

2/F., Garment Centre, 576 Castle Peak Road, Kowloon, Hong Kong.

 Telephone:
 (852) 2173 8888

 Facsimile:
 (852) 2785 5487

 www.intertek.com

SPECIFIC ABSORPTION RATE (SAR) EVALUATION REPORT

For WWAN Module

Model Number: 1003 Brand Name: Vpatch

FCC ID: 2ARNZ-1003

Prepared for Vpatch Cardio Pty Ltd. Level 1, 1221 Toorak Road, Camberwell, Victoria, 3124, Australia.

PREPARED AND CHECKED BY:

APPROVED BY:

Signed On File Siu Yiu Nam, Edwin Lead Engineer Date: January 08, 2019

Chan Chi Hung, Terry Manager Date: January 08, 2019

Intertek's standard Terms and Conditions can be obtained at our website http://www.intertek.com/terms/.

The test report only allows to be revised within the retention period unless further standard or the requirement was noticed.

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

TABLE OF CONTENTS

1	Test Result Summary	3
2	General Information	4
3	SAR Measurement System Description	7
4	Tissue Verificaiton	15
5	SAR Measurement System Verification	18
6	SAR Evaluation	20
7	Test Equipment List	31
8	Measurement Uncertainty	32
9	E-Field Probe and Dipole Antenna Calibration	32
AP	PENDIX A – System Check Data	33
AP	PENDIX B – SAR Evaluation Data	35
AP	PENDIX C – E-Field Probe and Dipole Antenna Calibration	39
AP	PENDIX D – SAR SYSTEM VALIDATION	40

1. TEST RESULT SUMMARY

Applicant:	Vpatch Cardio Pty Ltd.
Applicant Address:	Level 1, 1221 Toorak Road, Camberwell,
	Victoria, 3124, Australia.
Model:	1003
Brand Name:	Vpatch
Serial Number:	N/A
FCC ID:	2ARNZ-1003
Test Device:	Production Unit
Exposure Category:	General Population/Uncontrolled Exposure
Date of Test:	December 08, 2018 to December 10, 2018
	UnionTrust Laboratories
Place of Testing:	16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua new district, Shenzhen, China
	Temperature: +18 to 25°C
Environmental Conditions:	Humidity 25 to 75%
	ANSI/IEEE C95.1
	IEEE Std 1528: 2013
	FCC KDB Publication 447498 D01 v06
Test Specification:	FCC KDB Publication 865664 D01 v01r04
	FCC KDB Publication 865664 D02 v01r02
	FCC KDB Publication 941225 D06 v02r01
	FCC KDB Publication 941225 D01 v03r01

The maximum spatial peak SAR value for the sample device averaged over 1g was found to be:

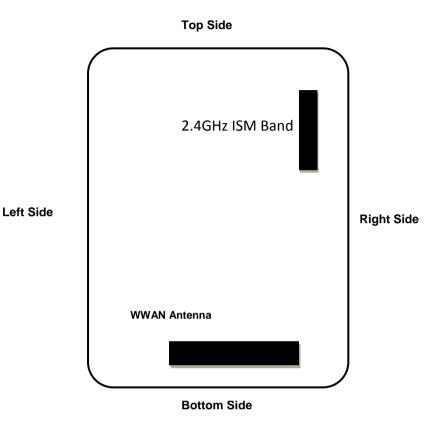
Band	Operating Mode	TX Frequency (MHz)	Highest Reported SAR 1 g Body
GSM850	Data	824.2 - 848.8	1.32 W/kg
GSM1900	Data	1850.2 - 1909.8	0.93 W/kg
WCDMA II	Data	1852.4 - 1907.6	1.21 W/kg
WCDMA V	Data	826.4 - 846.6	0.66 W/kg
2.4GHz ISM Band	Data	2466	N/A

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment / general population exposure limits specified in ANSI/IEEE C95.1.

Vpatch Cardio Pty Ltd. Intertek Report No: 18121303HKG-001

TEST REPORT

2. GENERAL INFORMATION


2.1. Description of Equipment under test (EUT)

Device dimension (L x W) :	85 (mm) x 60 (mm)
	GSM850: 1.9dBi
	GSM1900: 3.0dBi
Antenna Gain:	WCDMA II: 3.0dBi
	WCDMA V: 1.9dBi
	2.4GHz ISM Band: N/A
Operating Configuration(s) / mode:	Body (Data)
	GSM850: 824.2 - 848.8
	GSM1900: 1850.2 - 1909.8
Tx Frequency (MHz):	WCDMA Band II: 1852.4 - 1907.6
	WCDMA Band V: 826.4 - 846.6
	2.4GHz ISM Band: 2466
H/W Version:	WRH-F-06331-04
S/W Version:	VCell_telit_20180614
Battery Type:	3.7V 1000mAh Li-ion Polymer Battery Pack
Dattery Type.	Model: SNO-523450PC
Body-worn Accessories:	N/A

.

2.2. EUT Antenna Locations

<EUT Front View>

Expectite Decition	Separation Distance from the Antenna to the Outer Surface	
Exposure Position	WWAN	2.4GHz ISM Band
Front	0	0
Back	0	0
Left	25	44
Right	12	9
Тор	69	15
Bottom	5	52

Details of antenna specification are shown in separate antenna dimension document.

2.3. Nominal and Maximum Output Power Specifications

The EUT operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498.

Mode	GSM850	GSM1900
GPRS (GMSK, 1Tx-slot)	33.5	30.5
GPRS (GMSK, 2Tx-slot)	33.5	30.5
EDGE (8PSK, 1Tx-slot)	28.0	27.0
EDGE (8PSK, 2Tx-slot)	28.0	27.0

Mode	WCDMA Band II	WCDMA Band V
RMC 12.2K	24.0	24.0
HSDPA 1	24.0	24.0
HSDPA 2	24.0	24.0
HSDPA 3	23.5	23.5
HSDPA 4	23.5	23.5
HSUPA 1	24.0	24.0
HSUPA 2	22.0	22.0
HSUPA 3	23.0	23.0
HSUPA 4	22.0	22.0
HSUPA 5	24.0	24.0

3. SAR MEASUREMENT SYSTEM DESCRIPTION

SAR is related to the rate at which energy is absorbed per unit mass in object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and occupational/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of given mass density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of Watts per kilogram (W/Kg) SAR can be obtained using either of the following equations:

$$SAR = \frac{\sigma E^2}{\rho}$$

$$SAR = c_h \frac{dT}{dt}_{t=0}$$

Where

SAR is the specific absorption rate in watts per kilogram;

- E is the r.m.s. value of the electric field strength in the tissue in volts per meter;
- σ is the conductivity of the tissue in siemens per metre;
- ρ is the density of the tissue in kilograms per cubic metre;

ch is the heat capacity of the tissue in joules per kilogram and Kelvin;

$$\frac{dT}{dt}$$
 | t = 0 is the initial time derivative of temperature in the tissue in kelvins per second

An SAR measurement system usually consists of a small diameter isotropic electric field probe, a multiple axis probe positioning system, a test device holder, one or more phantom models, the field probe instrumentation, a computer and other electronic equipment for controlling the probe and making the measurements. Other supporting equipment, such as a network analyzer, power meters and RF signal generators, are also required to measure the dielectric parameters of the simulated tissue media and to verify the measurement accuracy of the SAR system.

The SAR measurement system being used is DASY4 system, which consists following items for performing compliance tests

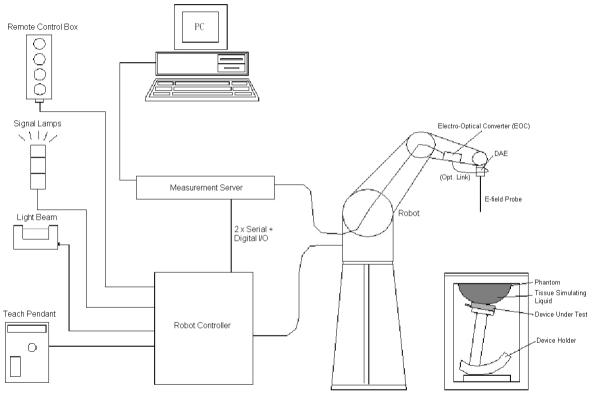


Figure 1: Schematic diagram of the SAR measurement system

- The PC. It controls most of the bench devices and stores measurement data. A computer running WinXP and the Opensar software
- The E-Field probe. The probe is a 3-axis system made of 3 distinct dipoles. Each dipole returns a voltage in function of the ambient electric field.
- The Keithley multimeter measures each probe dipole voltages.
- The SAM phantom simulates a human head. The measurement of the electric field is made inside the phantom.
- The liquids simulate the dielectric properties of the human head tissues
- The network emulator controls the mobile phone under test.
- The validation dipoles are used to measure a reference SAR. They are used to periodically check the bench to make sure that there is no drift of the system characteristics over time.
- The phantom, the device holder and other accessories according to the targeted measurement.

