60.78	-3.64	57.14	74	-16.86	PK
4824	51.22	-3.64	47.58	54	-6.42	AV
7236	58.86	-0.95	57.91	74	-16.09	PK
7236	47.22	-0.95	46.27	54	-7.73	AV

Remark：Factor $=$ Antenna Factor + Cable Loss - Pre－amplifier．Margin $=$ Absolute Level - Limit

Vertical：

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
$y y y y y y n$						
(MHz)	$(\mathrm{dB} \mu \mathrm{V})$	(dB)	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	(dB)	74
4824	62.12	-3.64	58.48	-15.52	PK	
4824	50.16	-3.64	46.52	54	-7.48	AV
7236	58.35	-0.95	57.40	74	-16.60	PK
7236	47.01	-0.95	46.06	54	-7.94	AV

Remark：Factor＝Antenna Factor + Cable Loss - Pre－amplifier．Margin＝Absolute Level - Limit

CH Middle of 802.11 b Mode（2437MHz）

Horizontal：

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	$(\mathrm{dB} \mu \mathrm{V})$	(dB)	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	(dB)	
4874	61.78	-3.51	58.27	74	-15.73	PK
4874	50.76	-3.51	47.25	54	-6.75	AV
7311	58.05	-0.82	57.23	74	-16.77	PK
7311	47.32	-0.82	46.50	54	-7.50	AV

Vertical：

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	$(\mathrm{dB} \mu \mathrm{V})$	(dB)	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	(dB)	
4874	61.47	-3.51	57.96	74	-16.04	PK
4874	50.33	-3.51	46.82	54	-7.18	AV
7311	58.01	-0.82	57.19	74	-16.81	PK
7311	46.58	-0.82	45.76	54	-8.24	AV

CH High of 802．11b Mode（2462MHz）

Horizontal：

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	$(\mathrm{dB} \mu \mathrm{V})$	(dB)	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	(dB)	Type
4924	62.45	-3.43	59.02	74	-14.98	PK
4924	50.34	-3.43	46.91	54	-7.09	AV
7386	58.65	-0.75	57.90	74	-16.10	PK
7386	47.68	-0.75	46.93	54	-7.07	AV

Remark：Factor $=$ Antenna Factor + Cable Loss - Pre－amplifier．Margin $=$ Absolute Level - Limit

Vertical：

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	$(\mathrm{dB} \mu \mathrm{V})$	(dB)	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	(dB)	
4924	62.71	-3.43	59.28	-14.72	PK	
4924	51.02	-3.43	47.59	54	-6.41	AV
7386	58.56	-0.75	57.81	74	-16.19	PK
7386	47.69	-0.75	46.94	54	-7.06	AV

Remark：Factor $=$ Antenna Factor + Cable Loss - Pre－amplifier．Margin $=$ Absolute Level - Limit

Remark ：

（1）Measuring frequencies from 1 GHz to the 25 GHz ．
（2）＂F＂denotes fundamental frequency；＂H＂denotes spurious frequency．＂E＂denotes band edge frequency．
（3）＊denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205 ，then the general radiated emission limits in 15.209 apply．
（4）Data of measurement within this frequency range shown＂－－－＂in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured．
（5）The IF bandwidth of EMI Test Receiver between 30 MHz to 1 GHz was $120 \mathrm{KHz}, 1 \mathrm{MHz}$ for measuring above 1 GHz ，below 30 MHz was 10 KHz ．The resolution bandwidth of test receiver／spectrum analyzer is 1 MHz and video bandwidth is 3 MHz for peak measurement with peak detector at frequency above 1 GHz ．The resolution bandwidth of test receiver／spectrum analyzer is 1 MHz and video bandwidth is 10 Hz for Average measurement with peak detection at frequency above 1 GHz ．
（6）When the test results of Peak Detected below the limits of Average Detected，the Average Detected is not need completed．For example：Top Channel at Fundamental 73．16dBuV／m（PK Value）<93.98（AV Limit），at harmonic $53.20 \mathrm{dBuV} / \mathrm{m}(\mathrm{PK}$ Value）$<54 \mathrm{dBuV} / \mathrm{m}(\mathrm{AV}$ Limit），the Average Detected not need to completed．

