

Test Report

INTENTIONAL RADIATOR TESTS ACCORDING TO FCC PART 15 C AND ISED CANADA REQUIREMENTS

Equipment Under Test:	Varjo VR-3 Mixed Reality Headset
Model/type:	PMN: VR-3 HVIN: HS-6
Manufacturer:	Varjo Technologies Oy Vuorikatu 20 FI-00100 Helsinki Finland
Customer:	Varjo Technologies Oy Vuorikatu 20 FI-00100 Helsinki Finland
FCC Rule Part: IC Rule Part:	15.247 RSS-247, Issue 2, 2017 RSS-GEN Issue 5 Amendment 2, 2021
KDB:	558074 D01 15.247 Meas Guidance v05r02 Guidance for Compliance Measurements on Digital Transmission Systems, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating Under §15.247 of the FCC rules (April 2, 2019)

partial testing, see test suite for details

Date:

5 November 2021

Issued by:

Pekka Kälviäinen **Testing Engineer**

Date: Checked by: 5 November 2021

Mikko Halonen **Development Engineer**

These test results are valid for the tested unit only.

This report shall not be reproduced, except in full, without a written permission of SGS Fimko.

Table of Contents

TABLE OF CONTENTS

TABLE OF CONTENTS	2
GENERAL REMARKS	3
Disclaimer	
RELEASE HISTORY	4
PRODUCT DESCRIPTION	5
Equipment Under Test	
General Description	
Ratings and declarations	
Power Supply	
Mechanical Size of the EUT	
Cables	
	0
	7
SUMMARY OF TESTING	
EUT Test Conditions during Testing	
Test Facility	8
TEST RESULTS	
Antenna requirement	
Conducted Emissions In The Frequency Range 150 kHz - 30 MHz	10
Maximum Peak Conducted Output Power	13
TEST EQUIPMENT	

General Remarks

GENERAL REMARKS

Disclaimer

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</u>

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

RELEASE HISTORY

Version	Changes	Issued
1.0	Initial release	12 October 2021
1.1	Product description updated (EUT2 serial number).	5 November 2021
	Test results for Maximum Peak Conducted Output	
	Power updated.	
	Measurement uncertainty for Maximum Peak	
	Conducted Output Power corrected.	

PRODUCT DESCRIPTION

Equipment Under Test

Equipment Under Test:	Varjo VR-3 Mixed Reality Headset
Model/type:	PMN: VR-3
	HVIN: HS-6
Serial no:	EUT1: V0022CC15AE1200008
	EUT2: V0022D309AP1200019 (temporary antenna connectors)
FCC ID:	2AROD-004
IC:	24483-004
Headset	-
AC Adapters (two units)	ATS036T-W120V, input 100-240V 50/50Hz, output: 12VDC
HMD to VR adapters (two	R-RBZL-KSC001H
units)	
Computer	RAZER, Product N. RZ09-03305N43, s/n: BY2020M01001452

General Description

The VR-3 is a photorealistic Virtual reality headset. The headset has forward hand tracking IR cameras and two internal proprietary radio transmitters, with integral antennas, operating at 2.4 GHz. The headset is powered by 12 V DC from two pre-approved power supplies. The power supplies power two VR-adapter units which in turn interface with a control PC and the headset via USB.

Classification

Fixed device	
Mobile Device (Human body distance > 20cm)	
Portable Device (Human body distance < 20cm)	\boxtimes

Modifications Incorporated in the EUT

EUT1: No modifications.

EUT2: Temporary antenna connectors, special software to operate radios

Ratings and declarations

Operating Frequency Range (OFR):	2402 - 2480 MHz
Channels:	40
Channel separation:	2 MHz
Transmission technique:	DSSS
Modulation:	GFSK
Antenna type:	Integral
Integral Antenna gain:	Manufacturer: PulseLarsen Antennas Type: W3008 featuring 2400-2483.5MHz. 1.1 dBi

