

Page 1 of 52

Report No.: UNIA2018102516FR-01

FCC RADIO TEST REPORT

FCC ID: 2ARPEACA-002-S

Product :Wake-Up LightTrade Name :N/AModel Name :ACA-002Serial Model :ACA-002-S, ACA-002-B,
ACA-002-MReport No. :UNIA2018102516FR-01

Prepared for

Shenzhen Juku Intelligent Technology Co., Ltd.

1113, 11/F, Baicai Yungu Building, No.1, Industrial Garden Road, Dalang, Longhua, Shenzhen, China

Prepared by

Shenzhen United Testing Technology Co., Ltd.

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

TEST RESULT CERTIFICATION

Applicant's name:	Shenzhen Juku Intelligent Technology Co., Ltd.			
Address	1113, 11/F, Baicai Yungu Building, No.1, Industrial Garden Road, Dalang, Longhua, Shenzhen, China			
Manufacture's Name:	Shenzhen HongTaiDingYe Electronics Co.Ltd.			
Address:	6 th Floor, Block 8, LongBi Industrial Zone, BanTian Street, LongGang Dist, ShenZhen			
Product description				
Product name:	Wake-Up Light			
Trade Mark:	N/A			
Model and/or type reference :	ACA-002, ACA-002-S, ACA-002-B, ACA-002-M			
Standards	FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013			

This device described above has been tested by Shenzhen United Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of UNI, this document may be altered or revised by Shenzhen United Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

Date of Test	
Date (s) of performance of tests	Oct. 26, 2018 ~ Nov. 08, 2018
Date of Issue	Nov. 08, 2018
Test Result	Pass

Prepared by:

Reviewer:

Approved & Authorized Signer:

Liuze/Manager

Sherwin Qian/Supervisor

ahr.

Kahn yang/Editor

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

L	N	Page 3 of 52	Report No.: UNIA20181025	16FR-0
	L. L	Table of Contents	Page	е
	1. TEST SUMMARY			5
	2 . GENERAL INFORMA	TION		6
	2.1 GENERAL DESCR			6
	2.2 Carrier Frequency			7
	2.3 Operation of EUT of			7
	2.4 DESCRIPTION OF	TEST SETUP		7
	2.5 MEASUREMENT I	NSTRUMENTS LIST		8
	3. CONDUCTED EMIS	SSIONS TEST		9
	3.1 Conducted Power	Line Emission Limit		9
	3.2 Test Setup			9
	3.3 Test Procedure			9
	3.4 Test Result			9
	4 RADIATED EMISSION	NTEST	4.	12
	4.1 Radiation Limit			12
	4.2 Test Setup			12
	4.3 Test Procedure			13
	4.4 Test Result			13
	5 BAND EDGE		in the second se	25
	5.1 Limits			25
	5.2 Test Procedure			25
	5.3 Test Result		in.	25
	6 OCCUPIED BANDWIE	OTH MEASUREMENT		31
	6.1 Test Limit		1	31
	6.2 Test Procedure		5 5	31
	6.3 Measurement Equi	ipment Used		31
	6.4 Test Result		A.	31
	7 POWER SPECTRAL	DENSITY TEST		38
	7.1 Test Limit			38
	7.2 Test Procedure	S		38
	7.3 Measurement Equi	ipment Used		38
	7.4 Test Result	. 17.		38
	8 PEAK OUTPUT POWI	ERTEST		45
	8.1 Test Limit			45
	8.2 Test Procedure	in mont line d		45 45
	8.3 Measurement Equi	ipment Used	2 2	45

	Page 4 of 52	Report No.:	: UNIA2018102516FR-0
in in	Table of Contents		Page
8.4 Test Result			45
9 OUT OF BAND EMISSIO	NS TEST		46
9.1 Test Limit			46
9.2 Test Procedure			46
9.3 Test Setup			46
9.4 Test Result			46
10 ANTENNA REQUIREME	NT N		50
11 PHOTOGRAPH OF TES	т		51
11.1 Radiated Emission			51
11.2 Conducted Emission			52

Report No.: UNIA2018102516FR-01

1. TEST SUMMARY

1.1 TEST PROCEDURES AND RESULTS

DESCRIPTION OF TEST CONDUCTED EMISSIONS TEST RADIATED EMISSION TEST BAND EDGE OCCUPIED BANDWIDTH MEASUREMENT POWER SPECTRAL DENSITY PEAK OUTPUT POWER OUT OF BAND EMISSIONS ANTENNA REQUIREMENT RESULT COMPLIANT COMPLIANT COMPLIANT COMPLIANT COMPLIANT COMPLIANT COMPLIANT

1.2 TEST FACILITY

Test Firm : Shenzhen United Testing Technology Co., Ltd.

Address

Community, Xixiang Str, Bao'an District, Shenzhen, China

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19.The testing quality system of our laboratory meets with ISO/IEC-17025 requirements, which is approved by CNAS. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

CNAS-LAB Code: L6494

The EMC Laboratory has been assessed and in compliance with CNAS-CL01 accreditation criteria for testing Laboratories (identical to ISO/IEC 17025:2017 General Requirements) for the Competence of testing Laboratories.

Designation Number: CN1227

Test Firm Registration Number: 674885

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission. The acceptance letter from the FCC is maintained in our files.