CH Low of 802.11 g Mode（ 2412 MHz ）

Horizontal：

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	$(\mathrm{dB} \mu \mathrm{V})$	(dB)	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	(dB)	Type
4824	62.02	-3.64	58.38	74	-15.62	PK
4824	51.23	-3.64	47.59	54	-6.41	AV
7236	58.35	-0.95	57.40	74	-16.60	PK
7236	47.63	-0.95	46.68	54	-7.32	AV

Remark：Factor＝Antenna Factor + Cable Loss - Pre－amplifier．Margin＝Absolute Level - Limit

Vertical：

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	$(\mathrm{dB} \mu \mathrm{V})$	(dB)	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	(dB)	Type
4824	61.85	-3.64	58.21	74	-15.79	PK
4824	50.63	-3.64	46.99	54	-7.01	AV
7236	57.86	-0.95	56.91	74	-17.09	PK
7236	47.53	-0.95	46.58	54	-7.42	AV

Remark：Factor＝Antenna Factor + Cable Loss - Pre－amplifier．Margin $=$ Absolute Level - Limit

CH Middle of 802.11 g Mode（2437MHz）

Horizontal：

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	$(\mathrm{dB} \mu \mathrm{V})$	(dB)	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	(dB)	
4874	62.32	-3.51	58.81	74	-15.19	PK
4874	50.79	-3.51	47.28	54	-6.72	AV
7311	57.65	-0.82	56.83	74	-17.17	PK
7311	47.21	-0.82	46.39	54	-7.61	AV

Remark：Factor $=$ Antenna Factor + Cable Loss - Pre－amplifier．Margin $=$ Absolute Level - Limit

Vertical：

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	$(\mathrm{dB} \mu \mathrm{V})$	(dB)	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	(dB)	
4874	61.78	-3.51	58.27	74	-15.73	PK
4874	50.42	-3.51	46.91	54	-7.09	AV
7311	57.32	-0.82	56.50	74	-17.50	PK
7311	47.02	-0.82	46.20	54	-7.80	AV

CH High of 802.11 g Mode（2462MHz）

Horizontal：

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	$(\mathrm{dB} \mu \mathrm{V})$	(dB)	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	(dB)	
4924	62.53	-3.43	59.10	74	-14.90	PK
4924	50.01	-3.43	46.58	54	-7.42	AV
7386	58.35	-0.75	57.60	74	-16.40	PK
7386	47.55	-0.75	46.80	54	-7.20	AV

Remark：Factor $=$ Antenna Factor + Cable Loss - Pre－amplifier．Margin $=$ Absolute Level - Limit

Vertical：

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	$(\mathrm{dB} \mu \mathrm{V})$	(dB)	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	(dB)	
4924	62.13	-3.43	58.70	-15.30	PK	
4924	51.23	-3.43	47.80	54	-6.20	AV
7386	58.36	-0.75	57.61	74	-16.39	PK
7386	47.48	-0.75	46.73	54	-7.27	AV

Remark：Factor $=$ Antenna Factor + Cable Loss - Pre－amplifier．Margin $=$ Absolute Level - Limit

Remark ：

（1）Measuring frequencies from 1 GHz to the 25 GHz ．
（2）＂F＂denotes fundamental frequency；＂H＂denotes spurious frequency．＂E＂denotes band edge frequency．
（3）＊denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205 ，then the general radiated emission limits in 15.209 apply．
（4）Data of measurement within this frequency range shown＂－－－＂in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured．
（5）The IF bandwidth of EMI Test Receiver between 30 MHz to 1 GHz was $120 \mathrm{KHz}, 1 \mathrm{MHz}$ for measuring above 1 GHz ，below 30 MHz was 10 KHz ．The resolution bandwidth of test receiver／spectrum analyzer is 1 MHz and video bandwidth is 3 MHz for peak measurement with peak detector at frequency above 1 GHz ．The resolution bandwidth of test receiver／spectrum analyzer is 1 MHz and video bandwidth is 10 Hz for Average measurement with peak detection at frequency above 1 GHz ．
（6）When the test results of Peak Detected below the limits of Average Detected，the Average Detected is not need completed．For example：Top Channel at Fundamental 73．16dBuV／m（PK Value）<93.98（AV Limit），at harmonic $53.20 \mathrm{dBuV} / \mathrm{m}(\mathrm{PK}$ Value）$<54 \mathrm{dBuV} / \mathrm{m}(\mathrm{AV}$ Limit），the Average Detected not need to completed．

