

Report on the Radio Testing

For

OccupEye Limited

on

OccupEye Sensor

Report no. TRA-041276-47-03A

18 January 2019

RF915 6.0

Report Number: TRA-041276-47-03A
Issue: A

REPORT ON THE RADIO TESTING OF A
OccupEye Limited
OccupEye Sensor
WITH RESPECT TO SPECIFICATION
FCC 47CFR 15.247

TEST DATE: 2018-10-16 to 2018-10-29

Written by:

S Garwell
D Moncayola
Radio Test engineer

Approved by:

J Charters
Department Manager-Radio

Date:

18 January 2019

Disclaimers:

- [1] THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE
- [2] THE RESULTS CONTAINED IN THIS DOCUMENT RELATE ONLY TO THE ITEM(S) TESTED

1 Revision Record

<i>Issue Number</i>	<i>Issue Date</i>	<i>Revision History</i>
A	18 January 2019	Original

2 Summary

TEST REPORT NUMBER:	TRA-041276-47-03A
WORKS ORDER NUMBER:	TRA-041276-03
PURPOSE OF TEST:	USA: Testing of radio frequency equipment per the relevant authorization procedure of chapter 47 of CFR (code of federal regulations) Part 2, subpart J.
TEST SPECIFICATION(S):	47CFR15.247
EQUIPMENT UNDER TEST (EUT):	OccupEye
FCC IDENTIFIER:	2ARNWOES02
EUT SERIAL NUMBER:	Not Stated
MANUFACTURER/AGENT:	OccupEye Limited
ADDRESS:	OccupEye Ltd. Barnfield House Accrington Road Blackburn Lancashire BB1 3NY
CLIENT CONTACT:	Andrew R. Butterworth Director of Operations & General Manager andrew.butterworth@asuresoftware.com Tel: 01254 504400 (Office) Tel: 01254 504417 (Direct)
ORDER NUMBER:	40802
TEST DATE:	2018-10-16 to 2018-10-29
TESTED BY:	S Garwell D Moncayola Element

2.1 Test Summary

Test Method and Description		Requirement Clause 47CFR15	Applicable to this equipment	Result / Note
Radiated spurious emissions (restricted bands of operation and cabinet radiation)		15.205	<input checked="" type="checkbox"/>	Pass
AC power line conducted emissions		15.207	<input checked="" type="checkbox"/>	Pass
Occupied bandwidth		15.247(a)(2)	<input checked="" type="checkbox"/>	Pass
Conducted carrier power	Peak	15.247(b)(3)	<input checked="" type="checkbox"/>	Pass
	Max.		<input type="checkbox"/>	
Conducted / radiated RF power out-of-band		15.247(d)	<input type="checkbox"/>	Note 1
Power spectral density, conducted		15.247(e)	<input checked="" type="checkbox"/>	Pass
Calculation of duty correction		15.35(c)	<input type="checkbox"/>	Note 2

Notes:

Note 1: The unit is radiated only, no antenna port available.

Note 2: The unit was working 100 % duty cycle no duty cycle correction required

The results contained in this report relate only to the items tested, in the condition at time of test, and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

The apparatus was set up and exercised using the configurations, modes of operation and arrangements defined in this report only. Any modifications made are identified in Section 8 of this report.

Particular operating modes, apparatus monitoring methods and performance criteria required by the standards tested to have been performed except where identified in Section 5.2 of this test report (Deviations from Test Standards).

3 Contents

1	Revision Record.....	3
2	Summary.....	4
2.1	Test Summary.....	5
3	Contents.....	6
4	Introduction	7
5	Test Specifications	8
5.1	Normative References	8
5.2	Deviations from Test Standards	8
6	Glossary of Terms.....	9
7	Equipment Under Test	10
7.1	EUT Identification	10
7.2	System Equipment	10
7.3	EUT Mode of Operation	10
7.3.1	Transmission.....	10
7.4	EUT Radio Parameters	10
7.4.1	General	10
7.5	EUT Description	10
8	Modifications	11
9	EUT Test Setup.....	11
9.1	Block Diagram.....	11
9.2	General Set-up Photograph	11
10	General Technical Parameters.....	12
10.1	Normal Conditions.....	12
10.2	Varying Test Conditions	12
11	Radiated emissions.....	13
11.1	Definitions	13
11.2	Test Parameters.....	13
11.3	Test Limit	13
11.4	Test Method	14
11.5	Test Set-up Photograph	15
11.6	Test Equipment.....	15
11.7	Test Results	16
12	AC power-line conducted emissions	19
12.1	Definition	19
12.2	Test Parameters.....	19
12.3	Test Limit	19
12.4	Test Method	20
12.5	Test Set-up Photograph	21
12.6	Test Equipment.....	22
12.7	Test Results	22
13	Occupied Bandwidth	24
13.1	Definition	24
13.2	Test Parameters.....	24
13.3	Test Limit	24
13.4	Test Method	25
13.5	Test Equipment.....	25
13.6	Test Results	25
14	Maximum peak conducted output power.....	26
14.1	Definition	26
14.2	Test Parameters.....	26
14.3	Test Limit	26
14.4	Test Method	27
14.5	Test Equipment.....	27
14.6	Test Results	28
15	Power spectral density	29
15.1	Definition	29
15.2	Test Parameters.....	29
15.3	Test Limit	29
15.4	Test Method	29
15.5	Test Equipment.....	30
15.6	Test Results	30
16	Measurement Uncertainty	31

4 Introduction

This report TRA-041276-47-03A presents the results of the Radio testing on a OccupEye Limited, OccupEye to specification 47CFR15 Radio Frequency Devices.

The testing was carried out for OccupEye Limited by Element, at the address detailed below.

<input type="checkbox"/> Element Hull Unit E South Orbital Trading Park Hedon Road Hull HU9 1NJ UK	<input checked="" type="checkbox"/> Element Skelmersdale Unit 1 Pendle Place Skelmersdale West Lancashire WN8 9PN UK
--	--

This report details the configuration of the equipment, the test methods used and any relevant modifications where appropriate.