1.3 MEASUREMENT UNCERTAINTY

Measurement	Uncertainty
Conducted Em	ingian Expanded Ling

Conducted Emission Expanded Uncertainty	=	2.23dB,
Radiated emission expanded uncertainty(9kHz	z-30MHz) =	3.08dB,
Radiated emission expanded uncertainty(30M	Hz-1000MHz) =	4.42dB,
Radiated emission expanded uncertainty(Abov	ve 1GHz) =	4.06dB,

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co., Ltd. United Testing Technology(Hong Kong) Limited k=2 k=2 k=2 k=2

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Wake-Up Light
Trade Mark	N/A
Model Name	ACA-002
Serial No.	ACA-002-S, ACA-002-B, ACA-002-M
	All model's the function, software and electric circuit are
Model Difference	the same, only with a product color and model named
	different. Test sample model: ACA-002.
FCC ID	2ARPEACA-002-S
Antenna Type	PCB Antenna
Antenna Gain	1dBi
Frequency Range	802.11b/g/n20: 2412~2462 MHz
Number of Channels	802.11b/g/n20: 11CH
Modulation Type	CCK, OFDM, DBPSK, DAPSK
Battery	N/A
Power Source	DC 5V from adapter with AC 120(240)V/60Hz
	M/N: TPA-46050200UU
Adapter Model	Input: AC 100-240V, 50/60Hz, 0.3A
	Output: DC 5V, 2.0A

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

2.2 Carrier Frequency of Channels

Channel List for 802.11b/g/n(20MHz)						V	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	04	2427	07	2442	10	2457
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452	5	

2.3 Operation of EUT during testing

Operating Mode

The mode is used: Transmitting mode for 802.11b/g/n(20MHz)

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

2.4 DESCRIPTION OF TEST SETUP

Operation of EUT during Conducted testing:

Operation of EUT during Radiation and Above1GHz Radiation testing:

Table for auxiliary equipment:

Equipment Description	Manufacturer	Model	Calibration Due Date
N/A	N/A	N/A	N/A

2.5 MEASUREMENT INSTRUMENTS LIST

ltem	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until				
		CONDUCTED	EMISSIONS TEST						
1	AMN	Schwarzbeck	NNLK8121	8121370	2019.9.9				
2	AMN	ETS	3810/2	00020199	2019.9.9				
3	EMI TEST RECEIVER	Rohde&Schwarz	ESCI	101210	2019.9.9				
4	AAN	TESEQ	T8-Cat6	38888	2019.9.9				
	RADIATED EMISSION TEST								
1	Horn Antenna	Sunol	DRH-118	A101415	2019.9.29				
2	BicoNILog Antenna	Sunol	JB1 Antenna	A090215	2019.9.29				
3	PREAMP	HP	8449B	3008A00160	2019.9.9				
4	PREAMP	HP	8447D	2944A07999	2019.9.9				
5	EMI TEST RECEIVER	Rohde&Schwarz	ESR3	101891	2019.9.9				
6	VECTOR Signal Generator	Rohde&Schwarz	SMU200A	101521	2019.9.28				
7	Signal Generator	Agilent	E4421B	MY4335105	2019.9.28				
8	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2019.9.28				
9	MXA Signal Analyzer	Agilent	N9020A	MY51110104	2019.9.9				
10	ANT Tower&Turn table Controller	Champro	EM 1000	60764	2019.9.28				
11	Anechoic Chamber	Taihe Maorui	9m*6m*6m	966A0001	2019.9.9				
12	Shielding Room	Taihe Maorui	6.4m*4m*3m	643A0001	2019.9.9				
13	RF Power sensor	DARE	RPR3006W	15100041SNO88	2019.3.14				
14	RF Power sensor	DARE	RPR3006W	15100041SNO89	2019.3.14				
15	RF power divider	Anritsu	K241B	992289	2019.9.28				
16	Wideband radio communication tester	Rohde&Schwarz	CMW500	154987	2019.9.28				
17	Biconical antenna	Schwarzbeck	VHA 9103	91032360	2019.9.8				
18	Biconical antenna	Schwarzbeck	VHA 9103	91032361	2019.9.8				
19	Broadband Hybrid Antennas	Schwarzbeck	VULB9163	VULB9163#958	2019.9.8				
20	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1680	2019.1.12				
21	Active Receive Loop Antenna	Schwarzbeck	FMZB 1919B	00023	2019.9.8				
22	Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170651	2019.03.14				
23	Microwave Broadband Preamplifier	Schwarzbeck	BBV 9721	100472	2019.9.8				
24	Active Loop Antenna	Com-Power	AL-130R	10160009	2019.05.10				
25	Power Meter	KEYSIGHT	N1911A	MY50520168	2019.05.10				
26	Frequency Meter	VICTOR	VC2000	997406086	2019.05.10				
27	DC Power Source	HYELEC	HY5020E	055161818	2019.05.10				

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

3. CONDUCTED EMISSIONS TEST

3.1 Conducted Power Line Emission Limit

For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following

_	Maximum RF Line Voltage(dBµV)				
Frequency	CLASS A		CLASS B		
(MHz)	Q.P.	Ave.	Q.P.	Ave.	
0.15~0.50	79	66	66~56*	56~46*	
0.50~5.00	73	60	56	46	
5.00~30.0	73	60	60	50	

* Decreasing linearly with the logarithm of the frequency For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

3.2 Test Setup

3.3 Test Procedure

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. A wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

3.4 Test Result

Pass

Remark:

1. All modes were tested at AC 120V and 240V, only the worst result of AC 120V was reported. 2. All modes were tested at Low, Middle, and High channel, only the worst result of 802.11b High Channel was reported as below:

深圳市优耐检测技术有限公司

Shenzhen United Testing Technology Co., Ltd. United Testing Technology(Hong Kong) Limited