Power Supply

Operating voltage range: 100 -240 V, 50 - 60 Hz mains supply

Mechanical Size of the EUT

Height:	200	mm
---------	-----	----

Width: 290 mm

Length: 170 mm

Cables

from	to	type	length (m)
EUT (CNTX)	HMD to VR adapter 1	USB-C	5.0
HMD to VR adapter 1	Computer, USB A	USB-A	1.0
HMD to VR adapter 1	Computer, USB-C	Display port + USB-C adapter	1.0 + 0.2
HMD to VR adapter 1	AC Adapter 1	two wires	1.5
AC Adapter 1	AC mains	two wires	1.0
EUT (FOCUS)	HMD to VR adapter 2	USB-C	5.0
HMD to VR adapter 2	Computer, USB A	USB-A	1.0
HMD to VR adapter 2	Computer, USB-C	Display port + USB-C adapter	1.0 + 0.2
HMD to VR adapter 2	AC Adapter 1	two wires	1.5
AC Adapter 1	AC mains	two wires	1.0
EUT	Headset	audio cables	0.65
Computer	Power supply	3 wires	2.0
Power supply	AC mains	3 wires	1.0

Summary of Testing

SUMMARY OF TESTING

Test Specification	Description of Test	Result
§15.203	Antenna requirement	PASS
§15.207(a) / RSS-GEN 8.8	Conducted Emissions on Power Supply Lines	PASS
§15.247(b)(3) / RSS-247 5.4(d)	Maximum Peak Conducted Output Power	PASS
§15.247(a)(2) / RSS-247 5.2(a)	6 dB Bandwidth	N/T ¹⁾
§15.247(e) / RSS-247 5.2(b)	Power Spectral Density	N/T ¹⁾
RSS-GEN 6.7	99% Occupied Bandwidth	N/T ¹⁾
§15.247(d) / RSS-247 5.5	100 kHz Bandwidth of Frequency Band Edges and Conducted Spurious Emissions	N/T ¹⁾
§15.209(a), §15.247(d) / RSS-247 5.5	Radiated Emissions Within the Restricted Bands	N/T ¹⁾

1) Not tested by the request of the customer

The decision rule applied for the tests results stated in this test report is according to the requirements of section 1.3 of ANSI C63.10-2013.

EUT Test Conditions during Testing

The EUT was in continuous transmit mode during all the tests. The hopping was stopped and the EUT was configured into the wanted channel using software provided by the manufacturer.

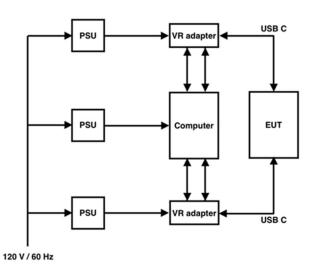


Figure 1: Test setup block diagram

Summary of Testing

Table 1: Test frequencies

Channel	Frequency (MHz)
Low	2402
Mid	2440
High	2480

Test Facility

Testing Laboratory / address: FCC designation number: FI0002 ISED CAB identifier: T004	SGS Fimko Ltd Takomotie 8 FI-00380, HELSINKI FINLAND
Test Site:	 K10LAB, ISED Canada registration number: 8708A-1 K5LAB, ISED Canada registration number: 8708A-2 T10LAB

TEST RESULTS

Antenna requirement

Standard:	FCC Rule §15.203
Tested by:	PKA
Date:	8 October 2021

FCC Rule: 15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Specification	Requirement (at least one of the following shall be applied)	Conclusion
§15.203	 Permanently attached antenna Unique coupling to the intentional radiator Professionally installed radio. The installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded. 	PASS
Note	Option 1 is used	

CONDUCTED EMISSIONS IN THE FREQUENCY RANGE 150 KHz - 30 MHz

Conducted Emissions In The Frequency Range 150 kHz - 30 MHz

Standard: Tested by:	ANSI C63.10 PKA	(2013)
Date:	8 October 2021	
Temperature:	23°C	
Humidity:	42 % RH	
Barometric pressure:	1036 hPa	
Measurement uncertainty:	\pm 2.9 dB	Level of confidence 95 % (k = 2)

FCC Rule: 15.207 (a) RSS-GEN 8.8

Conducted disturbance voltage was measured with an artificial main network from 150 kHz to 30 MHz with a resolution bandwidth of 9 kHz. Measurements were carried out with peak and average detectors.