All test and measurement equipment under the control of the laboratory and requiring calibration is subject to an established programme and procedures to control and maintain measurement standards. The quality management system meets the principles of ISO 9001, and has quality control procedures for monitoring the validity of tests undertaken. Records and sufficient detail are retained to establish an audit trail of calibration records relating to its test results for a defined period. Under control of the established calibration programme, key quantities or values of the test & measurement instrumentation are within specification and comply with the relevant traceable internationally recognised and appropriate standard specifications, which are UKAS calibrated as such where these properties have a significant effect on results. Participation in inter-laboratory comparisons and proficiency testing ensures satisfactory correlation of results conform to Elements own procedures, as well as statistical techniques for analysis of test data providing the appropriate confidence in measurements.

Throughout this report EUT denotes equipment under test.

FCC Site Listing:

Element is accredited for the above sites under the US-EU MRA, Designation number UK0009.

IC Registration Number(s):

Element Hull	3483A
Element North West	3930B

The test site requirements of ANSI C63.4-2014 are met up to 1GHz.

The test site SVSWR requirements of CISPR 16-1-4:2010 are met over the frequency range 1 GHz to 18 GHz.

5 Test Specifications

5.1 *Normative References*

- FCC 47 CFR Ch. I – Part 15 – Radio Frequency Devices.
- ANSI C63.10-2013 – American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.
- ANSI C63.4-2014 – American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

5.2 *Deviations from Test Standards*

There were no deviations from the test standard.

6 Glossary of Terms

§	denotes a section reference from the standard, not this document
AC	Alternating Current
ANSI	American National Standards Institute
BW	bandwidth
C	Celsius
CFR	Code of Federal Regulations
CW	Continuous Wave
dB	decibel
dBm	dB relative to 1 milliwatt
DC	Direct Current
DSSS	Direct Sequence Spread Spectrum
EIRP	Equivalent Isotropically Radiated Power
ERP	Effective Radiated Power
EUT	Equipment Under Test
FCC	Federal Communications Commission
FHSS	Frequency Hopping Spread Spectrum
Hz	hertz
IC	Industry Canada
ITU	International Telecommunication Union
LBT	Listen Before Talk
m	metre
max	maximum
MIMO	Multiple Input and Multiple Output
min	minimum
MRA	Mutual Recognition Agreement
N/A	Not Applicable
PCB	Printed Circuit Board
PDF	Portable Document Format
Pt-mpt	Point-to-multipoint
Pt-pt	Point-to-point
RF	Radio Frequency
RH	Relative Humidity
RMS	Root Mean Square
Rx	receiver
s	second
SVSWR	Site Voltage Standing Wave Ratio
Tx	transmitter
UKAS	United Kingdom Accreditation Service
V	volt
W	watt
Ω	ohm

7 Equipment Under Test

7.1 EUT Identification

- Name: OccupEye
- Serial Number: Not Stated
- Model Number: Sensor
- Software Revision: EMC_RADIO_CUSTOM
- Build Level / Revision Number: Pre-production

7.2 System Equipment

Equipment listed below forms part of the overall test setup and is required for equipment functionality and/or monitoring during testing. The compliance levels achieved in this report relate only to the EUT and not items given in the following list.

Not Applicable – No support/monitoring equipment required.

7.3 EUT Mode of Operation

7.3.1 Transmission

The mode of operation for transmitter tests was as follows:

The unit was pre-programmed to transmit 100% duty cycle, modulated carrier on top and bottom channels.

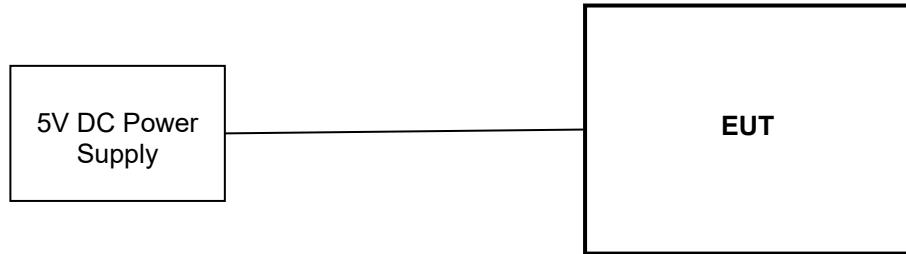
7.4 EUT Radio Parameters

7.4.1 General

Frequency of operation:	902 MHz - 928 MHz Band
Modulation type(s):	FSK
Occupied channel bandwidth(s):	500 kHz
Declared output power(s):	14 dBm
Warning against use of alternative antennas in user manual (yes/no):	Not applicable
Nominal Supply Voltage:	3 V dc

7.5 EUT Description

The EUT is a sensor used to measure room occupancy working on the 902 MHz to 928 MHz band.


8 Modifications

No modifications were performed during this assessment.

9 EUT Test Setup

9.1 *Block Diagram*

The following diagram shows basic EUT interconnections with cable type and cable lengths identified:

9.2 *General Set-up Photograph*

The following photograph shows basic EUT set-up:

10 General Technical Parameters

10.1 Normal Conditions

The E U T was tested under the normal environmental conditions of the test laboratory, except where otherwise stated. The normal power source applied 3 V dc from alkaline batteries.

10.2 Varying Test Conditions

There are no specific frequency stability requirements for the type of device. The results contained in this report demonstrate that the occupied bandwidth is contained within the authorised band and the manufacturer has declared sufficient frequency stability (refer to section 7.4).

Variation of supply voltage is required to ensure stability of the declared output power. During carrier power testing the following variations were made:

	Category	Nominal	Variation
<input type="checkbox"/>	Mains	110 V ac +/-2 %	85 % and 115 %
<input checked="" type="checkbox"/>	Battery	New battery	N/A

11 Radiated emissions

11.1 Definitions

Spurious emissions

Emissions on a frequency or frequencies, which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out-of-band emissions.