Vpatch Cardio Pty Ltd. Intertek Report No: 18121303HKG-001

TEST REPORT

ROBOT

The DASY system uses the high precision robots from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY4: CS7MB) from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability ±0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

COMOSAR E-FIELD PROBE

The SAR measurement is conducted with the dosimetric probe. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

Model EX3DV4	
Construction	Symmetrical design with triangular core. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE).
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	10 μW/g to 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)
Dimensions	Overall length: 337mm (Tip: 20mm) Tip diameter: 2.5mm (Body: 12mm) Typical distance from probe tip to dipole centers: 1 mm
Model	ES3DV3
Construction	Symmetrical design with triangular core. Interleaved sensors. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE).
Frequency	10 MHz to 4 GHz Linearity: ± 0.2 dB
Directivity	± 0.2 dB in HSL (rotation around probe axis) ± 0.3 dB in tissue material (rotation normal to probe axis)
Dynamic Range	5 μW/g to 100 mW/g Linearity: ± 0.2 dB
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm

and the second second

Vpatch Cardio Pty Ltd. Intertek Report No: 18121303HKG-001

TEST REPORT

DATA ACQUISITION ELECTRONICS (DAE)

Model	DAE3, DAE4	
Construction	Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop.	
Measurement Range	-100 to +300 mV (16 bit resolution and two range settings: 4mV, 400mV)	
Input Offset Voltage	< 5μV (with auto zero)	
Input Bias Current < 50 fA		
Dimensions	60 x 60 x 68 mm	

SAM TWIN PHANTOM

Model

Twin SAM

Construction The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Material	Vinylester, glass fiber reinforced (VE-GF)
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)
	Length: 1000 mm

	Length. 1000 mm
Dimensions	Width: 500 mm
	Height: adjustable feet

Filling Volume	approx. 25 liters

Model	ELI
Construction	Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.
Material	Vinylester, glass fiber reinforced (VE-GF)
Shall Thickness	2.0 ± 0.2 mm (bottom plate)

Shell Thickness2.0 ± 0.2 mm (bottom plate)...Major axis: 600 mm

Dimensions	Major axis: 600 mm
	Minor axis: 400 mm
Filling Volume	approx. 30 liters

DEVICE HOLDER

Model	Mounting Device
Construction	In combination with the Twin SAM Phantom or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).
Material	POM
Model	Laptop Extensions Kit
Construction	Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner.
Material	POM, Acrylic glass, Foam

SYSTEM VALIDATION DIPOLES

Model	D-Serial
Construction	Symmetrical dipole with I/4 balun. Enables measurement of feed point impedance with NWA. Matched for use near flat phantoms filled with tissue simulating solutions.
Frequency Return Loss	750 MHz to 5800 MHz > 20 dB
Power Capability	> 100 W (f < 1GHz), > 40 W (f > 1GHz)

Vpatch Cardio Pty Ltd. Intertek Report No: 18121303HKG-001

18

Page 13 of 40

During measurement, the system first does an area (2D) scan at a fixed depth within the liquid from the inside wall of the phantom scanning area is greater than the projection of EUT and antenna.

Area Scan Parameters extracted from KDB 865664

	≤ 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 mm ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°	
	≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx _{Area} , Δy _{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

When the maximum SAR point has been found, the system will then carry out a zoom (3D) scan centered at that point to determine volume averaged SAR level.

Zoom Scan Parameters extracted from KDB 865664

spatial res	olution: Δx_{Zoom} , Δy_{Zoom}	$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*
uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
$\Delta z_{Zoom}(n>1)$: between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1) mm$	
x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm
	graded grid	$\begin{array}{c} & \Delta z_{Zoom}(1): \text{ between} \\ 1^{\text{st}} \text{ two points closest} \\ \text{for a phantom surface} \\ & \Delta z_{Zoom}(n \geq 1): \\ \text{ between subsequent} \\ \text{points} \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

* When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

4. TISSUE VERIFICATION

For SAR measurement of field distribution inside phantom, homogeneous tissue simulating liquid as below liquid recipes were filled to a depth of 15cm ± 0.5 cm for below 3GHz measurement and of 10cm ± 0.5 cm for above 3GHz.

HEAD TISSUE RECIPES

	Ingredients						
Frequency	De-ionized Water	Salt	1,2 propanediol	DGBE	DGMH	Triton X100	
450 MHz	33.5%	3.4%	63.1%				
750 MHz	34.2%	1.4%	64.4%				
900 MHz	35.3%	1.0%	63.7%				
1800 MHz	55.2%	0.6%		13.8%		30.4%	
1900 MHz	55.3%	0.5%		13.8%		30.4%	
2000 MHz	55.3%	0.4%		13.8%		30.5%	
2450 MHz	55.7%	0.3%		18.7%		25.3%	
5000 MHz	65.3%				17.2%	17.5%	

BODY TISSUE RECIPES

	Ingredients						
Frequency	De-ionized Water	Salt	1,2 propanediol	DGBE	DGMH	Triton X100	
450 MHz	52.4%	1.9%	45.7%				
750 MHz	55.4%	1.3%	43.3%				
900 MHz	52.9%	1.0%	46.1%				
1800 MHz	70.8%	0.5%		8.7%		20.0%	
1900 MHz	70.1%	0.4%		8.9%		20.6%	
2000 MHz	70.2%	0.3%		8.6%		20.9%	
2450 MHz	70.8%	0.3%		8.7%		20.2%	
5000 MHz	77.8%				11.7%	11.5%	

The head tissue dielectric parameters recommended by the IEEE Std 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. For other head and body tissue parameters, they are recommended by KDB 865664.

Target Frequency	h	ead	b	ody
(MHz)	εr	σ (S/m)	εr	σ (S/m)
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	1.01	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 - 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ϵr = relative permittivity, σ = conductivity and ρ = 1000 kg/m3)

When a transmission band overlaps with one of the target frequencies, the tissue dielectric parameters of the tissue medium at the middle of a device transmission band should be within $\pm 5\%$ of the parameters specified at that target frequency.

The dielectric parameters of the liquids were verified prior to the SAR evaluation.

The dielectric parameters were:

Freq.	Temp.	ε _r /Rela	ative Permi	ittivity	σ/	ρ		
(MHz)	(°C)	measured	Target*	Δ (±5%)	measured	Target*	Δ (±5%)	**(kg/m ³)
835	22.0	54.700	55.20	-0.91	1.010	0.97	4.12	1000

* Target values refer to KDB 865664

** Worst-case assumption

Note:

- 1. Date of tissue verification measurement: December 10, 2018
- 2. Ambient temperature: 22.8 deg C
- 3. The temperature condition is within +/- 2 deg. C during the SAR measurements.

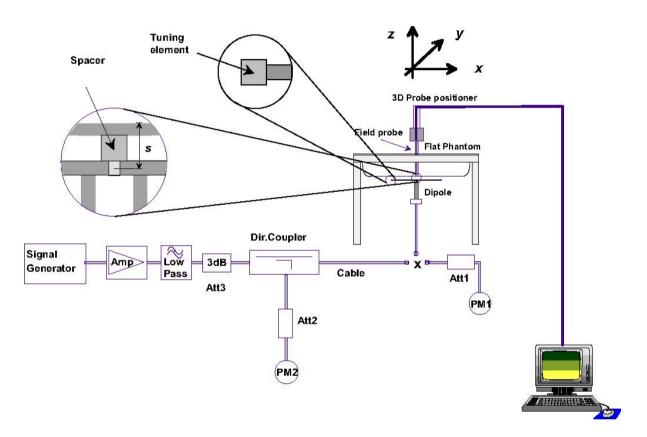
Body Liquid

Freq.	Temp.	ε _r /Rela	ative Perm	ittivity	σ/	ρ		
(MHz)	(°C)	measured	Target*	Δ (±5%)	measured	Target*	Δ (±5%)	**(kg/m ³)
1900	22.1	53.700	53.30	0.75	1.520	1.52	0.00	1000

* Target values refer to KDB 865664

** Worst-case assumption

Note:


- 1. Date of tissue verification measurement: December 08, 2018
- 2. Ambient temperature: 22.6 deg C
- 3. The temperature condition is within +/- 2 deg. C during the SAR measurements.

5. SAR MEASUREMENT SYSTEM VERIFICATION

Each DASY system is equipped with one or more system check kits. These units, together with the predefined measurement procedures within the DASY software, enable user to conduct the system check. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system check setup is shown as below.