Page 10 of 52

Report No.: UNIA2018102516FR-01

Temperature:	26°C	Relative Humidity:	48%	
Test Date:	Nov. 01, 2018	Pressure:	1010hPa	
Test Voltage:	AC 120V, 60Hz	Phase:	Line	
Test Mode:	Transmitting mode of 802.11b 2462MHz			

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1P	0.1580	26.49	5.75	9.54	36.03	15.29	65.56	55.57	-29.53	-40.28	Pass
2P	0.2660	23.47	4.48	9.67	33.14	14.15	61.24	51.24	-28.10	-37.09	Pass
3P	0.6660	21.66	5.32	9.71	31.37	15.03	56.00	46.00	-24.63	-30.97	Pass
4P	1.0940	18.61	1.32	9.75	28.36	11.07	56.00	46.00	-27.64	-34.93	Pass
5P	1.8140	17.39	-0.08	9.78	27.17	9.70	56.00	46.00	-28.83	-36.30	Pass
6*	14.9100	37.46	17.22	0.30	37.76	17.52	60.00	50.00	-22.24	-32.48	Pass

Remark: Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result - Limit.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 11 of 52

Report No.: UNIA2018102516FR-01

Temperature:	26°C	Relative Humidity:	48%				
Test Date:	Nov. 01, 2018	Pressure:	1010hPa				
Test Voltage:	AC 120V, 60Hz	Phase:	Neutral				
Test Mode: Transmitting mode of 802.11b 2462MHz							

No.	Frequency (MHz)	QuasiPeak reading (dBuV)	Average reading (dBuV)	Correction factor (dB)	QuasiPeak result (dBuV)	Average result (dBuV)	QuasiPeak limit (dBuV)	Average limit (dBuV)	QuasiPeak margin (dB)	Average margin (dB)	Remark
1P		27.55	8.76	9.53	37.08	18.29	65.99	56.00	-28.91	-37.71	Pass
IF	0.1500	27.55	0.70		57.00		05.55	50.00	-20.91	-57.71	1 035
2P	0.2460	27.42	8.63	9.66	37.08	18.29	61.89	51.89	-24.81	-33.60	Pass
3P	0.4380	20.58	10.59	9.69	30.27	20.28	57.10	47.10	-26.83	-26.82	Pass
4*	0.6740	25.18	19.26	9.71	34.89	28.97	56.00	46.00	-21.11	-17.03	Pass
5P	1.1180	18.22	9.83	9.75	27.97	19.58	56.00	46.00	-28.03	-26.42	Pass
6P	14.4420	34.38	15.77	0.29	34.67	16.06	60.00	50.00	-25.33	-33.94	Pass

Remark: Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result - Limit.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

4 RADIATED EMISSION TEST

4.1 Radiation Limit

For unintentional device, according to § 15.109(a), except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
30-88	3	40	100
88-216	3	43.5	150
216-960	3	46	200
Above 960	3	54	500

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

4.2 Test Setup

1. Radiated Emission Test-Up Frequency Below 30MHz

2. Radiated Emission Test-Up Frequency 30MHz~1GHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

3. Radiated Emission Test-Up Frequency Above 1GHz

- 4.3 Test Procedure
 - 1. Below 1GHz measurement the EUT is placed on turntable which is 0.8m above ground plane. And above 1GHz measurement EUT was placed on low permittivity and low tangent turn table which is 1.5m above ground plane.
 - 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
 - 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
 - 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
 - 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
 - 6. Repeat above procedures until the measurements for all frequencies are complete.
 - 7. The test frequency range from 9KHz to 25GHz per FCC PART 15.33(a).
 - Note:

For battery operated equipment, the equipment tests shall be performed using a new battery.

4.4 Test Result

PASS

Remark:

1. All modes of 802.11b/g/n20 were test at Low, Middle, and High channel, only the worst result of 802.11b High Channel was reported for below 1 GHz test.

2. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, and test data recorded in this report.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

peak

Below 1GHz Test Results:

Temperature:	24°C	Relative Humidity:	45%			
Test Date:	Nov. 01, 2018	Pressure:	1010hPa			
Test Voltage: AC 120V, 60Hz		Polarization:	Horizontal			
Test Mode: Transmitting mode of 802.11b 2462MHz						

Remark: Absolute Level = Reading Level + Factor, Margin = Absolute Level – Limit Factor = Ant. Factor + Cable Loss – Pre-amplifier

24.71

54.00

-29.29

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

1000.0000

29.62

-4.91

6

Page 15 of 52

Report No.: UNIA2018102516FR-01

Temperature:	24°C	Relative Humidity:	45%					
Test Date:	Nov. 01, 2018	Pressure:	1010hPa					
Test Voltage:	AC 120V, 60Hz	Polarization:	Vertical					
Test Mode:	Transmitting mode of 802.11b 24	ransmitting mode of 802.11b 2462MHz						

No.	Frequency (MHz)	Reading (dBuV)	Correction factor(dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Degree (deg.)	Height (cm)	Remark
1	31.3992	31.70	-8.44	23.26	40.00	-16.74			peak
2*	42.7496	45.09	-17.54	27.55	40.00	-12.45			peak
3	61.7781	45.80	-21.82	23.98	40.00	-16.02			peak
4	165.4866	40.64	-16.50	24.14	43.50	-19.36			peak
5	566.6223	39.76	-11.24	28.52	46.00	-17.48			peak
6	955.4381	34.28	-5.77	28.51	46.00	-17.49			peak