Restricted bands

A frequency band in which intentional radiators are permitted to radiate only spurious emissions but not fundamental signals.

11.2 Test Parameters

Test Location:	Element Skelmersdale
Test Chamber:	Radio Chamber
Test Standard and Clause:	ANSI C63.10-2013, Clause 6.5 and 6.6
EUT Frequencies Measured:	910.43 MHz and 918.1 MHz
EUT Channel Bandwidths:	500 kHz
Deviations From Standard:	None
Measurement BW:	30 MHz to 1 GHz: 120 kHz Above 1 GHz: 1 MHz
Measurement Detector:	Up to 1 GHz: quasi-peak Above 1 GHz: RMS average and Peak

Environmental Conditions (Normal Environment)

Temperature: 24 °C	+15 °C to +35 °C (as declared)
Humidity: 50 % RH	20 % RH to 75 % RH (as declared)
Supply: 3 V dc	3 V dc $\pm 10\%$ (as declared)

11.3 Test Limit

Unwanted emissions that fall within the restricted frequency bands shall comply with the limits specified:

General Field Strength Limits for License-Exempt Transmitters at Frequencies above 30 MHz

Frequency (MHz)	Field Strength ($\mu\text{V}/\text{m}$ at 3 m)
30 to 88	100
88 to 216	150
216 to 960	200
Above 960	500

11.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure i, the emissions from the EUT were measured on a spectrum analyzer / EMI receiver.

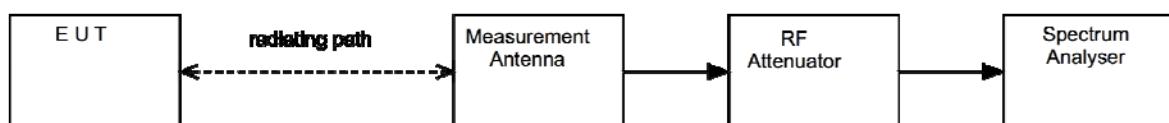
Radiated electromagnetic emissions from the EUT are checked first by preview scans. Preview scans for all spectrum and modulation characteristics are checked, using a peak detector and where applicable worst-case determined for function, operation, orientation, etc. for both vertical and horizontal polarisations. Pre-scan plots are shown with a peak detector and 100 kHz RBW.

If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.10 are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed, (see EUT setup photographs for more detail).

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. Emissions above 1 GHz are characterized using standard gain horn antennas. Pre-amplifiers and filters are used where required. Care is taken to ensure that test receiver resolution bandwidth, video bandwidth and detector type(s) meet the regulatory requirements.

For both horizontal and vertical polarizations, the EUT is then rotated through 360 degrees in azimuth until the highest emission is detected. At the previously determined azimuth the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected, this maximum value is recorded.

Power values measured on the test receiver / analyzer are converted to field strength, FS, in dB μ V/m at the regulatory distance, using:

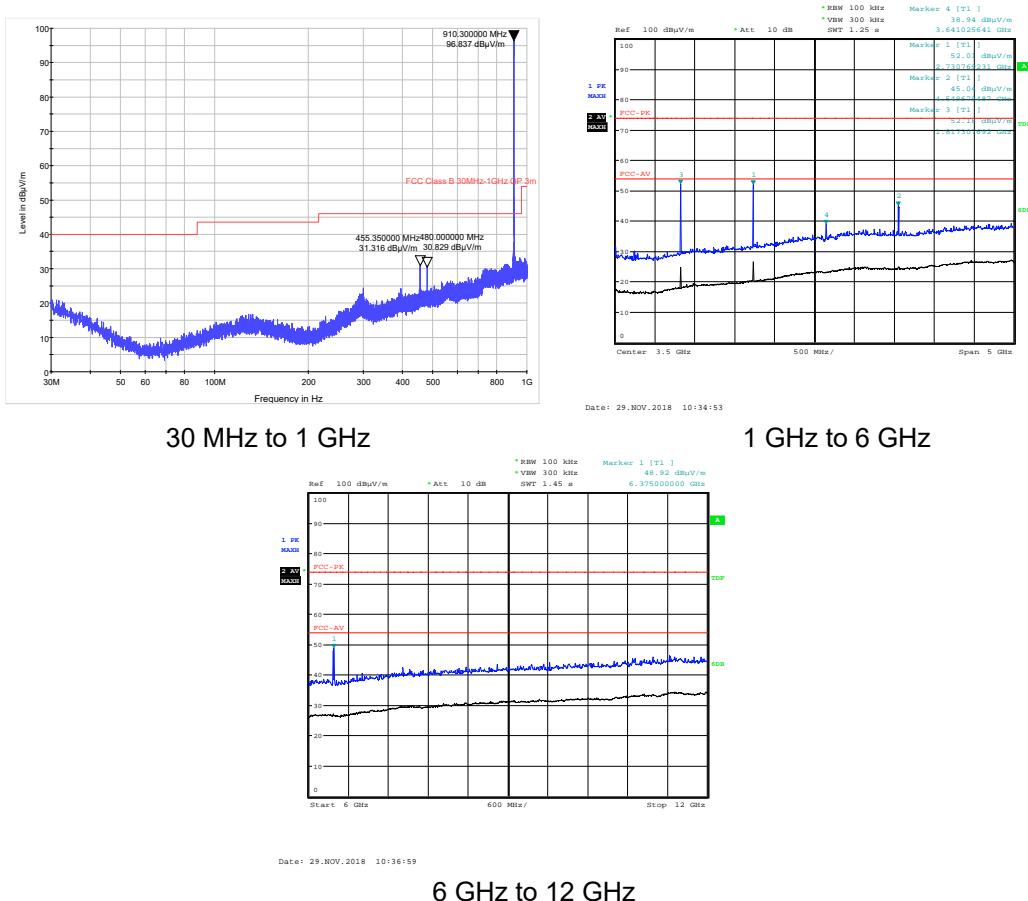

$$FS = PR + CL + AF - PA + DC - CF$$

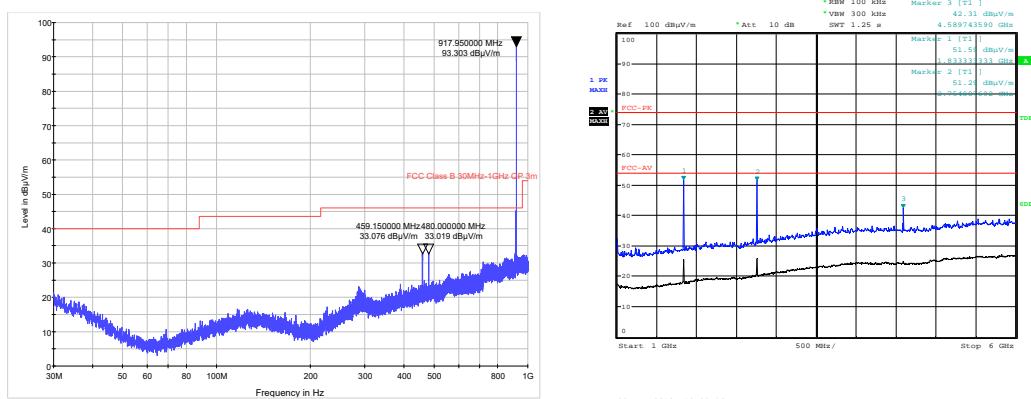
Where,

- PR is the power recorded on the receiver / spectrum analyzer in dB μ V;
- CL is the cable loss in dB;
- AF is the test antenna factor in dB/m;
- PA is the pre-amplifier gain in dB (where used);
- DC is the duty correction factor in dB (where used, e.g. harmonics of pulsed fundamental);
- CF is the distance factor in dB (where measurement distance different to limit distance);

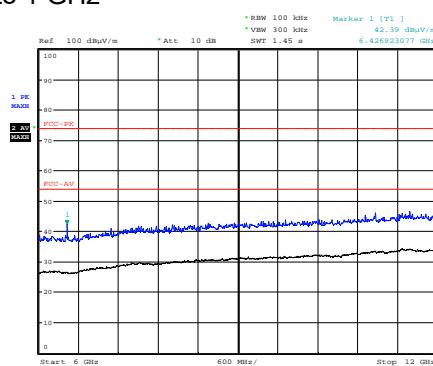
This field strength value is then compared with the regulatory limit.

Figure i Test Setup

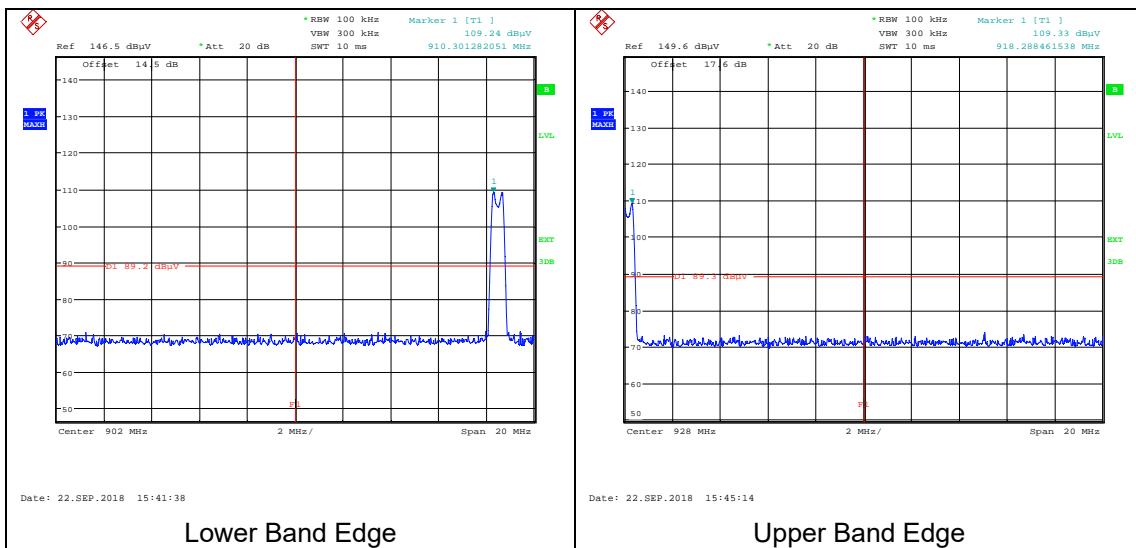

11.5 Test Set-up Photograph


11.6 Test Equipment

Equipment Type	Manufacturer	Equipment Description	Element No	Due For Calibration
CBL611/A	Chase	Bilog	U573	2019-08-02
ESVS10	R&S	Receiver	L317	2019-03-22
FSU26	R&S	Spectrum Analyser	U405	2019-09-21
3115	EMCO	1-18GHz Horn	L139	2019-09-25
Pre Amp	Agilent	8449B	L572	2019-10-12


11.7 Test Results

High Power; Channel: 910.43 MHz										
Detector	Freq. (MHz)	Meas'd Emission (dB μ V)	Cable Loss (dB)	Antenna Factor (dB/m)	Pre-amp Gain (dB)	Duty Cycle Corr'n (dB)	Distance Extrap'n Factor (dB)	Field Strength (dB μ V/m)	Field Strength (μ V/m)	Limit (μ V/m)
Pk	2731.43	54.01	4.40	29.20	36.50	0.00	0.00	51.11	359.34	5000
Av	2731.43	46.91	4.40	29.20	36.50	0.00	0.00	44.01	158.67	500
Pk	3641.90	47.35	5.40	31.70	36.14	0.00	0.00	48.31	260.32	5000
Av	3641.90	34.77	5.40	31.70	36.14	0.00	0.00	35.73	61.16	500
Pk	4552.38	50.40	6.30	32.40	36.10	0.00	0.00	53.00	446.68	5000
Av	4552.38	39.95	6.30	32.40	36.10	0.00	0.00	42.55	134.12	500