VALIDATION DIPOLE

Vpatch Cardio Pty Ltd. Intertek Report No: 18121303HKG-001

The dipoles used is based on the IEEE Std 1528, and is complied with mechanical and electrical specifications in line with the requirements of both FCC and KDB requirement.

SYSTEM CHECK RESULTS

Date	Freq. (MHz)	Liquid Type	System Diople	Serial No.	Target SAR _{1g} (W/kg)	Measured SAR _{1g} (W/kg)	Normalized SAR _{1g} (W/kg)	Deviation (±10%)
Dec 10, 2018	835	Head	D835V2	4d005	9.74	0.97	9.70	-0.41

* the target was quoted from dipole calibration report

* Input power level = 20dBm (0.1W)

				System Verif	ication			
Date	Freq. (MHz)	Liquid Type	System Diople	Serial No.	Target SAR _{1g} (W/kg)	Measured SAR _{1g} (W/kg)	Normalized SAR _{1g} (W/kg)	Deviation (±10%)
Dec 08, 2018	1900	Head	D1900V2	509	39.50	4.17	41.70	5.57

* the target was quoted from dipole calibration report

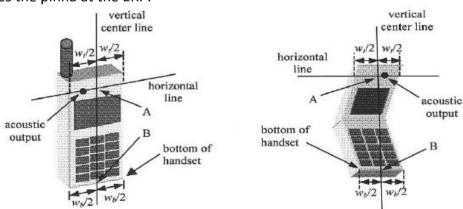
* Input power level = 20dBm (0.1W)

SAR_{1g} ambient measured value < 12 mW/kg

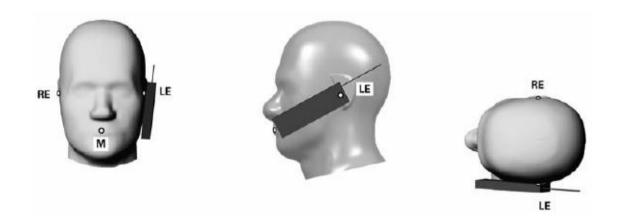
Details of System Verification plots are shown in the Appendix A - plot 1 and 2.

6. SAR EVALUATION

6.1. Device test positions relative to the head

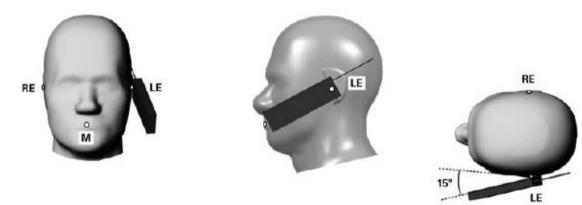

This practice specifies two handset test positions against the head phantom—the "cheek" position and the "tilt" position. These two test positions are defined in the following subclauses. The handset should be tested in both positions on left and right sides of the SAM phantom. If handset construction is such that the handset positioning procedures described below to represent normal use conditions cannot be used, e.g., some asymmetric handsets, alternative alignment procedures should be adapted with all details provided in the test report. These alternative procedures should replicate intended use conditions as closely as possible according to the intent of the procedures described in this subclause.

DEFINITION OF THE CHEEK POSITION


The cheek position is established as follows:

- **1.** Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested.
- 2. Define two imaginary lines on the handset—the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset—the midpoint of the width wt of the handset at the level of the acoustic output (point A in below figure), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see below left figure). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see right figure), especially for clamshell handsets, handsets with flip covers, and other irregularly-shaped handsets.
- **3.** Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see the figure as next page), such that the plane defined by the vertical centerline and the horizontal line of the handset is approximately parallel to the sagittal plane of the phantom.
- **4.** Translate the handset towards the phantom along the line passing through RE and LE until handset point A touches the pinna at the ERP.

- **5.** While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to the plane containing B-M and N-F lines, i.e., the Reference Plane.
- **6.** Rotate the handset around the vertical centerline until the handset (horizontal line) is parallel to the N-F line.
- **7.** While maintaining the vertical centerline in the Reference Plane, keeping point A on the line passing through RE and LE, and maintaining the handset contact with the pinna, rotate the handset about the N-F line until any point on the handset is in contact with a phantom point below the pinna on the cheek.



DEFINITION OF THE TILT POSITION

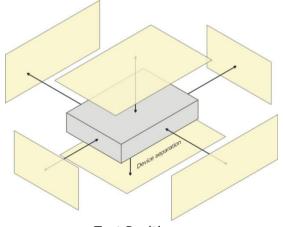
The tilt position is established as follows:

- **1.** Repeat steps to place the device in the cheek position.
- 2. While maintaining the orientation of the handset, move the handset away from the pinna along the line passing through RE and LE far enough to allow a rotation of the handset away from the cheek by 15°.
- **3.** Rotate the handset around the horizontal line by 15°.
- 4. While maintaining the orientation of the handset, move the handset towards the phantom on the line passing through RE and LE until any part of the handset touches the ear. The tilt position is obtained when the contact point is on the pinna. See the figure as below. If contact occurs at any location other than the pinna, e.g., the antenna at the back of the phantom head, the angle of the handset should be reduced.
- 5. In this case, the tilt position is obtained if any point on the handset is in contact with the pinna and a second point on the handset is in contact with the phantom, e.g., the antenna with the back of the head.

6.2. Device test positions relative to body-worn accessory

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. Per FCC KDB Publication 648474, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is >1.2W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be reported for that body-worn accessory with a headset attached to the handset.

SAR evaluation is required for body-worn accessories supplied with the host device. The test configurations must be conservative for supporting the body-worn accessory use conditions expected by users. Body-worn accessories that do not contain metallic or conductive components may be tested according to worst-case exposure configurations, typically according to the smallest test separation distance required for the group of body-worn accessories with similar operating and exposure characteristics. All body-worn accessories containing metallic components, either supplied with the product or available as an option from the device manufacturer, must be tested in conjunction with the host device to demonstrate compliance


Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid.

6.3. General Device Setup

RF Exposure Conditions	Test Position	Separation Distance	SAR test exclusion	
	Front Face			
	Rear Face			
Dedu	Left Side	0 5 am	Noto 2	
Body	Right Side	– 0.5 cm	Note 2	
	Top Side	_		
	Bottom Side	_		

- 1. The SAR test separation distance is determined according to device form factor. When the overall length and width of a device is > 9 cm x 5 cm (\sim 3.5" x 2"), a test separation distance of 10 mm is required for hotspot mode SAR measurements. A test separation distance of 5 mm or less is required for smaller devices.
- 2. SAR is measured for all edges and surfaces of the device with a transmitting antenna located within 25 mm from that surface or edge.

Test Positions

6.4. RF Output Power Measurements

Band		GSM850			GSM1900	
Channel	128	190	251	512	661	810
Frequency (MHz)	824.2	836.6	848.8	1850.2	1880.0	1909.8
	Ma	ximum Burst-	Averaged Out	put Power		
GPRS (GMSK, 1Tx-slot)	32.63	32.56	32.56	28.94	28.74	28.85
GPRS (GMSK, 2Tx-slot)	32.62	32.55	32.54	28.93	28.72	28.84
EDGE (8PSK, 1Tx-slot)	27.16	27.05	27.19	25.25	25.05	25.12
EDGE (8PSK, 2Tx-slot)	27.22	27.07	27.17	25.21	25.18	25.08
	Ma	ximum Frame	-Averaged Out	put Power		
GPRS (GMSK, 1Tx-slot)	23.63	23.56	23.56	19.94	19.74	19.85
GPRS (GMSK, 2Tx-slot)	26.62	26.55	26.54	22.93	22.72	22.84
EDGE (8PSK, 1Tx-slot)	18.16	18.05	18.19	16.25	16.05	16.12
EDGE (8PSK, 2Tx-slot)	21.22	21.07	21.17	19.21	18.98	19.08

Band	N	/CDMA Band	П	W	/CDMA Band	V	3GPP
Channel	9262	9400	9538	4132	4182	4233	MPR
Frequency (MHz)	1852.4	1880.0	1907.6	826.4	836.4	846.6	(dB)
RMC 12.2K	23.64	23.78	23.52	23.89	23.79	23.82	-
HSDPA Subtest-1	23.17	23.40	23.15	23.43	23.20	23.28	0
HSDPA Subtest-2	22.17	22.35	22.08	22.42	22.25	22.31	0
HSDPA Subtest-3	21.88	22.16	21.82	22.15	22.03	22.00	0.5
HSDPA Subtest-4	21.62	21.93	21.73	21.91	21.85	21.84	0.5
HSUPA Subtest-1	22.11	22.36	22.14	21.70	21.71	21.74	0
HSUPA Subtest-2	20.03	20.21	20.11	20.44	20.41	20.40	2
HSUPA Subtest-3	20.86	21.11	20.83	21.15	21.11	21.13	1
HSUPA Subtest-4	20.24	20.20	20.23	20.58	20.57	20.55	2
HSUPA Subtest-5	21.86	22.13	21.82	22.01	21.73	21.76	0