CH Low of $802.11 \mathrm{n} / \mathrm{H} 20 \mathrm{Mode}(2412 \mathrm{MHz})$

Horizontal：

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	$(\mathrm{dB} \mu \mathrm{V})$	(dB)	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	(dB)	Type
4824	61.75	-3.64	58.11	74	-15.89	PK
4824	50.42	-3.64	46.78	54	-7.22	AV
7236	58.12	-0.95	57.17	74	-16.83	PK
7236	47.05	-0.95	46.10	54	-7.90	AV

Remark：Factor＝Antenna Factor + Cable Loss - Pre－amplifier．Margin＝Absolute Level - Limit

Vertical：

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	$(\mathrm{dB} \mu \mathrm{V})$	(dB)	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	(dB)	Type
4824	61.86	-3.64	58.22	74	-15.78	PK
4824	50.65	-3.64	47.01	54	-6.99	AV
7236	58.12	-0.95	57.17	74	-16.83	PK
7236	47.75	-0.95	46.80	54	-7.20	AV

Remark：Factor＝Antenna Factor＋Cable Loss - Pre－amplifier．Margin＝Absolute Level－Limit

CH Middle of $802.11 \mathrm{n} / \mathrm{H} 20$ Mode（2437MHz）

Horizontal：

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	$(\mathrm{dB} \mu \mathrm{V})$	(dB)	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	(dB)	
4874	61.56	-3.51	58.05	74	-15.95	PK
4874	50.35	-3.51	46.84	54	-7.16	AV
7311	57.12	-0.82	56.30	74	-17.70	PK
7311	47.23	-0.82	46.41	54	-7.59	AV

Vertical：

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	$(\mathrm{dB} \mu \mathrm{V})$	(dB)	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	(dB)	
4874	62.21	-3.51	58.70	74	-15.30	PK
4874	50.26	-3.51	46.75	54	-7.25	AV
7311	57.23	-0.82	56.41	74	-17.59	PK
7311	47.35	-0.82	46.53	54	-7.47	AV

CH High of $802.11 \mathrm{n} / \mathrm{H} 20$ Mode（2462MHz）

Horizontal：

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	$(\mathrm{dB} \mu \mathrm{V})$	(dB)	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	(dB)	
4924	62.73	-3.43	59.30	74	-14.70	PK
4924	50.82	-3.43	47.39	54	-6.61	AV
7386	57.12	-0.75	56.37	74	-17.63	PK
7386	47.65	-0.75	46.90	54	-7.10	AV

Remark：Factor＝Antenna Factor + Cable Loss - Pre－amplifier．Margin $=$ Absolute Level - Limit

Vertical：

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	$(\mathrm{dB} \mu \mathrm{V})$	(dB)	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	(dB)	
4924	62.68	-3.43	59.25	-14.75	PK	
4924	50.26	-3.43	46.83	54	-7.17	AV
7386	57.68	-0.75	56.93	74	-17.07	PK
7386	47.69	-0.75	46.94	54	-7.06	AV

Remark：Factor＝Antenna Factor + Cable Loss - Pre－amplifier．Margin $=$ Absolute Level - Limit