Remark: Absolute Level = Reading Level + Factor, Margin = Absolute Level – Limit Factor = Ant. Factor + Cable Loss – Pre-amplifier

Remark:

- (1) Measuring frequencies from 9 KHz to the 1 GHz, Radiated emission test from 9KHz to 30MHz was verified, and no any emission was found except system noise floor.
- (2) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (3) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Above 1 GHz Test Results:

CH Low of 802.11b Mode (2412MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	60.78	-3.64	57.14	74	-16.86	PK
4824	51.22	-3.64	47.58	54	-6.42	AV
7236	58.86	-0.95	57.91	74	-16.09	PK
7236	47.22	-0.95	46.27	54	-7.73	AV
Remark: Fact	or = Antenna	Factor + Cabl	e Loss – Pre-ampli	fier. Margin =	Absolute Le	vel – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	62.12	-3.64	58.48	74	-15.52	РК
4824	50.16	-3.64	46.52	54	-7.48	AV
7236	58.35	-0.95	57.40	74	-16.60	РК
7236	47.01	-0.95	46.06	54	-7.94	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin = Absolute Level - Limit

CH Middle of 802.11b Mode (2437MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	61.78	-3.51	58.27	74	-15.73	PK
4874	50.76	-3.51	47.25	54	-6.75	AV
7311	58.05	-0.82	57.23	74	-16.77	PK
7311	47.32	-0.82	46.50	54	-7.50	AV
Remark: Fact	tor = Antenna	Factor + Cabl	e Loss – Pre-ampli	fier. Margin =	Absolute Le	vel – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	61.47	-3.51	57.96	74	-16.04	PK
4874	50.33	-3.51	46.82	54	-7.18	AV
7311	58.01	-0.82	57.19	74	-16.81	PK
7311	46.58	-0.82	45.76	54	-8.24	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

CH High of 802.11b Mode (2462MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	62.45	-3.43	59.02	74	-14.98	PK
4924	50.34	-3.43	46.91	54	-7.09	AV
7386	58.65	-0.75	57.90	74	-16.10	PK
7386	47.68	-0.75	46.93	54	-7.07	AV
Remark: Fact	or = Antenna	Factor + Cable	e Loss – Pre-ampli	fier. Margin =	Absolute Le	vel – Limit

Vertical:

Reading Result	Factor	Emission Level	Limits	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
62.71	-3.43	59.28	74	-14.72	PK
51.02	-3.43	47.59	54	-6.41	AV
58.56	-0.75	57.81	74	-16.19	РК
47.69	-0.75	46.94	54	-7.06	AV
	Result (dBμV) 62.71 51.02 58.56	Result Pactor (dBµV) (dB) 62.71 -3.43 51.02 -3.43 58.56 -0.75	Result Factor Emission Lever (dBµV) (dB) (dBµV/m) 62.71 -3.43 59.28 51.02 -3.43 47.59 58.56 -0.75 57.81	Result Pactor Emission Level Emission Level (dBµV) (dB) (dBµV/m) (dBµV/m) 62.71 -3.43 59.28 74 51.02 -3.43 47.59 54 58.56 -0.75 57.81 74	Result Pactor Emission Level Emission Level Emission Level Margin (dBμV) (dB) (dBμV/m) (dBμV/m) (dB) (dB) 62.71 -3.43 59.28 74 -14.72 51.02 -3.43 47.59 54 -6.41 58.56 -0.75 57.81 74 -16.19

Remark :

(1) Measuring frequencies from 1 GHz to the 25 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.

(3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4) Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

CH Low of 802.11g Mode (2412MHz)

Horizontal:

N

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	62.02	-3.64	58.38	74	-15.62	PK
4824	51.23	-3.64	47.59	54	-6.41	AV
7236	58.35	-0.95	57.40	74	-16.60	PK
7236	47.63	-0.95	46.68	54	-7.32	AV
Remark: Fact	tor = Antenna	Factor + Cable	e Loss – Pre-ampli	fier. Margin =	Absolute Le	vel – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	61.85	-3.64	58.21	74	-15.79	РК
4824	50.63	-3.64	46.99	54	-7.01	AV
7236	57.86	-0.95	56.91	74	-17.09	РК
7236	47.53	-0.95	46.58	54	-7.42	AV
	•		•	•	•	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

CH Middle of 802.11g Mode (2437MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	62.32	-3.51	58.81	74	-15.19	PK
4874	50.79	-3.51	47.28	54	-6.72	AV
7311	57.65	-0.82	56.83	74	-17.17	PK
7311	47.21	-0.82	46.39	54	-7.61	AV
Remark: Fact	tor = Antenna	Factor + Cabl	e Loss – Pre-ampli	fier. Margin =	Absolute Le	vel – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	61.78	-3.51	58.27	74	-15.73	PK
4874	50.42	-3.51	46.91	54	-7.09	AV
7311	57.32	-0.82	56.50	74	-17.50	PK
7311	47.02	-0.82	46.20	54	-7.80	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin = Absolute Level - Limit

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

CH High of 802.11g Mode (2462MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	62.53	-3.43	59.10	74	-14.90	PK
4924	50.01	-3.43	46.58	54	-7.42	AV
7386	58.35	-0.75	57.60	74	-16.40	PK
7386	47.55	-0.75	46.80	54	-7.20	AV
Remark: Fact	tor = Antenna	Factor + Cable	e Loss – Pre-ampli	fier. Margin =	Absolute Le	vel – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	62.13	-3.43	58.70	74	-15.30	PK
4924	51.23	-3.43	47.80	54	-6.20	AV
7386	58.36	-0.75	57.61	74	-16.39	РК
7386	47.48	-0.75	46.73	54	-7.27	AV
Remark: Fact	or = Antenna I	Factor + Cable	e Loss – Pre-ampli	fier. Margin =	Absolute Le	evel – Limit

Remark :

(1) Measuring frequencies from 1 GHz to the 25 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.