For 2.4GHz ISM Band

Operating Mode / Band	Freq. (MHz)	Measured Peak Power
2.4GHz ISM Band	2466	83.77 dBuV/m @3m

Note:

1. Time Average power (dBm) = Peak power (dBm) + Time Average factor.

2. Time Average factor = 10*log(duty cycle)

3. Fully charged battery was used for each measurement.

6.5. Exposure Conditions

Body Exposure Conditions For WWAN

Front Face0DataYesAccordingDataYes0.00000000000000000000000000000000000	
	g to KDB
Rear Face 0 Data Yes 941225 D	06
Left Side 25 Data Yes v02r01	
Right Side 12 Data Yes	
Top Side 69 Data No	
Bottom Side 5 Data Yes	

6.6. Test Result

The results on the following page(s) were obtained when the device was tested in the condition described in this report. Detailed measurement data and plots, which reveal information about the location of the maximum SAR with respect to the device, are reported in Appendix B.

В	ody SAR (5	mm)								
Plot No.	Band	Mode	Test Position	Ch.	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaling Factor	Scaled SAR-1g (W/kg)
1	GSM850	GPRS10	Front Face	128	33.5	32.62	-0.03	1.08	1.22	1.32
	GSM850	GPRS10	Rear Face	128	33.5	32.62	0.13	0.632	1.22	0.77
	GSM850	GPRS10	Left Side	128	33.5	32.62	-0.02	0.287	1.22	0.35
	GSM850	GPRS10	Right Side	128	33.5	32.62	0.13	0.393	1.22	0.48
	GSM850	GPRS10	Bottom Side	128	33.5	32.62	0.05	0.256	1.22	0.31
	GSM850	GPRS10	Front Face	190	33.5	32.55	0.07	0.856	1.24	1.07
	GSM850	GPRS10	Front Face	251	33.5	32.54	-0.07	0.728	1.25	0.91
	GSM850	GPRS10	Front Face	128	33.5	32.62	-0.17	1.05	1.22	1.29
	GSM1900	GPRS10	Front Face	512	30.5	28.93	-0.13	0.542	1.44	0.78
2	GSM1900	GPRS10	Rear Face	512	30.5	28.93	0.03	0.645	1.44	0.93
	GSM1900	GPRS10	Left Side	512	30.5	28.93	0.09	0.15	1.44	0.22
	GSM1900	GPRS10	Right Side	512	30.5	28.93	0.09	0.316	1.44	0.45
	GSM1900	GPRS10	Bottom Side	512	30.5	28.93	0.16	0.332	1.44	0.48
	GSM1900	GPRS10	Rear Face	661	30.5	28.72	-0.03	0.492	1.51	0.74
	GSM1900	GPRS10	Rear Face	810	30.5	28.84	-0.03	0.49	1.47	0.72
	WCDMA II	RMC12.2K	Front Face	9400	24.0	23.78	-0.07	1.08	1.05	1.14
3	WCDMA II	RMC12.2K	Rear Face	9400	24.0	23.78	0.00	1.15	1.05	1.21
	WCDMA II	RMC12.2K	Left Side	9400	24.0	23.78	0.17	0.195	1.05	0.21
	WCDMA II	RMC12.2K	Right Side	9400	24.0	23.78	0.05	0.546	1.05	0.57
	WCDMA II	RMC12.2K	Bottom Side	9400	24.0	23.78	0.03	0.581	1.05	0.61
	WCDMA II	RMC12.2K	Front Face	9262	24.0	23.64	-0.03	0.976	1.09	1.06
	WCDMA II	RMC12.2K	Front Face	9538	24.0	23.52	-0.16	0.94	1.12	1.05
	WCDMA II	RMC12.2K	Rear Face	9262	24.0	23.64	-0.05	1.05	1.09	1.14
	WCDMA II	RMC12.2K	Rear Face	9538	24.0	23.52	-0.17	0.885	1.12	0.99
	WCDMA II	RMC12.2K	Rear Face	9400	24.0	23.78	0.01	1.14	1.05	1.20
4	WCDMA V	RMC12.2K	Front Face	4132	24.0	23.89	-0.02	0.641	1.03	0.66
	WCDMA V	RMC12.2K	Rear Face	4132	24.0	23.89	-0.02	0.51	1.03	0.52
	WCDMA V	RMC12.2K	Left Side	4132	24.0	23.89	0.02	0.184	1.03	0.19
	WCDMA V	RMC12.2K	Right Side	4132	24.0	23.89	-0.02	0.294	1.03	0.30
	WCDMA V	RMC12.2K	Bottom Side	4132	24.0	23.89	0.03	0.199	1.03	0.20

Note:

- 1. Fully charged batteries were used at the beginning of each SAR measurement.
- Per KDB 447498, the tested device was within the specified tune-up tolerances range, but not more than 2dB lower than the maximum tune-up tolerance limit and the reported SAR results were scaled to the maximum allowed power with the scaling factor 10^[(Maximum power – measured power) / 10].
- 3. Per KDB 447498, when the maximum output power variation across the required test channels was < 0.5dB, measurement on middle channel was required.

Vpatch Cardio Pty Ltd. Intertek Report No: 18121303HKG-001

Note (Cont'd:

- 4. Per KDB 447498, if the reported SAR value was \leq 0.8 W/kg and the transmission band was \leq 100MHz, SAR testing was not required for the other test channels in the band.
- 5. SAR repeated measurement procedure:
- a. When the highest measured SAR is < 0.80 W/kg, repeated measurement is not required.
- b. When the highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- c. If the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20, or when the original or repeated measurement is >= 1.45 W/kg, perform a second repeated measurement.
- d. If the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20, and the original, first or second repeated measurement is >= 1.5 W/kg, perform a third repeated measurement.

Band	Mode	Test Position	Ch.	Original Measured SAR-1g (W/kg)	1st Repeated SAR-1g (W/kg)	L/S Ratio	2nd Repeated SAR-1g (W/kg)	L/S Ratio	3rd Repeated SAR-1g (W/kg)	L/S Ratio
GSM850	GPRS10	Front Face	128	1.08	1.05	1.03	N/A	N/A	N/A	N/A
WCDMA II	RMC12.2K	Rear Face	9400	1.15	1.14	1.01	N/A	N/A	N/A	N/A

6. The 2.4GHz ISM Band and WWAN cannot transmit simultaneously.

6.7. SAR Limits

The following FCC limits (Std. C95.1-1992) for SAR apply to devices operate in General Population/Uncontrolled Exposure and Controlled environment:

GENERAL POPULATION / UNCONTROLLED ENVIRONMENTS:

Defined as location where there is the exposure of individuals who have no knowledge or control of their exposure.

EXPOSURE (General Population/Uncontrolled Exposure environment)	SAR (W/kg)
Spatial Peak SAR (Head)*	1.60
Spatial Peak SAR (Partial Body)*	1.60
Spatial Peak SAR (Whole Body)*	0.08
Spatial Peak SAR (Hands / Wrists / Feet / Ankles)**	4.00

OCCUPATIONAL / CONTROLLED ENVIRONMENTS:

Defined as location where there is the exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation)

EXPOSURE (Occupational/Controlled Exposure environment)	SAR (W/kg)
Spatial Peak SAR (Head)*	8.00
Spatial Peak SAR (Partial Body)*	8.00
Spatial Peak SAR (Whole Body)*	0.40
Spatial Peak SAR (Hands / Wrists / Feet / Ankles)**	20.00

Notes:

- * The Spatial Peak value of the SAR averaged over any 1 gram of tissue.
 (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time
- ** The Spatial Peak value of the SAR averaged over any 10 gram of tissue.(defined as a tissue volume in the shape of a cube) and over the appropriate averaging time

7. TEST EQUIPMENT LIST

Equipment	Registration No.	Manufacturer	Model No.	Calibration Date	Cal. Interval
System Validation Dipole	4d005	SPEAG	D835V2	18 May 2018	3 Year
System Validation Dipole	509	SPEAG	D1900V2	18 May 2018	3 Year
Dosimetric E- Field Probe	3090	SPEAG	ES3DV3	03 Apr 2018	1 Year
Data Acquisition Electronics	662	SPEAG	DAE4	11 May 2018	1 Year
Wideband Radio Communication Tester	116254	R&S	CMW500	08 Jun 2018	1 Year
ENA Series Network Analyzer	MY40000519	Agilent	8753ES	14 Apr 2018	1 Year
Dielectric Assessment Kit	1056	SPEAG	DAK-3.5	N,	Ά
USB/GPIB Interface	N10149	Agilent	82357B	N,	/A
EXG-B RF Analog Signal Generator	MY53051777	KEYSIGHT	N5171B	24 Nov 2018	1 Year
USB Wideband Power Sensor	MY55430035	KEYSIGHT	U2021XA	24 Nov 2018	1 Year
USB Wideband Power Sensor	MY55430023	KEYSIGHT	U2021XA	24 Nov 2018	1 Year
Thermometer	120100323	Shanghai Gao Zhi Precision Instrument Co., Ltd.	HB6801	24 Nov 2018	1 Year
Coupler	161221001	REBES	TC-05180-10S	24 Nov 2018	1 Year
Amplifier	QA1252001	Mini-Circuit	ZHL42	N/A	N/A
DC Source	MY43000795	Agilent	66319B	N/A	N/A

8. MEASUREMENT UNCERTAINTY

Per FCC KDB 865884, the extensive SAR measurement uncertainty analysis was not required when the highest measured SAR was < 1.5W/kg for all frequency band.