30 MHz to 1 GHz

1 GHz to 6 GHz

6 GHz to 12 GHz

High Power; Channel: 918.1 MHz										
Detector	Freq. (MHz)	Meas'd Emission (dB μ V)	Cable Loss (dB)	Antenna Factor (dB/m)	Pre-amp Gain (dB)	Duty Cycle Corr'n (dB)	Distance Extrap'n Factor (dB)	Field Strength (dB μ V/m)	Field Strength (μ V/m)	Limit (μ V/m)
Pk	2754.38	54.65	4.40	29.40	36.50	0.00	0.00	51.95	395.82	5000
Av	2754.38	46.35	4.40	29.40	36.50	0.00	0.00	43.65	152.23	500
Pk	3672.50	47.35	5.50	31.90	36.12	0.00	0.00	48.63	270.08	5000
Av	3672.50	32.44	5.50	31.90	36.12	0.00	0.00	33.72	48.53	500
Pk	4590.63	49.08	6.40	32.50	36.11	0.00	0.00	51.87	392.19	5000
Av	4590.63	37.90	6.40	32.50	36.11	0.00	0.00	40.69	108.27	500

12 AC power-line conducted emissions

12.1 Definition

Line-to-ground radio-noise voltage that is conducted from all of the EUT current-carrying power input terminals that are directly (or indirectly via separate transformers or power supplies) connected to a public power network.

12.2 Test Parameters

Test Location:	Element Skelmersdale
Test Chamber:	Radio Laboratory
Test Standard and Clause:	ANSI C63.10-2013, Clause 6.2
EUT Frequency Measured:	Mid
EUT Channel Bandwidths:	500 kHz
EUT Modulation:	FSK
Deviations From Standard:	None
Measurement Detectors:	Quasi-Peak and Average, RMS

Environmental Conditions (Normal Environment)

Temperature: 24 °C	+15 °C to +35 °C (as declared)
Humidity: 41 % RH	20 % RH to 75 % RH (as declared)
Supply: 5 V dc	5 V dc ±10 % (as declared)

12.3 Test Limit

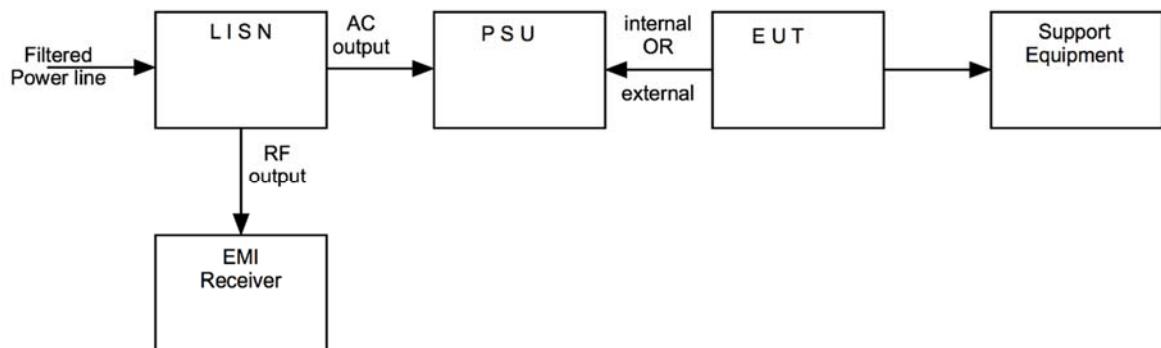
A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz, shall not exceed the limits in Table 3.

Table 3 – AC Power Line Conducted Emission Limits

Frequency (MHz)	Conducted limit (dB μ V)	
	Quasi-Peak	Average**
0.15 to 0.5	66 to 56*	56 to 46*
0.5 to 5	56	46
5 to 30	60	50

*The level decreases linearly with the logarithm of the frequency.

**A linear average detector is required.


12.4 Test Method

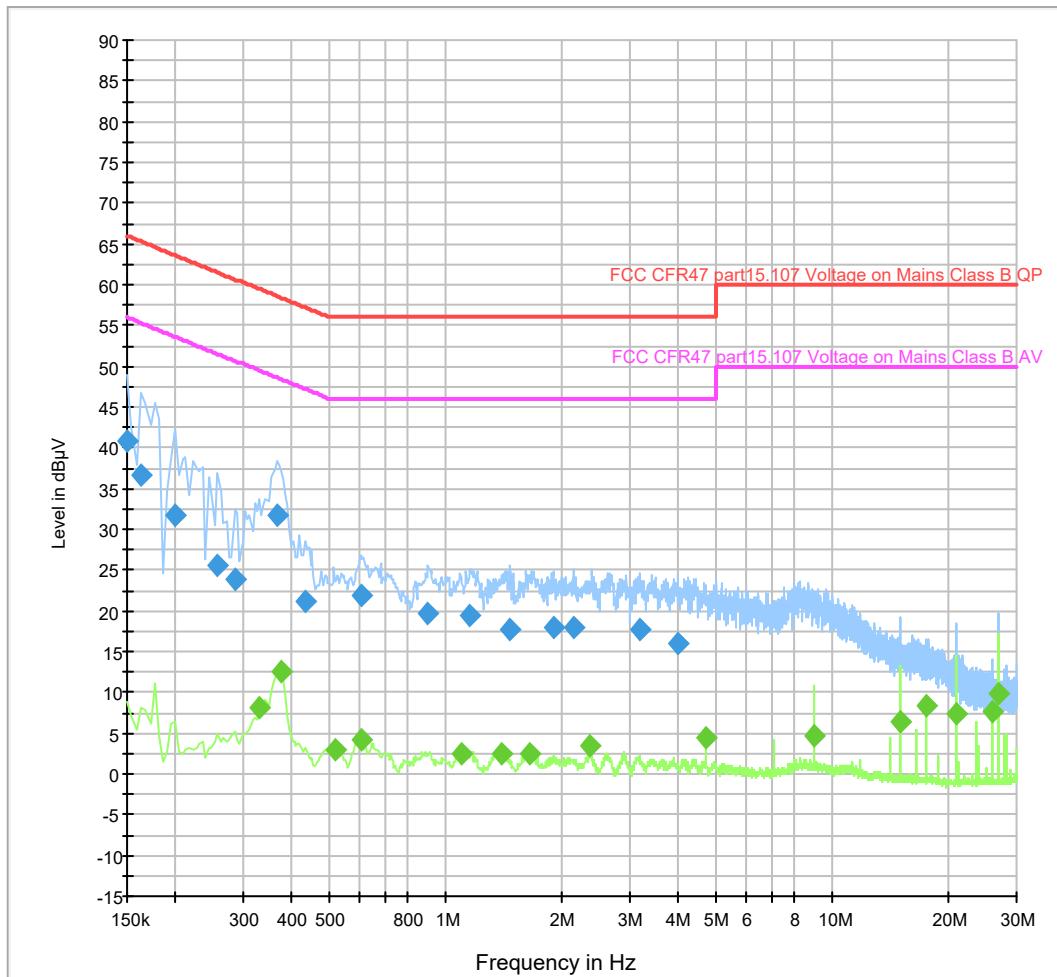
With the EUT setup in a screened room, as per section 9 of this report and connected as per Figure iii, the power line emissions were measured on a spectrum analyzer / EMI receiver.