(3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4) Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

CH Low of 802.11n/H20 Mode (2412MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	61.75	-3.64	58.11	74	-15.89	PK
4824	50.42	-3.64	46.78	54	-7.22	AV
7236	58.12	-0.95	57.17	74	-16.83	PK
7236	47.05	-0.95	46.10	54	-7.90	AV
Remark: Fact	or = Antenna	Factor + Cabl	e Loss – Pre-ampli	fier. Margin =	Absolute Le	vel – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	61.86	-3.64	58.22	74	-15.78	PK
4824	50.65	-3.64	47.01	54	-6.99	AV
7236	58.12	-0.95	57.17	74	-16.83	PK
7236	47.75	-0.95	46.80	54	-7.20	AV
			•			

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

CH Middle of 802.11n/H20 Mode (2437MHz)

Horizontal:

N

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	61.56	-3.51	58.05	74	-15.95	PK
4874	50.35	-3.51	46.84	54	-7.16	AV
7311	57.12	-0.82	56.30	74	-17.70	PK
7311	47.23	-0.82	46.41	54	-7.59	AV
Remark: Fact	or = Antenna	Factor + Cable	e Loss – Pre-ampli	fier. Margin =	Absolute Le	vel – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	62.21	-3.51	58.70	74	-15.30	PK
4874	50.26	-3.51	46.75	54	-7.25	AV
7311	57.23	-0.82	56.41	74	-17.59	PK
7311	47.35	-0.82	46.53	54	-7.47	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Margin = Absolute Level – Limit

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

CH High of 802.11n/H20 Mode (2462MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	62.73	-3.43	59.30	74	-14.70	PK
4924	50.82	-3.43	47.39	54	-6.61	AV
7386	57.12	-0.75	56.37	74	-17.63	РК
7386	47.65	-0.75	46.90	54	-7.10	AV
Remark: Fact	or = Antenna	Factor + Cabl	e Loss – Pre-ampli	fier. Margin =	Absolute Le	vel – Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	62.68	-3.43	59.25	74	-14.75	PK
4924	50.26	-3.43	46.83	54	-7.17	AV
7386	57.68	-0.75	56.93	74	-17.07	РК
7386	47.69	-0.75	46.94	54	-7.06	AV
Remark: Fact	or = Antenna	Factor + Cable	e Loss – Pre-ampli	fier. Margin =	Absolute Le	vel – Limit

Remark :

(1) Measuring frequencies from 1 GHz to the 25 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.

(3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4) Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5 BAND EDGE

5.1 Limits

FCC PART 15.247 Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

5.2 Test Procedure

The band edge compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW to 100KHz and VBM to 300KHz to measure the peak field strength and set RBW to 11MHz and VBW to 10Hz to measure the average radiated field strength. The conducted RF band edge was measured by using a spectrum analyzer. Set span wide enough to capture the highest in-band emission and the emission at the band edge. Set RBW to 100 KHz and VBW to 300 KHz, to measure the conducted peak band edge.

5.3 Test Result

PASS

Operation Mode: 802.11b Mode TX CH Low (2412MHz)

Horizontal:

Tienzentan						
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	57.21	-5.81	51.40	74	-22.60	РК
2310		-5.81		54	1	AV
2390	64.86	-5.84	59.02	74	-14.98	PK
2390	50.32	-5.84	44.48	54	-9.52	AV
2400	65.65	-5.84	59.81	74	-14.19	PK
2400	50.12	-5.84	44.28	54	-9.72	AV
]						<i>e</i> .

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:	4,		i.			
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	56.75	-5.81	50.94	74	-23.06	PK
2310	/	-5.81	/	54	1	AV
2390	65.35	-5.84	59.51	74	-14.49	PK
2390	50.26	-5.84	44.42	54	-9.58	AV
2400	65.86	-5.84	60.02	74	-13.98	PK
2400	49.87	-5.84	44.03	54	-9.97	AV
1. C.	•		•			

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

深圳市优耐检测技术有限公司

Shenzhen United Testing Technology Co., Ltd. United Testing Technology(Hong Kong) Limited

Operation Mode: 802.11b Mode TX CH High (2462MHz)

Horizontal:

Tionzontai.						
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	56.85	-5.65	51.20	74	-22.80	PK
2483.5	1	-5.65	/	54	/	AV
2500	55.86	-5.72	50.14	74	-23.86	PK
2500		-5.72		54	/	AV
Remark [.] Fact	tor = Antenna Facto	or + Cable I o	oss – Pre-amplifier	5	•	1.

Remark: Factor = Antenna Factor + Cable Loss Pre-amplifier.