9. E-FIELD PROBE AND DIPOLE ANTENNA CALIBRATION

Probe calibration factors and dipole antenna calibration are included in Appendix C.

APPENDIX A – SYSTEM CHECK DATA

Plot #1

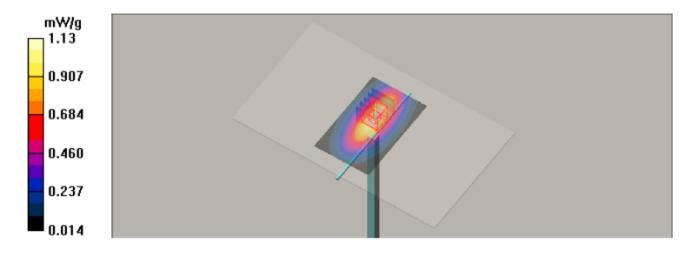
Test Laboratory: UnionTrust

Date: 2018/12/10

System Check_MSL835

DUT: Dipole 835 MHz

Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: MSL835 Medium parameters used (interpolated): f = 835 MHz; $\sigma = 1.01$ mho/m; $\epsilon_r = 54.7$;


 $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3090; ConvF(6.41, 6.41, 6.41); Calibrated: 2018/4/3
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn662; Calibrated: 2018/5/11
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1125
- ; Postprocessing SW: SEMCAD, V1.8 Build 186

system check/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.13 mW/g

system check/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 33.4 V/m; Power Drift = -0.009 dB Peak SAR (extrapolated) = 1.51 W/kg SAR(1 g) = 0.970 mW/g; SAR(10 g) = 0.624 mW/g Maximum value of SAR (measured) = 1.15 mW/g

Vpatch Cardio Pty Ltd. Intertek Report No: 18121303HKG-001

Vpatch Cardio Pty Ltd. Intertek Report No: 18121303HKG-001

TEST REPORT

APPENDIX A – SYSTEM CHECK DATA (CONT'D)

Plot #2

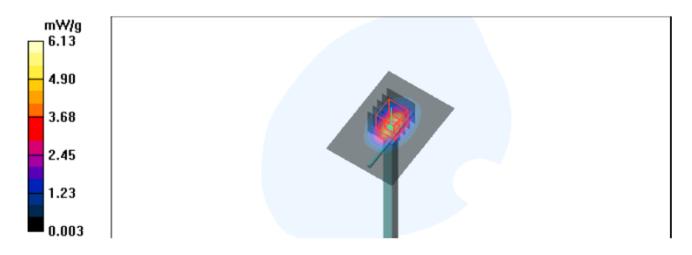
Test Laboratory: UnionTrust

Date: 2018/12/8

System Check MSL1900

DUT: Dipole 1900 MHz

Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: MSL1900 Medium parameters used: f = 1900 MHz; σ = 1.52 mho/m; ϵ_r = 53.7; ρ = 1000


kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3090; ConvF(4.48, 4.48, 4.48); Calibrated: 2018/4/3
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn662; Calibrated: 2018/5/11
- Phantom: SAM 2; Type: QD 000 P40 CB; Serial: TP-1376
- ; Postprocessing SW: SEMCAD, V1.8 Build 186

system check/Area Scan (51x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 6.13 mW/g

system check/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 60.1 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 7.66 W/kg SAR(1 g) = 4.17 mW/g; SAR(10 g) = 2.15 mW/g Maximum value of SAR (measured) = 5.33 mW/g

APPENDIX B – SAR EVALUATION DATA

Plot #1

Test Laboratory: UnionTrust

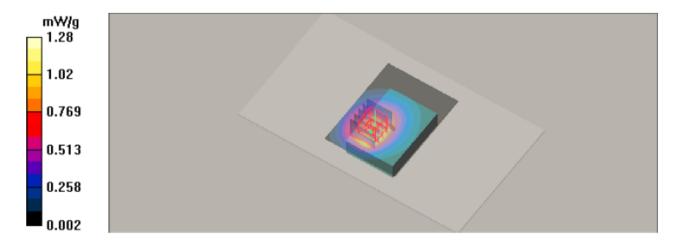
Vpatch Cardio Pty Ltd. Intertek Report No: 18121303HKG-001

Date: 2018/12/10

P01_GSM850_GPRS10_Front Face_0.5CM_128

DUT: EUT

Communication System: GPRS 850-2slots; Frequency: 824.2 MHz;Duty Cycle: 1:4 Medium: MSL850 Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 1.01$ mho/m; $\epsilon_r =$


54.3; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3090; ConvF(6.41, 6.41, 6.41); Calibrated: 2018/4/3
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn662; Calibrated: 2018/5/11
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1125
- ; Postprocessing SW: SEMCAD, V1.8 Build 186

Test/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.28 mW/g

Test/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 29.0 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 1.45 W/kg SAR(1 g) = 1.08 mW/g; SAR(10 g) = 0.765 mW/g Maximum value of SAR (measured) = 1.21 mW/g

APPENDIX B – SAR EVALUATION DATA (CONT'D)

Plot #2

Test Laboratory: UnionTrust

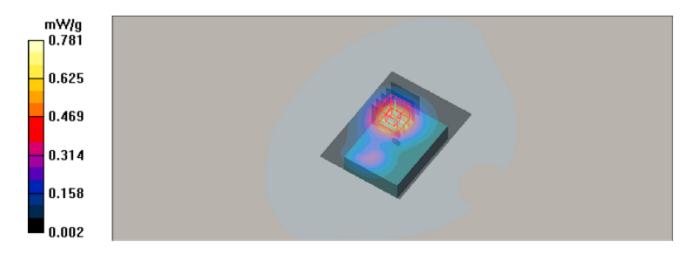
Vpatch Cardio Pty Ltd. Intertek Report No: 18121303HKG-001

Date: 2018/12/8

P02_GSM1900_GPRS10_Rear Face_0.5CM_512

DUT: EUT

Communication System: GPRS1900-2slots; Frequency: 1850.2 MHz;Duty Cycle: 1:4 Medium: MSL1900 Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.45$ mho/m; $\varepsilon_r =$


53.9; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3090; ConvF(4.48, 4.48, 4.48); Calibrated: 2018/4/3
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn662; Calibrated: 2018/5/11
- Phantom: SAM 2; Type: QD 000 P40 CB; Serial: TP-1376
- ; Postprocessing SW: SEMCAD, V1.8 Build 186

Test/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.781 mW/g

Test/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.1 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.954 W/kg SAR(1 g) = 0.645 mW/g; SAR(10 g) = 0.409 mW/g Maximum value of SAR (measured) = 0.742 mW/g

APPENDIX B – SAR EVALUATION DATA (CONT'D)

Plot #3

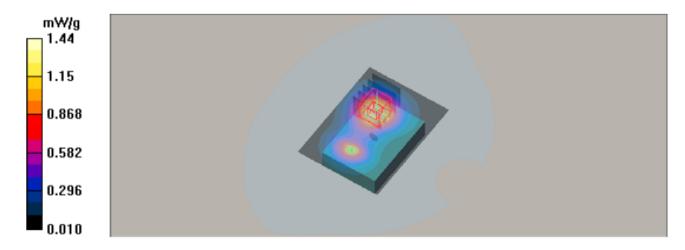
Test Laboratory: UnionTrust

Date: 2018/12/8

P03_WCDMA II_RMC12.2K_Rear Face_0.5CM_9400

DUT: EUT

Communication System: WCDMA Band II; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: MSL1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.49$ mho/m; $\epsilon_r = 53.8$; $\rho = 1000$


kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3090; ConvF(4.48, 4.48, 4.48); Calibrated: 2018/4/3
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn662; Calibrated: 2018/5/11
- Phantom: SAM 2; Type: QD 000 P40 CB; Serial: TP-1376
- ; Postprocessing SW: SEMCAD, V1.8 Build 186