Remark ：

（1）Measuring frequencies from 1 GHz to the 25 GHz ．
（2）＂F＂denotes fundamental frequency；＂H＂denotes spurious frequency．＂E＂denotes band edge frequency．
（3）＊denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205 ，then the general radiated emission limits in 15.209 apply．
（4）Data of measurement within this frequency range shown＂－－－＂in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured．
（5）The IF bandwidth of EMI Test Receiver between 30 MHz to 1 GHz was $120 \mathrm{KHz}, 1 \mathrm{MHz}$ for measuring above 1 GHz ，below 30 MHz was 10 KHz ．The resolution bandwidth of test receiver／spectrum analyzer is 1 MHz and video bandwidth is 3 MHz for peak measurement with peak detector at frequency above 1 GHz ．The resolution bandwidth of test receiver／spectrum analyzer is 1 MHz and video bandwidth is 10 Hz for Average measurement with peak detection at frequency above 1 GHz ．
（6）When the test results of Peak Detected below the limits of Average Detected，the Average Detected is not need completed．For example：Top Channel at Fundamental $73.16 \mathrm{dBuV} / \mathrm{m}$（PK Value）$<93.98$（AV Limit），at harmonic $53.20 \mathrm{dBuV} / \mathrm{m}(\mathrm{PK}$ Value）$<54 \mathrm{dBuV} / \mathrm{m}(\mathrm{AV}$ Limit），the Average Detected not need to completed．

5 BAND EDGE

5．1 Limits

FCC PART 15．247 Emissions radiated outside of the specified frequency bands，except for harmonics，shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in $\S 15.209$ ，whichever is the lesser attenuation．

5．2 Test Procedure

The band edge compliance of RF radiated emission should be measured by following the guidance in ANSI C63．10 with respect to maximizing the emission by rotating the EUT，measuring the emission while the EUT is situated in three orthogonal planes（if appropriate），adjusting the measurement antenna height and polarization etc．Set RBW to 100 KHz and VBM to 300 KHz to measure the peak field strength and set RBW to 1 MHz and VBW to 10 Hz to measure the average radiated field strength．The conducted RF band edge was measured by using a spectrum analyzer．Set span wide enough to capture the highest in－band emission and the emission at the band edge．Set RBW to 100 KHz and VBW to 300 KHz ，to measure the conducted peak band edge．

5．3 Test Result

PASS

Operation Mode：802．11b Mode TX CH Low（2412MHz）
Horizontal：

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	$(\mathrm{dB} \mu \mathrm{V})$	(dB)	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	(dB)	
2310	57.21	-5.81	51.40	-22.60	PK	
2310	1	-5.81	$/$	54	$/$	AV
2390	64.86	-5.84	59.02	74	-14.98	PK
2390	50.32	-5.84	44.48	54	-9.52	AV
2400	65.65	-5.84	59.81	74	-14.19	PK
2400	50.12	-5.84	44.28	54	-9.72	AV

Remark：Factor $=$ Antenna Factor + Cable Loss - Pre－amplifier.

Vertical：

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	$(\mathrm{dB} \mu \mathrm{V})$	(dB)	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	(dB)	
2310	56.75	-5.81	50.94	-23.06	PK	
2310	$/$	-5.81	$/$	54	$/$	AV
2390	65.35	-5.84	59.51	74	-14.49	PK
2390	50.26	-5.84	44.42	54	-9.58	AV
2400	65.86	-5.84	60.02	74	-13.98	PK
2400	49.87	-5.84	44.03	54	-9.97	AV

Remark：Factor $=$ Antenna Factor + Cable Loss - Pre－amplifier．

Operation Mode：802．11b Mode TX CH High（2462MHz）

Horizontal：

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	$(\mathrm{dB} \mu \mathrm{V})$	(dB)	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	(dB)	
2483.5	56.85	-5.65	51.20	-22.80	PK	
2483.5	$/$	-5.65	$/$	54	$/$	AV
2500	55.86	-5.72	50.14	74	-23.86	PK
2500	$/$	-5.72	$/$	54	$/$	AV
Remark：Factor＝Antenna Factor＋Cable Loss－Pre－amplifier．						

Vertical：

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type		
(MHz)	$(\mathrm{dB} \mu \mathrm{V})$	(dB)	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	(dB)			
2483.5	56.43	-5.65	50.78	-23.22	PK			
2483.5	1	-5.65	$/$	54	$/$	AV		
2500	55.28	-5.72	49.56	74	-24.44	PK		
2500	$/$	-5.72	$/$	54	$/$	AV		Remark：Factor＝Antenna Factor＋Cable Loss－Pre－amplifier．
:---								