AC power line conducted emissions from the EUT are checked first by preview scans with peak and average detectors covering both live and neutral lines. A spectrum analyzer is used to determine if any periodic emissions are present.

Formal measurements using the correct detector(s) and bandwidth are made on frequencies identified from the preview scans. Final measurements were performed with EUT set at its maximum duty in transmit and receive modes.

Figure iii Test Setup

12.5 Test Set-up Photograph



12.6 Test Equipment

Equipment Type	Manufacturer	Equipment Description	Element No	Due For Calibration
ESH3-Z5.831.5	R&S	Lisn	U195	2018-08-16
Receiver	R&S	ESHS10	U187	2018-11-09

12.7 Test Results

Conducted emissions on Mains 9kHz-30MHz ESHS10 + UH195+UH443PL

Frequency (MHz)	QuasiPeak (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)	Comment
0.150000	40.9	2000.0	10.000	GND	L1	10.0	25.1	66.0	PASS
0.163500	36.6	2000.0	10.000	GND	L1	10.0	28.7	65.3	PASS
0.199500	31.7	2000.0	10.000	GND	N	10.0	32.0	63.6	PASS
0.258000	25.7	2000.0	10.000	GND	L1	10.1	35.8	61.5	PASS
0.285000	23.8	2000.0	10.000	GND	L1	10.1	36.8	60.7	PASS
0.366000	31.6	2000.0	10.000	GND	N	10.1	27.0	58.6	PASS
0.433500	21.2	2000.0	10.000	GND	N	10.1	36.0	57.2	PASS
0.604500	21.9	2000.0	10.000	GND	N	10.1	34.1	56.0	PASS
0.901500	19.6	2000.0	10.000	GND	N	10.1	36.4	56.0	PASS
1.158000	19.5	2000.0	10.000	GND	N	10.1	36.5	56.0	PASS
1.473000	17.7	2000.0	10.000	GND	N	10.1	38.3	56.0	PASS
1.896000	18.0	2000.0	10.000	GND	N	10.1	38.0	56.0	PASS
2.152500	18.0	2000.0	10.000	GND	N	10.1	38.0	56.0	PASS
3.192000	17.6	2000.0	10.000	GND	N	10.2	38.4	56.0	PASS
4.011000	15.9	2000.0	10.000	GND	N	10.2	40.1	56.0	PASS

Frequency (MHz)	Average (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)	Comment
0.330000	8.1	2000.0	10.000	GND	L1	10.1	41.3	49.5	PASS
0.375000	12.6	2000.0	10.000	GND	L1	10.1	35.8	48.4	PASS
0.519000	2.8	2000.0	10.000	GND	N	10.1	43.2	46.0	PASS
0.604500	4.2	2000.0	10.000	GND	N	10.1	41.8	46.0	PASS
1.095000	2.6	2000.0	10.000	GND	N	10.1	43.4	46.0	PASS
1.401000	2.5	2000.0	10.000	GND	N	10.1	43.5	46.0	PASS
1.657500	2.4	2000.0	10.000	GND	N	10.1	43.6	46.0	PASS
2.364000	3.4	2000.0	10.000	GND	N	10.2	42.6	46.0	PASS
4.726500	4.4	2000.0	10.000	GND	N	10.3	41.6	46.0	PASS
9.001500	4.7	2000.0	10.000	GND	L1	10.5	45.3	50.0	PASS
15.000000	6.4	2000.0	10.000	GND	N	10.8	43.6	50.0	PASS
17.574000	8.4	2000.0	10.000	GND	N	10.9	41.6	50.0	PASS
20.998500	7.5	2000.0	10.000	GND	L1	11.1	42.5	50.0	PASS
26.011500	7.6	2000.0	10.000	GND	N	11.2	42.4	50.0	PASS
27.001500	9.8	2000.0	10.000	GND	N	11.2	40.2	50.0	PASS

13 Occupied Bandwidth

13.1 *Definition*

The emission bandwidth (x dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated x dB below the maximum in-band spectral density of the modulated signal.