Vertical:

ventical.				15		
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	56.43	-5.65	50.78	74	-23.22	PK
2483.5	SI I	-5.65	1	54	/	AV
2500	55.28	-5.72	49.56	74	-24.44	РК
2500	/	-5.72	/	54	/	AV
Remark: Fact	tor = Antenna Facto	or + Cable Lo	oss – Pre-amplifier			

Operation Mode: 802.11g Mode TX CH Low (2412MHz)

Horizontal:

nonzontal.						
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	55.79	-5.81	49.98	74	-24.02	PK
2310	1	-5.81	/	54	/	AV
2390	65.12	-5.84	59.28	74	-14.72	PK
2390	48.23	-5.84	42.39	54	-11.61	AV
2400	65.01	-5.84	59.17	74	-14.83	PK
2400	50.23	-5.84	44.39	54	-9.61	AV
Remark: Fac	tor = Antenna Facto	or + Cable Lo	oss – Pre-amplifier		5	

Vertica	· ·
vertica	

ventioui.						
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	55.87	-5.81	50.06	74	-23.94	РК
2310	/	-5.81	/	54	/	AV
2390	66.01	-5.84	60.17	74	-13.83	РК
2390	48.12	-5.84	42.28	54	-11.72	AV
2400	66.59	-5.84	60.75	74	-13.25	РК
2400	50.68	-5.84	44.84	54	-9.16	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Operation Mode: 802.11g Mode TX CH High (2462MHz)

Horizontal:

Tionzontai.						
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	57.12	-5.65	51.47	74	-22.53	PK
2483.5	1	-5.65	/	54	/	AV
2500	55.51	-5.72	49.79	74	-24.21	PK
2500		-5.72		54	/	AV
Remark: Fact	tor = Antenna Facto	or + Cable Lo	oss – Pre-amplifier	U.	•	1.

Remark: Factor = Antenna Factor + Cable Loss Pre-amplifier.

Vertical:

vertical.						
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	57.26	-5.65	51.61	74	-22.39	РК
2483.5	51	-5.65	1	54	/	AV
2500	55.87	-5.72	50.15	74	-23.85	РК
2500	/	-5.72	/	54	/	AV
Remark: Fact	tor = Antenna Facto	or + Cable Lo	oss – Pre-amplifier	1		

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co., Ltd. United Testing Technology(Hong Kong) Limited

Operation Mode: 802.11n/H20 Mode TX CH Low (2412MHz)

Horizontal:

rionzontal.						
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	56.21	-5.81	50.40	74	-23.60	PK
2310	1	-5.81	/	54	/	AV
2390	64.12	-5.84	58.28	74	-15.72	PK
2390	48.12	-5.84	42.28	54	-11.72	AV
2400	65.01	-5.84	59.17	74	-14.83	РК
2400	50.46	-5.84	44.62	54	-9.38	AV
Remark: Fac	tor = Antenna Facto	or + Cable Lo	oss – Pre-amplifier		5	

Vertica	Ŀ.,
venuca	

ventioui.						
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	56.75	-5.81	50.94	74	-23.06	РК
2310	/	-5.81	/	54	/	AV
2390	66.35	-5.84	60.51	74	-13.49	PK
2390	48.60	-5.84	42.76	54	-11.24	AV
2400	64.78	-5.84	58.94	74	-15.06	РК
2400	51.09	-5.84	45.25	54	-8.75	AV

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Operation Mode: 802.11n/H20 Mode TX CH High (2462MHz)

Horizontal:

TIONEONCAN						
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	57.23	-5.65	51.58	74	-22.42	PK
2483.5	1	-5.65	/	54	/	AV
2500	56.42	-5.72	50.70	74	-23.30	РК
2500		-5.72		54	/	AV
Remark: Fact	tor = Antenna Facto	or + Cable I c	oss – Pre-amplifier		•	1.

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

\ /	
Vertical	
Vertical	

ventical.						
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	57.35	-5.65	51.70	74	-22.30	PK
2483.5	51	-5.65	1	54	/	AV
2500	56.13	-5.72	50.41	74	-23.59	PK
2500	/	-5.72	/	54	/	AV
Remark: Fact	tor = Antenna Facto	or + Cable Lo	oss – Pre-amplifier		<u> </u>	

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co., Ltd. United Testing Technology(Hong Kong) Limited

6 OCCUPIED BANDWIDTH MEASUREMENT

6.1 Test Limit

	F	CC Part15(15.247), S	ubpart C	L'
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS

6.2 Test Procedure

1. The EUT was placed on a turn table which is 0.8m above ground plane.

2. Set EUT as normal operation.

3. Based on FCC Part15 C Section 15.247: RBW=100KHz, VBW=300KHz.

4. The useful radiated emission from the EUT was detected by the spectrum analyzer with peak detector.

6.3 Measurement Equipment Used

Same as Radiated Emission Measurement

6.4 Test Result

PASS

2	TX 802.11	b Mode	
Frequency (MHz)	6dB Bandwidth (MHz)	Channel Separation (MHz)	Result
2412	9.980	>=500KHz	PASS
2437	9.946	>=500KHz	PASS
2462	10.01	>=500KHz	PASS
		1. C.	

CH: 2412MHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

CH: 2437MHz

CH: 2462MHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

	TX 802.11	g Mode	
Frequency (MHz)	6dB Bandwidth (MHz)	Channel Separation (MHz)	Result
2412	16.42	>=500KHz	PASS
2437	16.42	>=500KHz	PASS
2462	16.42	>=500KHz	PASS
		1 C	

CH: 2412MHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

CH: 2437MHz

CH: 2462MHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

	TX 802.11n/H	IT20 Mode	
Frequency (MHz)	6dB Bandwidth (MHz)	Channel Separation (MHz)	Result
2412	17.68	>=500KHz	PASS
2437	17.68	>=500KHz	PASS
2462	17.68	>=500KHz	PASS
		1. Contract (1. Contract)	