Operation Mode：802．11g Mode TX CH Low（2412MHz）

Horizontal：

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	$(\mathrm{dB} \mathrm{\mu} \mathrm{~V})$	(dB)	$(\mathrm{dB} \mathrm{\mu} / \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	(dB)	
2310	55.79	-5.81	49.98	-24.02	PK	
2310	$/$	-5.81	$/$	54	$/$	AV
2390	65.12	-5.84	59.28	74	-14.72	PK
2390	48.23	-5.84	42.39	54	-11.61	AV
2400	65.01	-5.84	59.17	74	-14.83	PK
2400	50.23	-5.84	44.39	54	-9.61	AV

Remark：Factor $=$ Antenna Factor + Cable Loss - Pre－amplifier．

Vertical：

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	$(\mathrm{dB} \mu \mathrm{V})$	(dB)	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	(dB)	74
2310	55.87	-5.81	50.06	-23.94	PK	
2310	$/$	-5.81	$/$	54	$/$	AV
2390	66.01	-5.84	60.17	74	-13.83	PK
2390	48.12	-5.84	42.28	54	-11.72	AV
2400	66.59	-5.84	60.75	74	-13.25	PK
2400	50.68	-5.84	44.84	54	-9.16	AV

Remark：Factor＝Antenna Factor + Cable Loss - Pre－amplifier．

Operation Mode：802．11g Mode TX CH High（2462MHz）

Horizontal：

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	$(\mathrm{dB} \mu \mathrm{V})$	(dB)	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	(dB)	
2483.5	57.12	-5.65	51.47	-22.53	PK	
2483.5	$/$	-5.65	$/$	54	$/$	AV
2500	55.51	-5.72	49.79	74	-24.21	PK
2500	$/$	-5.72	$/$	54	$/$	AV
Remark：Factor＝Antenna Factor＋Cable Loss－Pre－amplifier．						

Vertical：

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type		
(MHz)	$(\mathrm{dB} \mu \mathrm{V})$	(dB)	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	(dB)			
2483.5	57.26	-5.65	51.61	-22.39	PK			
2483.5	1	-5.65	$/$	54	$/$	AV		
2500	55.87	-5.72	50.15	74	-23.85	PK		
2500	$/$	-5.72	$/$	54	$/$	AV		Remark：Factor＝Antenna Factor＋Cable Loss－Pre－amplifier．
:---								

Operation Mode：802．11n／H20 Mode TX CH Low（2412MHz）

Horizontal：

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	$(\mathrm{dB} \mathrm{\mu} \mathrm{~V})$	(dB)	$(\mathrm{dB} \mathrm{\mu} / \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	(dB)	
2310	56.21	-5.81	50.40	-23.60	PK	
2310	$/$	-5.81	$/$	54	$/$	AV
2390	64.12	-5.84	58.28	74	-15.72	PK
2390	48.12	-5.84	42.28	54	-11.72	AV
2400	65.01	-5.84	59.17	74	-14.83	PK
2400	50.46	-5.84	44.62	54	-9.38	AV

Remark：Factor $=$ Antenna Factor + Cable Loss - Pre－amplifier．

Vertical：

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	$(\mathrm{dB} \mu \mathrm{V})$	(dB)	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	(dB)	
2310	56.75	-5.81	50.94	-23.06	PK	
2310	1	-5.81	$/$	54	$/$	AV
2390	66.35	-5.84	60.51	74	-13.49	PK
2390	48.60	-5.84	42.76	54	-11.24	AV
2400	64.78	-5.84	58.94	74	-15.06	PK
2400	51.09	-5.84	45.25	54	-8.75	AV