Test/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.44 mW/g

Test/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.0 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 1.70 W/kg SAR(1 g) = 1.15 mW/g; SAR(10 g) = 0.731 mW/g Maximum value of SAR (measured) = 1.33 mW/g

APPENDIX B – SAR EVALUATION DATA (CONT'D)

Plot #4

Test Laboratory: UnionTrust

Vpatch Cardio Pty Ltd. Intertek Report No: 18121303HKG-001

Date: 2018/12/10

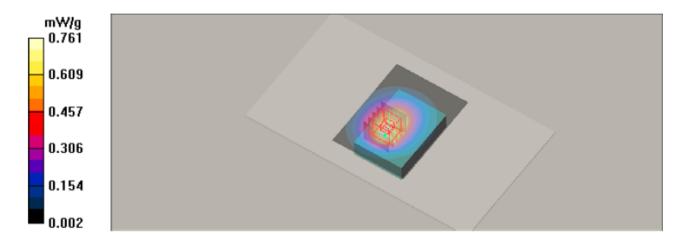
P04_WCDMA V_RMC12.2K_Front Face_0.5CM_4132

DUT: EUT

Communication System: WCDMA Band V; Frequency: 826.4 MHz;Duty Cycle: 1:1 Medium: MSL850 Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 1.01$ mho/m; $\epsilon_r =$

54.4; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:


- Probe: ES3DV3 SN3090; ConvF(6.41, 6.41, 6.41); Calibrated: 2018/4/3
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn662; Calibrated: 2018/5/11

- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1125

- ; Postprocessing SW: SEMCAD, V1.8 Build 186

Test/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.761 mW/g

Test/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.8 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.875 W/kg SAR(1 g) = 0.641 mW/g; SAR(10 g) = 0.438 mW/g Maximum value of SAR (measured) = 0.708 mW/g

APPENDIX C – E-FIELD PROBE AND DIPOLE ANTENNA CALIBRATION

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Hydsoft Testing Co., Ltd

Certificate No: Z18-60058

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3090

Calibration Procedure(s)

Client

FF-Z11-004-01 Calibration Procedures for Dosimetric E-field Probes

Calibration date:

April 03, 2018

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

a

O

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)'C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration		
Power Meter NRP2	101919	27-Jun-17 (CTTL, No.J17X05857)	Jun-18		
Power sensor NRP-Z91	101547	27-Jun-17 (CTTL, No.J17X05857)	Jun-18		
Power sensor NRP-Z91			Jun-18		
Reference10dBAttenuator 18N50W-10dE		09-Feb-18(CTTL, No.J18X01133)	Feb-20		
Reference20dBAttenuator	18N50W-20dB	09-Feb-18(CTTL, No.J18X01132)	Feb-20		
Reference Probe EX3DV4	SN 3846	25-Jan-18(SPEAG,No.EX3-3846_Jan18)	Jan-19		
DAE4	SN 777	15-Dec-17(SPEAG, No.DAE4-777_Dec17)	Dec -18		
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration		
SignalGeneratorMG3700A	6201052605	27-Jun-17 (CTTL, No.J17X05858)	Jun-18		
Network Analyzer E5071C	MY46110673	14-Jan-18 (CTTL, No.J18X00561)	Jan -19		
	Name	Function	Signature		
Calibrated by:	Yu Zongying	SAR Test Engineer	Ant		
Reviewed by:	Lin Hao	SAR Test Engineer	11-165		
Approved by:	Qi Dianyuan	SAR Project Leader	Twoy)		
-		Issued: April 04	4, 2018		

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z18-60058

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2512Fax: +86-10-62304633-2504E-mail: cttl@chinattl.comHttp://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center),
	θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx, y,z are only intermediate values, i.e., the uncertainties of NORMx, y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y, z = NORMx, y, z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax, y,z; Bx, y,z; Cx, y,z; VRx, y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

0 e a D CALIBRATION LABORATORY

Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Probe ES3DV3

SN: 3090

Calibrated: April 03, 2018

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: Z18-60058

Page 3 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2512Fax: +86-10-62304633-2504E-mail: cttl@chinattl.comHttp://www.chinattl.cn

DASY/EASY – Parameters of Probe: ES3DV3 - SN: 3090

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.25	1.36	1.33	±10.0%
DCP(mV) ^B	102.4	104.0	104.8	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	C	D dB	VR mV	Unc ^E (k=2)
0 CW	X	0.0	0.0	1.0	0.00	261.7	±2.5%	
		Y	0.0	0.0	1.0		275.7	
		Z	0.0	0.0	1.0		274.7	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E^2 -field uncertainty inside TSL (see Page 5 and Page 6). ^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2512E-mail: cttl@chinattl.comHttp://www.chinattl.cn

DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3090

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.34	6.34	6.34	0.40	1.30	±12.1%
900	41.5	0.97	6.14	6.14	6.14	0.32	1.76	±12.1%
1750	40.1	1.37	5.30	5.30	5.30	0.65	1.25	±12.1%
1950	40.0	1.40	4.92	4.92	4.92	0.69	1.24	±12.1%
2300	39.5	1.67	4.75	4.75	4.75	0.90	1.15	±12.1%
2450	39.2	1.80	4.54	4.54	4.54	0.90	1.12	±12.1%
2600	39.0	1.96	4.47	4.47	4.47	0.90	1.10	±12.1%

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

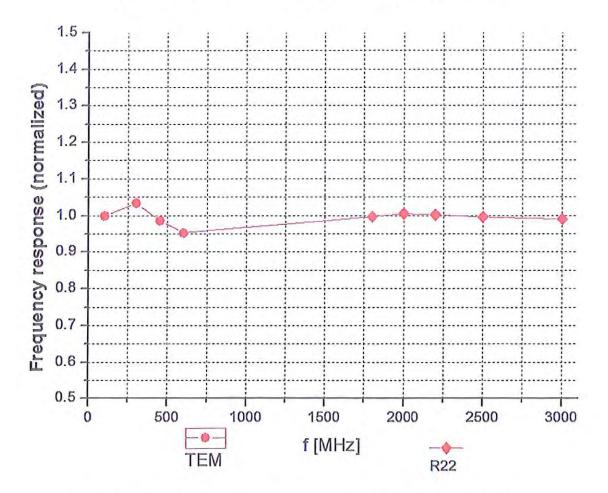
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2512E-mail: cttl@chinattl.comHttp://www.chinattl.cn

DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3090

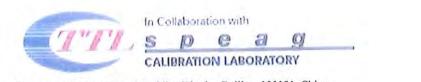
f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	6.41	6.41	6.41	0.40	1.30	±12.1%
900	55.0	1.05	6.20	6.20	6.20	0.48	1.46	±12.1%
1750	53.4	1.49	4.95	4.95	4.95	0.64	1.29	±12.1%
1950	53.3	1.52	4.48	4.48	4.48	0.66	1.30	±12.1%
2300	52.9	1.81	4.52	4.52	4.52	0.90	1.15	±12.1%
2450	52.7	1.95	4.43	4.43	4.43	0.90	1.12	±12.1%
2600	52.5	2.16	4.20	4.20	4.20	0.90	1.07	±12.1%

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to \pm 50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

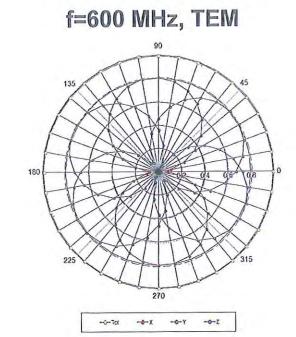

^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

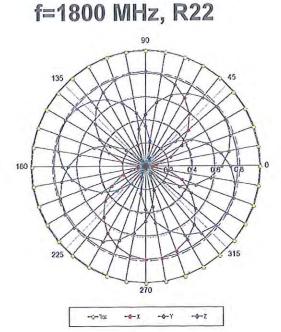
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