CH: 2412MHz

#IFGain:Low	#Atten: 20 dB	Avg Hold>		Radio Devie	
Mulling	ann ann	mananyaa	hnh	A house	
Ama	- Anna Anna Anna Anna Anna Anna Anna Ann	manana	hnh	M	
Avertan	annym	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ann	A	
Avahaah	-Am Anny mA	manaa	Ann.	A	
		and and a star		M	and the second second
					-
					-
					pan 30 M
	#VBW 30	DO KHZ		Swee	p 3.733 r
	Total Power	13.1 d	Bm		
3 MHz					
643 Hz	OBW Power	99.0	0 %		
7.68 MHz	x dB	-6.00	dB		
	643 Hz	Total Power 3 MHZ 643 Hz OBW Power	8 MHz 643 Hz OBW Power 99.0	Total Power 13.1 dBm 3 MHz 643 Hz OBW Power 99.00 % 7.68 MHz x dB -6.00 dB	#VBW 300 kHz Sweet Total Power 13.1 dBm 3 MHz 643 Hz 643 Hz OBW Power 99.00 % 7.68 MHz x dB -6.00 dB

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Agilent Spectrum Analyzer - Occupied BW (M RL RF 50.8 AC SENSE:PULSE ALIGN OFF Ref Value 20.00 dBm Center Freq: 2.43700000 GHz Radio Std: None Trig: Free Run Avg Hold>10/10	
Ref Value 20.00 dBm Center Freq: 2.437000000 GHz Radio Std: None Trig: Free Run Avg Hold>10/10	
Trig: Free Run Avg Hold>10/10	
Trig: Free Run Avg Hold>10/10	
#IFGain:Low #Atten: 20 dB Radio Device: BTS	
10 dB/div Ref 20.00 dBm	
10.0	
100 month of the second of the	
-30.0 -40.0 mm	
-40.0 which we want the second s	Server Core
-50.0	
-60.0	
-70.0	
Center 2.437 GHz Span 30	MHz
#Res BW 100 kHz	33 ms
Occupied Bandwidth Total Power 12.8 dBm	
17.672 MHz	
Transmit Freq Error -3.702 kHz OBW Power 99.00 %	
x dB Bandwidth 17.68 MHz x dB -6.00 dB	
MSG Istatus	

CH: 2462MHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

7 POWER SPECTRAL DENSITY TEST

7.1 Test Limit

	FCC	Part15(15.247), S	ubpart C	í.
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS

7.2 Test Procedure

1. The EUT was placed on a turn table which is 0.8m above ground plane.

2. Set EUT as normal operation.

- 3. Based on FCC Part15 C Section 15.247: RBW=3KHz, VBW=10KHz.
- 4. The useful radiated emission from the EUT was detected by the spectrum analyzer with peak detector.

7.3 Measurement Equipment Used

Same as Radiated Emission Measurement

7.4 Test Result

PASS

	TX 802.11b M	lode	
Frequency (MHz)	Power Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
2412	-4.153	8	PASS
2437	-2.948	8	PASS
2462	-2.348	8	PASS
		1	

CH: 2412MHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co., Ltd. United Testing Technology(Hong Kong) Limited

CH: 2462MHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

	TX 802.11g M	lode	
Frequency (MHz)	Power Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
2412	-8.330	8	PASS
2437	-8.104	8	PASS
2462	-7.548	8	PASS
		S	

CH: 2412MHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

CH: 2462MHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

	TX 802.11n/HT2	0 Mode	
Frequency (MHz)	Power Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
2412	-8.356	8	PASS
2437	-8.611	8	PASS
2462	-7.732	8	PASS
		1	

CH: 2412MHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

CH: 2462MHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

8.1 Test Limit

				1.0
	FCC	Part15(15.247), S	ubpart C	
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS

8.2 Test Procedure

1. The EUT was placed on a turn table which is 0.8m above ground plane.

- 2. The EUT was directly connected to the Power meter.
- 8.3 Measurement Equipment Used

Same as Radiated Emission Measurement

8.4 Test Result

PASS

All the test modes completed for test.

		TX 802.11b Mode	i Mi
Test	Frequency	Maximum Peak Conducted Output Power	LIMIT
Channel	(MHz)	(dBm)	(dBm)
CH01	2412	12.63	30
CH06	2437	12.45	30
CH11	2462	12.72	30
	5	TX 802.11g Mode	
CH01	2412	10.34	30
CH06	2437	10.36	30
CH11	2462	10.56	30
in .		TX 802.11 n20 Mode	U.
CH01	2412	9.68	30
CH06	2437	9.59	30
CH11	2462	9.72	30

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

9 OUT OF BAND EMISSIONS TEST

9.1 Test Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

9.2 Test Procedure

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set EUT as TX operation and connect directly to the spectrum analyzer.
- 3. Based on FCC Part15 C Section 15.247: RBW=100KHz, VBW=300KHz.
- 4. Set detected by the spectrum analyzer with peak detector.