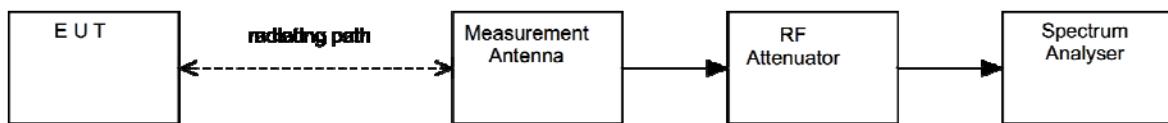
13.2 *Test Parameters*

Test Location:	Element Skelmersdale
Test Chamber:	Radio Laboratory
Test Standard and Clause:	ANSI C63.10-2013, Clause 11.8
EUT Frequencies Measured:	910.43 MHz and 918.1 MHz
EUT Channel Bandwidths:	500 kHz
EUT Test Modulations:	FSK
Deviations From Standard:	None
Measurement BW:	100 kHz
Spectrum Analyzer Video BW: (requirement at least 3x RBW)	300 kHz
Measurement Span: (requirement 2 to 5 times OBW)	1 MHz
Measurement Detector:	Peak

Environmental Conditions (Normal Environment)

Temperature: 24 °C	+15 °C to +35 °C (as declared)
Humidity: 45 % RH	20 % RH to 75 % RH (as declared)
Supply: 3 V dc	3 V dc (as declared)

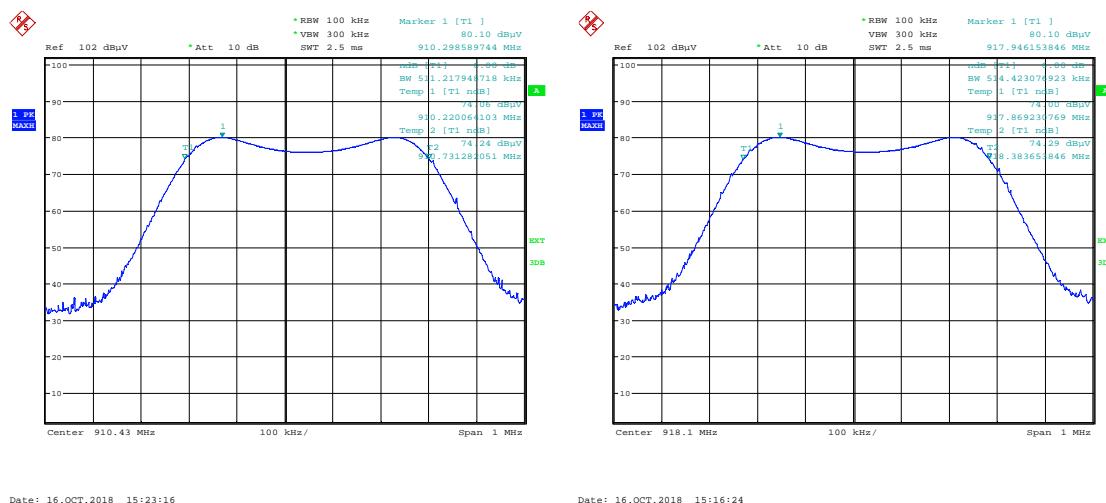
13.3 *Test Limit*


The minimum -6 dB bandwidth shall be at least 500 kHz.

13.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure iii, the bandwidth of the EUT was measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each bandwidth.


Figure iii Test Setup

13.5 Test Equipment

Equipment Type	Manufacturer	Equipment Description	Element No	Due For Calibration
FSU26	R&S	Spectrum Analyser	U405	2019-09-21

13.6 Test Results

FCC 15.247. Modulation: FSK; Power setting: Maximum				
Channel Frequency (MHz)	F_L (MHz)	F_H (MHz)	6dB Bandwidth (kHz)	Result
910.43	910.220064	910.731282	511.217949	PASS
918.10	917.869231	918.383654	514.423077	PASS

14 Maximum peak conducted output power

14.1 Definition

The maximum peak conducted output power is defined as the maximum power level measured with a peak detector using a filter with width and shape of which is sufficient to accept the signal bandwidth.

The maximum conducted output power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level.

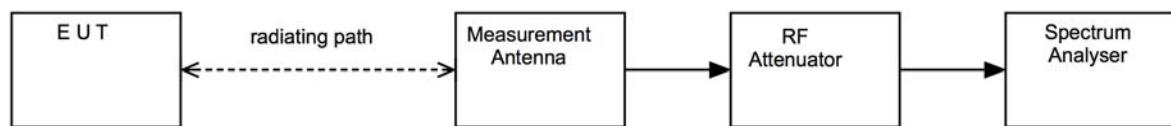
14.2 Test Parameters

Test Location:	Element Skelmersdale
Test Chamber:	Radio Chamber
Test Standard and Clause:	ANSI C63.10-2013, Clause 11.9.1
EUT Channels / Frequencies Measured:	910.43 MHz and 918.1 MHz
EUT Channel Bandwidths:	500 kHz
Deviations From Standard:	None
Measurement BW:	1 MHz
Spectrum Analyzer Video BW: (requirement at least 3x RBW)	3 MHz
Measurement Detector:	Peak
Voltage Extreme Environment Test Range:	Battery Power = new battery.

Environmental Conditions (Normal Environment)

Temperature: 24 °C	+15 °C to +35 °C (as declared)
Humidity: 50 % RH	20 % RH to 75 % RH (as declared)

14.3 Test Limit


For systems employing digital modulation techniques operating in the bands 902 to 928 MHz, 2400 to 2483.5 MHz and 5725 to 5850 MHz, the maximum peak conducted output power shall not exceed 1 W.

14.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure iv, the resolution bandwidth of the spectrum analyser was increased above the EUT occupied bandwidth and the peak emission data noted.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each bandwidth.

Figure iv Test Setup

14.5 Test Equipment

Equipment Type	Manufacturer	Equipment Description	Element No	Due For Calibration
CBL611/A	Chase	Bilog	U573	2019-08-02
ESVS10	R&S	Receiver	L317	2019-03-22

14.6 Test Results

The following formula may be used to convert field strength (FS) in volts/metre to transmitter output power (TP) in watts:

$$TP = (FS \times D)^2 / (30 \times G)$$

where D is the distance in metres between the two antennas and G is the antenna numerical gain referenced to isotropic gain.