Remark：Factor $=$ Antenna Factor + Cable Loss - Pre－amplifier．

Operation Mode：802．11n／H20 Mode TX CH High（2462MHz）
Horizontal：

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	$(\mathrm{dB} \mu \mathrm{V})$	(dB)	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	(dB)	
2483.5	57.23	-5.65	51.58	-22.42	PK	
2483.5	$/$	-5.65	$/$	54	$/$	AV
2500	56.42	-5.72	50.70	74	-23.30	PK
2500	$/$	-5.72	$/$	54	$/$	AV
Remark：Factor＝Antenna Factor＋Cable Loss－Pre－amplifier．						

Vertical：

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	$(\mathrm{dB} \mu \mathrm{V})$	(dB)	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	(dB)	
2483.5	57.35	-5.65	51.70	-22.30	PK	
2483.5	1	-5.65	1	54	$/$	AV
2500	56.13	-5.72	50.41	74	-23.59	PK
2500	$/$	-5.72	$/$	54	$/$	AV
Remark：Factor＝Antenna Factor＋Cable Loss－Pre－amplifier．						

6 OCCUPIED BANDWIDTH MEASUREMENT

6．1 Test Limit

FCC Part15（15．247），Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
$15.247(\mathrm{a})(2)$	Bandwidth	$>=500 \mathrm{KHz}$ （6dB bandwidth）	$2400-2483.5$	PASS	

6．2 Test Procedure
1．The EUT was placed on a turn table which is 0.8 m above ground plane．
2．Set EUT as normal operation．
3．Based on FCC Part15 C Section 15．247：RBW $=100 \mathrm{KHz}$ ，VBW $=300 \mathrm{KHz}$ ．
4．The useful radiated emission from the EUT was detected by the spectrum analyzer with peak detector．

6．3 Measurement Equipment Used

Same as Radiated Emission Measurement

6．4 Test Result

PASS

Page 32 of 52

TX 802．11b Mode			
Frequency (MHz)	6dB Bandwidth (MHz)	Channel Separation (MHz)	Result
2412	9.980	$>=500 \mathrm{KHz}$	PASS
2437	9.946	$>=500 \mathrm{KHz}$	PASS
2462	10.01	$>=500 \mathrm{KHz}$	PASS

$\mathrm{CH}: 2412 \mathrm{MHz}$

$\mathrm{CH}: 2437 \mathrm{MHz}$

CH：2462MHz

TX 802．11g Mode				
Frequency (MHz)	6dB Bandwidth (MHz)	Channel Separation (MHz)	Result	
2412	16.42	$>=500 \mathrm{KHz}$	PASS	
2437	16.42	$>=500 \mathrm{KHz}$	PASS	
2462	16.42	$>=500 \mathrm{KHz}$	PASS	

$\mathrm{CH}: 2412 \mathrm{MHz}$

$\mathrm{CH}: 2437 \mathrm{MHz}$

CH：2462MHz

TX 802．11n／HT20 Mode				
Frequency (MHz)	6dB Bandwidth (MHz)	Channel Separation (MHz)	Result	
2412	17.68	$>=500 \mathrm{KHz}$	PASS	
2437	17.68	$>=500 \mathrm{KHz}$	PASS	
2462	17.68	$>=500 \mathrm{KHz}$	PASS	

$\mathrm{CH}: 2412 \mathrm{MHz}$

$\mathrm{CH}: 2437 \mathrm{MHz}$

$\mathrm{CH}: 2462 \mathrm{MHz}$

7 POWER SPECTRAL DENSITY TEST

7．1 Test Limit

FCC Part15（15．247），Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247	Power Spectral Density	8 dBm （in any 3KHz）	$2400-2483.5$	PASS	

7．2 Test Procedure

1．The EUT was placed on a turn table which is 0.8 m above ground plane．
2．Set EUT as normal operation．
3．Based on FCC Part15 C Section 15．247：RBW $=3 \mathrm{KHz}$ ，VBW $=10 \mathrm{KHz}$ ．
4．The useful radiated emission from the EUT was detected by the spectrum analyzer with peak detector．