9.3 Test Setup

9.4 Test Result

PASS

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

TX 802.11b Mode CH: 2412MHz

RL	RF	50 Ω	AC		5	SENSE:PUL	.SE		ΔA	LIGN OFF						
rker 3	2.39	7000000	0000 GH	PN	l0: Fast G ain:Low		g:FreeR ten:30 d				Type: L lold:>1	.og-Pwr 00/100			TYPE	1234 MUN PNNN
dB/div		Offset 2 dE 20.00 dE											Μ	kr3 2.3	397 0 34.10	0 GI 4 dB
													1		w v	-15.77
												<mark> </mark> 4 ³ ∧2	/		- \	
• 									نى	WRAN MAN	www.md	ng palaller, class	J			wymin
0 mount	antibus	and the second	-	- and the	hadrad the state of the			undland.	Mar							
o																
urt 2.31					#VI	3W 30	0 kHz					Sw	/eep	Stop 11.53) 2.430 ms (1	100 G 001 p
art 2.31 es BW	100 k rc scl		×		Y		FUNC"	TION	FUNC	TION WIDTH	4	Sw		Stop 11.53	ms (1	00 G 001 p
TT 2.31 es BW	100 k		2.412 48	GHz	۲ 4.22	7 dBm	FUNC"	TION	FUNC	TION WIDTH	+	Sw		11.53	ms (1	00 G 001 p
Int 2.31 es BW MODE T N 1	100 k RC SCL f			GHz	4.22 -37.39		FUNC"	TION	FUNCT	TION WIDTH	+	Sw		11.53	ms (1	000 G
Int 2.31 es BW MODE T N 1	100 k RC SCL f		2.412 48	GHz	4.22 -37.39	7 dBm 0 dBm	FUNC"	TION	FUNC	TION WIDTH	4	Sw		11.53	ms (1	000 G 001 p
Int 2.31 es BW MODE T N 1	100 k RC SCL f		2.412 48	GHz	4.22 -37.39	7 dBm 0 dBm	FUNC"	TION	FUNC	TION WIDTH		Sw		11.53	ms (1	000 G
THE SEW	100 k RC SCL f		2.412 48	GHz	4.22 -37.39	7 dBm 0 dBm	FUNC"	TION	FUNC	TION WIDTH		Sw		11.53	ms (1	000 G
TT 2.31 es BW MODE TO N 1	100 k RC SCL f		2.412 48	GHz	4.22 -37.39	7 dBm 0 dBm	FUNC"	TION	FUNCT	TION WIDTH		Sw		11.53	ms (1	000 G
Int 2.31 es BW MODE T N 1	100 k RC SCL f		2.412 48	GHz	4.22 -37.39	7 dBm 0 dBm	FUNC"	TION	FUNCT	rion wid th		Sw		11.53	ms (1	000 G
Int 2.31 es BW MODE T N 1 N 1	100 k RC SCL f		2.412 48	GHz	4.22 -37.39	7 dBm 0 dBm	FUNC"	TION	FUNC	TION WIDTH		Sw		11.53	ms (1	000 G

CH: 2462MHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

TX 802.11g Mode CH: 2412MHz

RL RL	rum Analyzer - RF 5	Swept SA	CENC	:PULSE	ALIGN OFF		
		0007410 GHz	PNO: Fast	Trig: Free Run #Atten: 30 dB		e: Log-Pwr ⊳100/100	TRACE 1234 TYPE MWWW DET PNNN
) dB/div	Ref Offset Ref 20.0	8 dB 0 dBm				Mkr	3 2.398 92 GH -24.810 dB
9		na ghair an lion a' ghrachte		- J. A. M. Handa and S. M. Handa and Anda and S. M. Handa and S. M. Handa and S. M. Handa and	and the second	Audra 32/	
	1000 GHz 100 kHz	×	#VBW	300 kHz	FUNCTION WIDTH		Stop 2.43000 G 1.53 ms (1001 p
1 N 1 2 N 1 3 N 1 4	f f	2.413 20 GH 2.400 00 GH 2.398 92 GH	z 4.647 dE z -24.454 dE	Sm Sm		roker	
8 9 0 1							

CH: 2462MHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Page 49 of 52

TX 802.11n/HT20 Mode CH: 2412MHz

	RE	lyzer - Swept SA 50 Ω AC		5	SENSE:PUL	SE		ALIGN OFF				
arker 3		89200000	00 GHz	PNO: Fast G Gain:Low	Trig	g: Free Ru ten: 30 dE	n	Avg Ty	pe:Log-Pwr Id:>100/100		TRACE	MARAA
) dB/div		Offset 9 dB 20.00 dBm	1							Mkr3	2.398 92 -23.983	G⊦ dB
										المها المار	1	
.0												15.23 c
.0									,	ý		Long Con
.0	lun minen	ter your ally rowned	-	-	Anna	Mangaran	and a	անակությունները Դիստես Դիստերը Դիստես Դիս Դիստես Դիստես Դիստես Դիստես Դիստես Դիստես Դիստես Դիստես Դիս Դիստես Դիստես Դիստես Դիս Դիս Դիս Դիս Դիստես Դիս Դիս Դիս Դիս Դիս Դիս Դիս Դիս Դիս Դի	the second			
.0												
art 2.3′ tes BW				#VI	BW 30	0 kHz			SI	s weep 11	Stop 2.4300 .53 ms (100	0 G 1 p
R MODE T			×	Y		FUNCTI	DN FU	NCTION WIDTH		FUNCTIO	N VALUE	
N ⁴	l f		2.416 92 GHz 2.400 00 GHz	4.77	<u>2 dBm</u> 1 dBm							
N	f		2.398 92 GHz		3 dBm							
N												
												>

CH: 2462MHz

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

10 ANTENNA REQUIREMENT

Standard Applicable:

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Connected Construction

The antenna used in this product is a PCB Antenna, The directional gains of antenna used for transmitting is 1dBi.

ANTENNA:

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Report No.: UNIA2018102516FR-01

11 PHOTOGRAPH OF TEST

11.1 Radiated Emission

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited

Report No.: UNIA2018102516FR-01

End of Report

深圳市优耐检测技术有限公司 Shenzhen United Testing Technology Co.,Ltd. United Testing Technology(Hong Kong) Limited