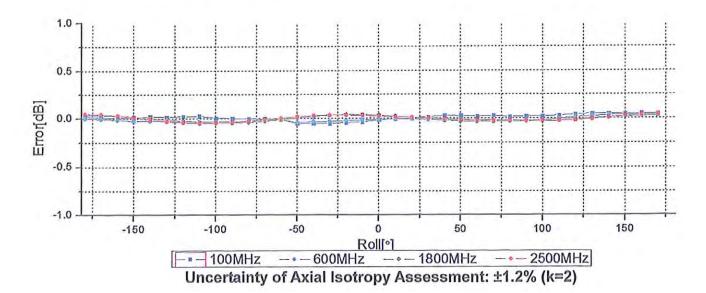


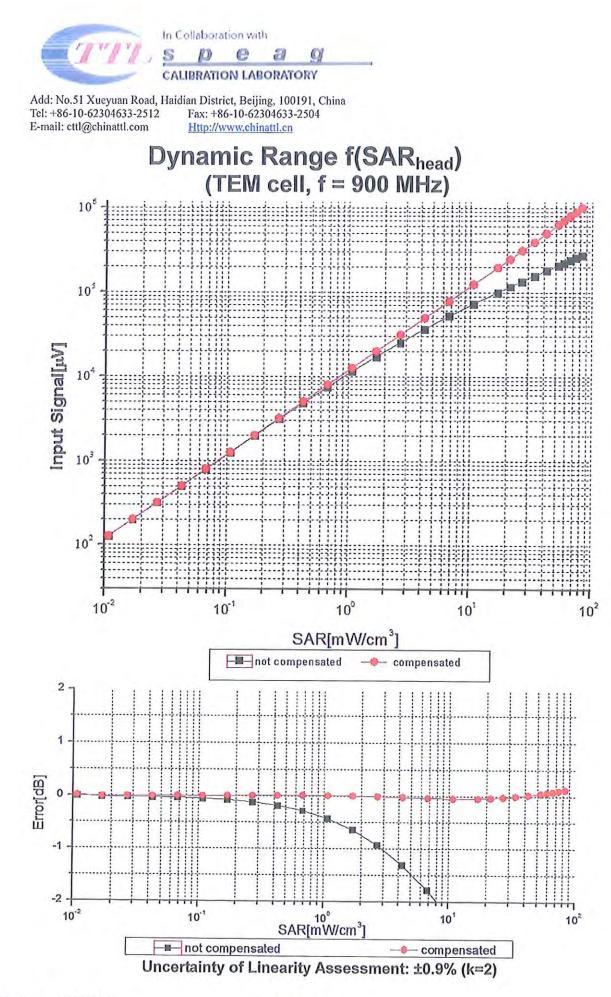
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2512Fax: +86-10-62304633-2504E-mail: cttl@chinattl.com<u>Http://www.chinattl.cn</u>

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

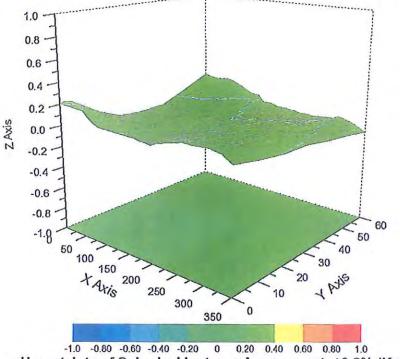



E-mail: cttl@chinattl.com


Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Receiving Pattern (Φ), θ=0°

Certificate No: Z18-60058



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2512E-mail: cttl@chinattl.comHttp://www.chinattl.cn

Conversion Factor Assessment

f=750 MHz, WGLS R9(H_convF) f=1750 MHz, WGLS R22(H_convF) 30.00 3.50 3.00 25.00 2.50 20.00 20.00 M[b]//N]28S 2.00 SAR[W/kg]W 1.50 10.00 1.00 5.00 0.50 0.00 0.00 0 20 40 60 80 100 0 10 20 30 40 50 60 70 z[mm] z[mm] -----analytical ---measured ---- analytical ---measured

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2512Fax: +86-10-62304633-2504E-mail: cttl@chinattl.comHttp://www.chinattl.cn

DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3090

Sensor Arrangement	Triangular
Connector Angle (°)	179.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	4mm
Probe Tip to Sensor X Calibration Point	2mm
Probe Tip to Sensor Y Calibration Point	2mm
Probe Tip to Sensor Z Calibration Point	2mm
Recommended Measurement Distance from Surface	3mm

Other Probe Parameters

Certificate No: Z18-60116

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079Fax: +86-10-62304633-2504E-mail: ettl@chinattl.comhttp://www.chinattl.cn

Glossary:	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504
 http://www.chinattl.cn E-mail: cttl@chinattl.com

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.0.1446
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.7 ± 6 %	0.88 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL.	Condition	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100
SAR measured	250 mW input power	2.31 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.45 mW /g ± 18.8 % (k≒2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.47 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	5.98 mW /g ± 18.7 % (k=2)

Body TSL parameters The following parameters and calculations were applied.

le following parameters and culourations more	Temperature	Permittivity	Conductivity
Nominal Body TSL parametors	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.3 ± 6 %	0.95 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.41 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.74 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.57 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.34 mW /g ± 18.7 % (k≓2)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079Fax: +86-10-62304633-2504E-mail: cttl@chinattl.comhttp://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.5Ω- 1.89jΩ
Return Loss	- 34.1dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.6Ω- 6.78jΩ	
Return Loss	- 22.1dB	

General Antenna Parameters and Design

1.257 ns	
	1.257 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

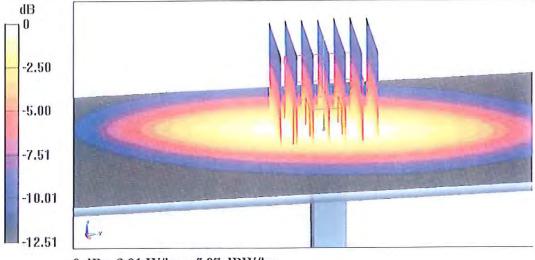
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 http://www.chinattl.cn E-mail: ettl@chinattl.com

Date: 05.17.2018


DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d005 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.881$ S/m; $\varepsilon_r = 42.71$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

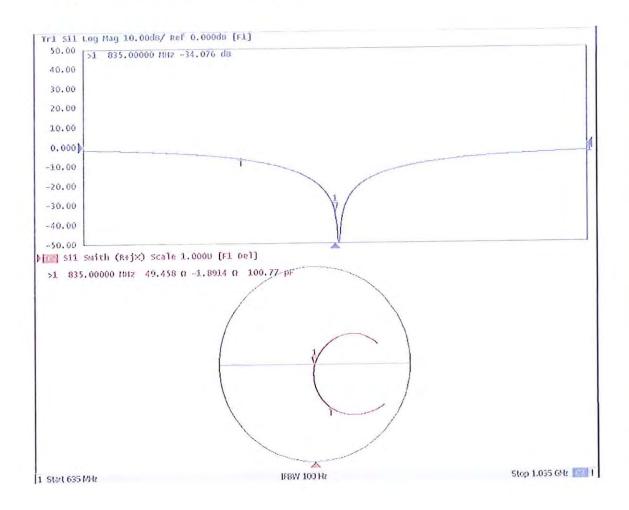
DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(10.28, 10.28, 10.28); Calibrated: 9/12/2017; 0
- Sensor-Surface: 1.4mm (Mechanical Surface Detection) 0
- Electronics: DAE4 Sn1525; Calibrated: 10/2/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 0
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 0 (7417)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.63 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 3.72 W/kg SAR(1 g) = 2.31 W/kg; SAR(10 g) = 1.47 W/kgMaximum value of SAR (measured) = 3.21 W/kg

0 dB = 3.21 W/kg = 5.07 dBW/kg



 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

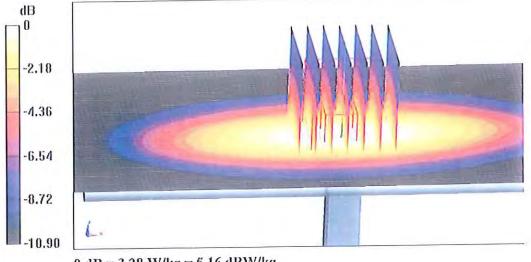
 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 http://www.chinattl.en