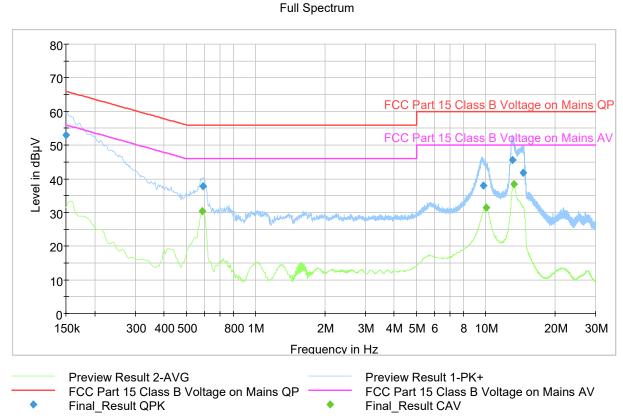
Evenuency of omission (MUE)	Conducted limit (dBµV)
Frequency of emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

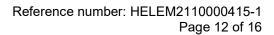
*Decreases with the logarithm of the frequency.

CONDUCTED EMISSIONS IN THE FREQUENCY RANGE 150 KHz – 30 MHz

Results:

AC power port for "CNTX", EUT1




Figure 2: The measured curves with peak- and average detector

Final measurements from the worst frequencies

Table 2: Final Q	uasiPeak an	d Average	measure	ments fro	om the worst	requencies	

Frequency (MHz)	QuasiPeak (dBµV)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)
0.150000	52.91		66.00	13.09	1000.0	9.000	N	9.7
0.586000		30.46	46.00	15.54	1000.0	9.000	N	9.7
0.590000	37.84		56.00	18.16	1000.0	9.000	N	9.7
9.738500	37.89		60.00	22.11	1000.0	9.000	L1	10.2
10.045000		31.35	50.00	18.65	1000.0	9.000	L1	10.3
13.097500	45.69		60.00	14.31	1000.0	9.000	L1	10.3
13.241000		38.37	50.00	11.63	1000.0	9.000	L1	10.3
14.569500	41.69		60.00	18.31	1000.0	9.000	L1	10.4

The correction factor in the final result table contains the sum of the transducers (transient limiter + cables). The result value is the measured value corrected with the correction factor.

CONDUCTED EMISSIONS IN THE FREQUENCY RANGE 150 KHZ - 30 MHZ

AC power port for "FOCUS", EUT1

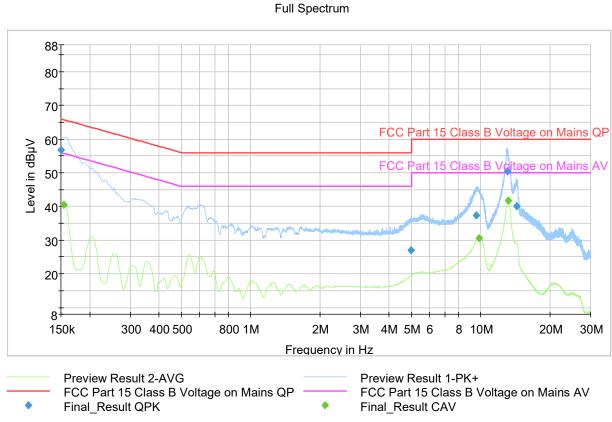


Figure 3: The measured curves with peak- and average detector

Final measurements from the worst frequencies

		-						
Frequency	QuasiPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(ms)	(kHz)		(dB)
0.150000	56.80		66.00	9.20	1000.0	9.000	N	9.7
0.154000		40.44	55.78	15.34	1000.0	9.000	N	9.7
4.963500	26.94		56.00	29.06	1000.0	9.000	L1	10.0
9.533250	37.33		60.00	22.67	1000.0	9.000	N	10.2
9.857250		30.68	50.00	19.32	1000.0	9.000	N	10.3
13.048750	50.35		60.00	9.65	1000.0	9.000	N	10.4
13.149000		41.87	50.00	8.13	1000.0	9.000	N	10.4
14.355250	40.08		60.00	19.92	1000.0	9.000	Ν	10.4

Table 3: Final QuasiPeak and Average measurements from the worst frequencies

The correction factor in the final result table contains the sum of the transducers (transient limiter + cables). The result value is the measured value corrected with the correction factor.

Maximum Peak Conducted Output Power

Maximum Peak Conducted Output Power

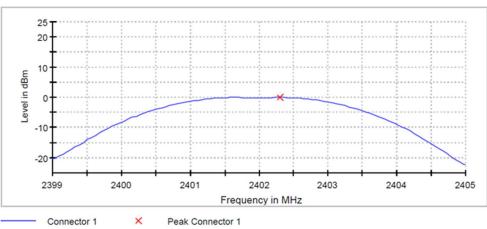
Standard: Tested by: Date: Temperature: Humidity: Barometric pressure: Measurement uncertainty:	ANSI C63.10 HEM 4 November 2021 22 °C 39 % RH 995 hPa ± 0.49 dB	(2013) Level of confidence 95 % (k = 2)
---	---	--

FCC Rule: 15.247(b)(3) RSS-247 5.4(d)

For systems using digital modulation in the 2400-2483.5 MHz bands the limit is 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power.