Power setting; High:					
Channel Frequency (MHz)	Peak Field Strength (dBμV/m)	Distance (m)	Antenna Gain	Max. Power (W)	Result
910.47	109.21	3	0	0.0250	PASS
918.13	109.28	3	0	0.0254	PASS

15 Power spectral density

15.1 *Definition*

The power per unit bandwidth.

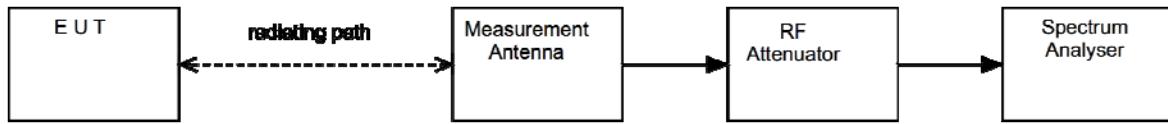
15.2 *Test Parameters*

Test Location:	Element Skelmersdale
Test Chamber:	Radio Chamber
Test Standard and Clause:	ANSI C63.10-2013, Clause 11.10
EUT Channels / Frequencies Measured:	910.43 MHz and 918.1 MHz
EUT Channel Bandwidths:	500 kHz
Deviations From Standard:	None
Measurement BW:	3 kHz
Spectrum Analyzer Video BW: (requirement at least 3x RBW)	10 kHz
Measurement Span: (requirement 1.5 times Channel BW)	750 kHz
Measurement Detector:	Peak

Environmental Conditions (Normal Environment)

Temperature: 24 °C	+15 °C to +35 °C (as declared)
Humidity: 50 % RH	20 % RH to 75 % RH (as declared)
Supply: 3 V dc	3 V dc (as declared)

15.3 *Test Limit*


The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

15.4 *Test Method*

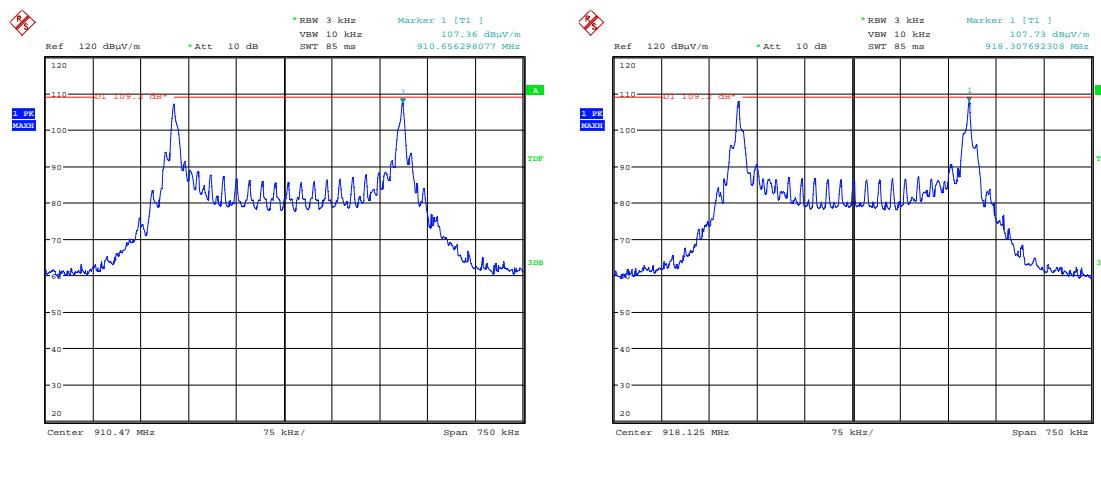
With the EUT setup as per section 9 of this report and connected as per Figure vi, the peak emission of the EUT was measured on a spectrum analyser, with path losses taken into account.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst case configuration in each bandwidth.

Figure vi Test Setup

15.5 Test Equipment

Equipment Type	Manufacturer	Equipment Description	Element No	Due For Calibration
CBL611/A	Chase	Bilog	U573	2019-08-02
FSU26	R&S	Spectrum Analyser	U405	2019-09-21


15.6 Test Results

The following formula may be used to convert field strength (FS) in volts/metre to transmitter output power (TP) in watts:

$$TP = (FS \times D)^2 / (30 \times G)$$

where D is the distance in metres between the two antennas and G is the antenna numerical gain referenced to isotropic gain.

Radiated sample only, no antenna connector or antenna gain available therefore limit of the worst case was applied 8 dBm + a maximum of 6 dBi antenna.

Modulation: FSK; Power setting: Maximum			
Channel Frequency (MHz)	Peak Field Strength (dBµV/m)	Limit (dBµV/m)	Result
910.43	107.36	109.2	PASS
918.1	107.73	109.2	PASS

16 Measurement Uncertainty

Calculated Measurement Uncertainties

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95 % confidence:

[1] Radiated spurious emissions

Uncertainty in test result (30 MHz to 1 GHz) = **4.75 dB**
Uncertainty in test result (1 GHz to 18 GHz) = **4.46 dB**

[2] AC power line conducted emissions

Uncertainty in test result = **3.2 dB**

[3] Occupied bandwidth

Uncertainty in test result = **15.58 %**

[4] Conducted carrier power

Uncertainty in test result (Power Meter) = **0.93 dB**

[5] Conducted RF power out-of-band

Uncertainty in test result – up to 8.1 GHz = **3.31 dB**
Uncertainty in test result – 8.1 GHz to 15.3 GHz = **4.43 dB**

[6] Radiated RF power out-of-band

Uncertainty in test result (30 MHz to 1 GHz) = **4.75 dB**
Uncertainty in test result (1 GHz to 18 GHz) = **4.46 dB**

[7] Power spectral density

Uncertainty in test result (Spectrum Analyser) = **3.11 dB**

[8] ERP / EIRP

Uncertainty in test result (Laboratory) = **4.71 dB**
Uncertainty in test result (Pershore OATS) = **4.26 dB**