7．3 Measurement Equipment Used

Same as Radiated Emission Measurement

7．4 Test Result

PASS

TX 802．11b Mode			
Frequency (MHz)	Power Density $(\mathrm{dBm} / 3 \mathrm{KHz})$	Limit $(\mathrm{dBm} / 3 \mathrm{KHz})$	Result
2412	-4.153	8	PASS
2437	-2.948	8	PASS
2462	-2.348	8	PASS

CH：2412MHz

CH：2437MHz

$\mathrm{CH}: 2462 \mathrm{MHz}$

TX 802．11g Mode			
Frequency (MHz)	Power Density $(\mathrm{dBm} / 3 \mathrm{KHz})$	Limit $(\mathrm{dBm} / 3 \mathrm{KHz})$	Result
2412	-8.330	8	PASS
2437	-8.104	8	PASS
2462	-7.548	8	PASS

$\mathrm{CH}: 2412 \mathrm{MHz}$

CH：2437MHz

$\mathrm{CH}: 2462 \mathrm{MHz}$

TX 802．11n／HT20 Mode				
Frequency (MHz)	Power Density $(\mathrm{dBm} / 3 \mathrm{KHz})$	Limit $(\mathrm{dBm} / 3 \mathrm{KHz})$	Result	
2412	-8.356	8	PASS	
2437	-8.611	8	PASS	
2462	-7.732	8	PASS	

$\mathrm{CH}: 2412 \mathrm{MHz}$

CH：2437MHz

$\mathrm{CH}: 2462 \mathrm{MHz}$

8 PEAK OUTPUT POWER TEST

8．1 Test Limit

FCC Part15（15．247），Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
$15.247(\mathrm{~b})(3)$	Peak Output Power	1 watt or 30dBm	$2400-2483.5$	PASS	

8．2 Test Procedure

1．The EUT was placed on a turn table which is 0.8 m above ground plane．
2．The EUT was directly connected to the Power meter．

8．3 Measurement Equipment Used

Same as Radiated Emission Measurement

8．4 Test Result

PASS
All the test modes completed for test．

Test						
Channel	Frequency	Maximum Peak Conducted Output Power	LIMIT			
CH01	2412	(dBm)	（dBm）			
CH06	2437	12.63	30			
CH11	2462	12.45	30			
					12.72	30
CH01	2412	TX 802．11g Mode				
CH06	2437	10.34	30			
CH11	2462	10.36	30			
	10.56				30	
CH01	2412	TX 802．11 n20 Mode				
CH06	2437	9.68	30			
CH11	2462	9.59	30			

9 OUT OF BAND EMISSIONS TEST

9．1 Test Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating，the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power，based on either an RF conducted or a radiated measurement，provided the transmitter demonstrates compliance with the peak conducted power limits．If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval，as permitted under paragraph（b）（3）of this section，the attenuation required under this paragraph shall be 30 dB instead of 20 dB．

9．2 Test Procedure

1．The EUT was placed on a turn table which is 0.8 m above ground plane．
2．Set EUT as TX operation and connect directly to the spectrum analyzer．
3．Based on FCC Part15 C Section 15．247：RBW $=100 \mathrm{KHz}$ ，VBW $=300 \mathrm{KHz}$ ．
4．Set detected by the spectrum analyzer with peak detector．

9．3 Test Setup

9．4 Test Result

PASS

TX 802．11b Mode
CH： 2412 MHz

$\mathrm{CH}: 2462 \mathrm{MHz}$

TX 802．11g Mode
$\mathrm{CH}: 2412 \mathrm{MHz}$

$\mathrm{CH}: 2462 \mathrm{MHz}$

TX 802．11n／HT20 Mode
$\mathrm{CH}: 2412 \mathrm{MHz}$

$\mathrm{CH}: 2462 \mathrm{MHz}$

10 ANTENNA REQUIREMENT

Standard Applicable：
For intentional device，according to FCC 47 CFR Section 15．203，an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device．

Antenna Connected Construction
The antenna used in this product is a PCB Antenna，The directional gains of antenna used for transmitting is 1 dBi ．

11 PHOTOGRAPH OF TEST

11．1 Radiated Emission

11．2 Conducted Emission

＊＊＊End of Report＊＊＊