Measured values are peak values.

Results:


Table 4: Maximum conducted output power

Channel	Left Antenna [dBm]	Right Antenna [dBm]	Left Antenna [W]	Right Antenna [W]	Sum [W]	Limit [W]	Result
Low	-0.1	-0.1	0.00098	0.00098	0.00195	1	PASS
Mid	-0.9	-0.7	0.00081	0.00085	0.00166	1	PASS
High	-1.2	-1.4	0.00076	0.00072	0.00148	1	PASS

Maximum Peak Conducted Output Power

Peak Power

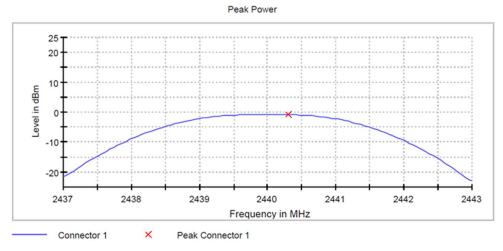


Figure 5: Conducted power, Channel MID (left antenna)

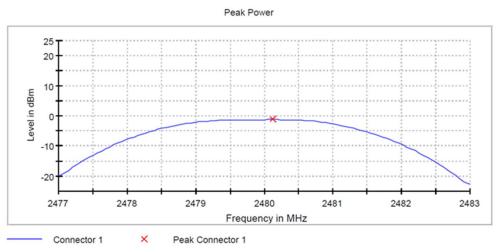
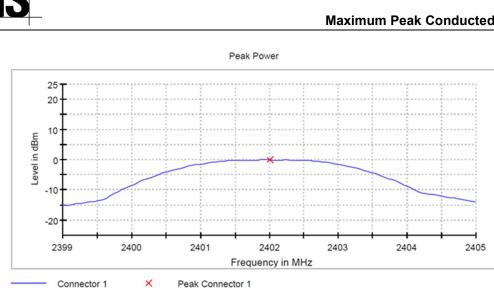
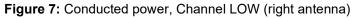




Figure 6: Conducted power, Channel HIGH (left antenna)

Maximum Peak Conducted Output Power

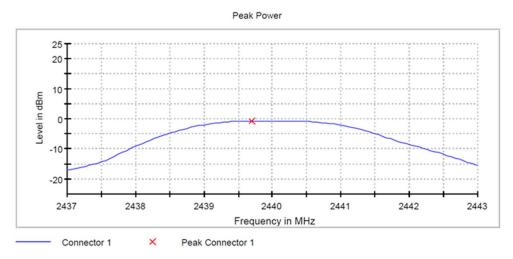


Figure 8: Conducted power, Channel MID (right antenna)

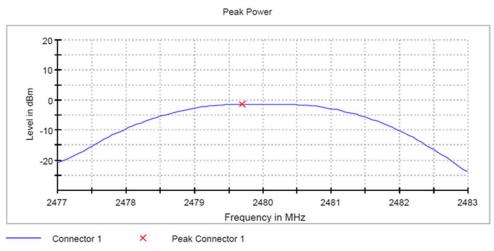


Figure 9: Conducted power, Channel HIGH (right antenna)

TEST EQUIPMENT

Test Equipment

RF-Test Equipment

Equipment	Manufacturer	Туре	Inv or serial	Prev Calib	Next Calib
TEST SOFTWARE	ROHDE & SCHWARZ	EMC-32	-	NCR	NCR
LISN	ROHDE & SCHWARZ	ENV216	inv:9611	2021-02-26	2022-02-26
LISN	ROHDE & SCHWARZ	ESH3-Z5	inv:8019	2021-05-26	2022-05-26
EMI TEST RECEIVER	ROHDE & SCHWARZ	ESW26	inv:10679	2021-06-21	2022-06-21
SPECTRUM ANALYZER	ROHDE & SCHWARZ	FSV40	inv:9093	2020-12-04	2021-12-04
ATTENUATOR	INMET	10 dB, DC-40 GHz	inv:10347	2021-04-20	2023-04-20

NCR = No calibration required

END OF REPORT