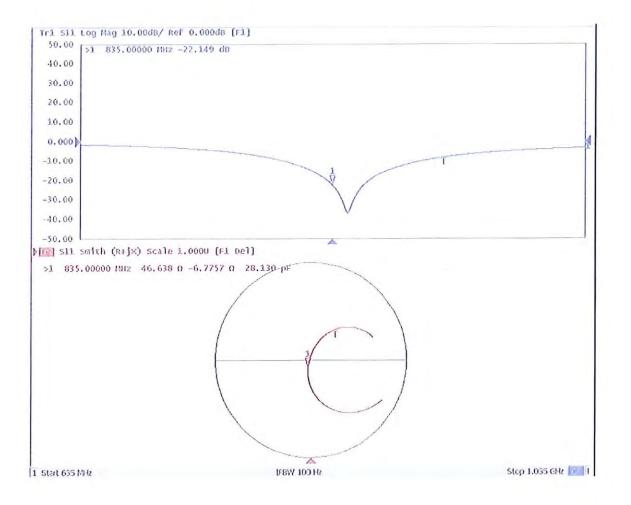

Date: 05.16.2018

DASY5 Validation Report for Body TSL Date: 05. Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d005 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.952$ S/m; $\varepsilon_r = 54.34$; $\rho = 1000$ kg/m³ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(10.21, 10.21, 10.21); Calibrated: 9/12/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1525; Calibrated: 10/2/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.99 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 3.74 W/kg SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.57 W/kg Maximum value of SAR (measured) = 3.28 W/kg



0 dB = 3.28 W/kg = 5.16 dBW/kg

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comhttp://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Hydsoft Testing Co., Ltd

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079Fax: +86-10-62304633-2504E-mail: ettl@chinattl.comhttp://www.chinattl.cn

Certificate No: Z

: Z18-60120

CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 509

May 18, 2018

Calibration Procedure(s)

Client

FF-Z11-003-01 Calibration Procedures for dipole validation kits

Calibration date:

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following

pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)[°]C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRVD	102083	01-Nov-17 (CTTL, No.J17X08756)	Oct-18
Power sensor NRV-Z5	100542	01-Nov-17 (CTTL, No.J17X08756)	Oct-18
Reference Probe EX3DV4	SN 7464	12-Sep-17(SPEAG,No.EX3-7464_Sep17)	Sep-18
DAE4	SN 1525	02-Oct-17(SPEAG,No.DAE4-1525_Oct17)	Oct-18
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	23-Jan-18 (CTTL, No.J18X00560)	Jan-19
NetworkAnalyzer E5071C	MY46110673	24-Jan-18 (CTTL, No.J18X00561)	Jan-19
	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	The last
Reviewed by:	Lin Hao	SAR Test Engineer	THE AG
Approved by:	Qi Dianyuan	SAR Project Leader	2B-
		Issued: May 2	
This calibration certificate sh	nall not be reproc	luced except in full without written approval o	f the laboratory.

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 http://www.chinattl.cn

lossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 http://www.chinattl.cn E-mail: cttl@chinattl.com

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.0.1446
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.7 ± 6 %	1.40 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL.	Condition	
SAR measured	250 mW input power	9.85 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	39.6 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL.	Condition	
SAR measured	250 mW input power	5.04 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.2 mW /g ± 18.7 % (k=2)

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.6 ± 6 %	1.49 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.73 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	39.5 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.04 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.4 mW /g ± 18.7 % (k=2)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079Fax: +86-10-62304633-2504E-mail: ettl@chinattl.comhttp://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	45.5Ω- 6.56jΩ			
Return Loss	- 21.6dB			

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.3Ω- 3.95jΩ			
Relum Loss	- 22.7dB			

General Antenna Parameters and Design

Electrical Delay (one direction)	1.065 ns
----------------------------------	----------

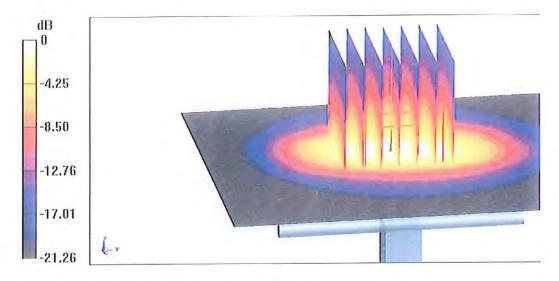
After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079Fax: +86-10-62304633-2504E-mail: ettl@chinattl.comhttp://www.chinattl.cn

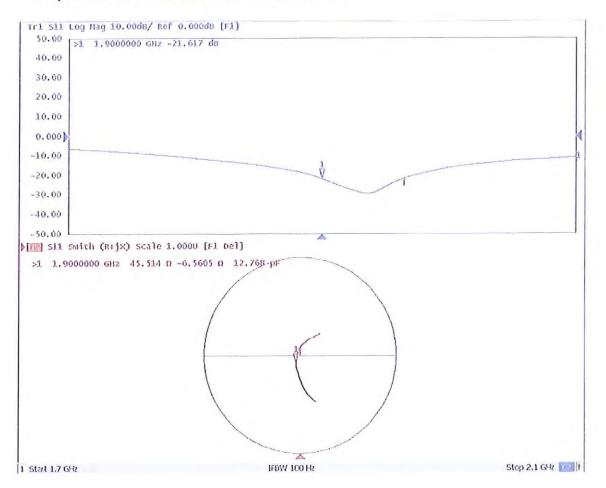

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China Date: 05.18.2018

Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 509 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.4$ S/m; $\epsilon r = 40.69$; $\rho = 1000$ kg/m3 Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(8.39, 8.39, 8.39); Calibrated: 9/12/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1525; Calibrated: 10/2/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.3 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 19.7 W/kg SAR(1 g) = 9.85 W/kg; SAR(10 g) = 5.04 W/kg Maximum value of SAR (measured) = 15.9 W/kg



0 dB = 15.9 W/kg = 12.01 dBW/kg

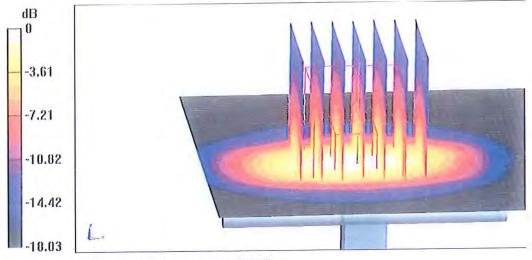
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

Date: 05.16.2018

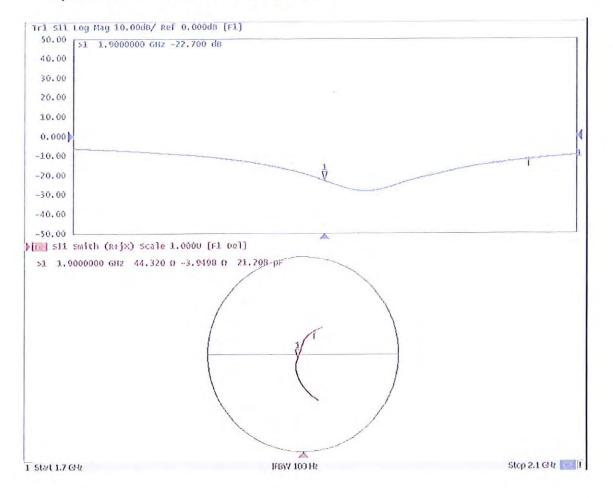

DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 509 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.493 \text{ S/m}$; $\epsilon_r = 54.55$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY5** Configuration:

> Probe: EX3DV4 - SN7464; ConvF(8.32, 8.32, 8.32); Calibrated: 9/12/2017; 0

- Sensor-Surface: 1.4mm (Mechanical Surface Detection) 0
- Electronics: DAE4 Sn1525; Calibrated: 10/2/2017 0
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 0
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 0 (7417)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 83.13 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 18.3 W/kg SAR(1 g) = 9.73 W/kg; SAR(10 g) = 5.04 W/kgMaximum value of SAR (measured) = 15.3 W/kg



0 dB = 15.3 W/kg = 11.85 dBW/kg

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: ettl@chinattl.comhttp://www.chinattl.cn

Impedance Measurement Plot for Body TSL

APPENDIX D – SAR SYSTEM VALIDATION

Per KDB 865664, SAR system validation status should be documented to confirm measurement accuracy. SAR measurement systems are validated according to procedures in KDB 865664. The validation status is documented according to the validation date(s), measurement frequencies, SAR probe and tissue dielectric parameters. When multiple SAR system is used, the validation status of each SAR system is needed to be documented separately according to the associated system components.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probe and tissue dielectric parameters are shown as below.

						CW Validation			Mod. Validation		
Date	Probe S/N	Tested Freq. (MHz)	Tissue Type	Perm	Cond	Sensitivity	Probe Linearity	Probe Isotropy	Mod. Type	Duty Factor	Peak to average power ratio
11/11/ 2018	3090	835	Body	53.932	0.969	Pass	Pass	Pass	N/A	N/A	N/A
11/11/ 2018	3090	835	Body	53.932	0.969	Pass	Pass	Pass	GMSK	Pass	N/A
12/11/ 2018	3090	1900	Body	52.790	1.470	Pass	Pass	Pass	N/A	N/A	N/A
12/11/ 2018	3090	1900	Body	52.790	1.470	Pass	Pass	Pass	GMSK	Pass	N/A