FCC and IC or ISED Test Report

DETNET SOUTH AFRICA (PTY) LTD DGPS tagger, Model: CE4

In accordance with FCC 47 CFR Part 15C and ISED RSS-247 and ISED RSS-GEN

Prepared for: Detnet South Africa (Pty) Ltd Block 1B, Founders Hill Office Park Centenary Road Modderfontein P O Box 10 1645 South Africa

Add value. Inspire trust.

FCC ID: 2ARNH-18362211 IC: 24476-18362211

COMMERCIAL-IN-CONFIDENCE

Document 75949717-03 Issue 01

SIGNATURE			
Russell			
NAME	JOB TITLE	RESPONSIBLE FOR	ISSUE DATE
Matthew Russell	RF Team Leader	Authorised Signatory	10 May 2021

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD document control rules.

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 15C and ISED RSS-247 and ISED RSS-GEN. The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME		DATE	SIGNATURE
Testing	Callum Smith		10 May 2021	C. Smiller
FCC Accreditation	•	Industry Canad	da Accreditation	· · ·
217472 Bearley Test Labo	oratory	2932E Bearley	Test Laboratory	

EXECUTIVE SUMMARY

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 15C, ISED RSS-247 and ISED RSS-GEN: 2019, Issue 2 (02-2017) and Issue 5 (04-2018) + A1 (03-2019) for the tests detailed in section 1.3.

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2021 TÜV SÜD. This report relates only to the actual item/items tested.

ACCREDITATION

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation. Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

TÜV SÜD is a trading name of TUV SUD Ltd Registered in Scotland at East Kilbride, Glasgow G75 0QF, United Kingdom Registered number: SC215164 TUV SUD Ltd is a TÜV SÜD Group Company Phone: +44 (0) 1489 558100 Fax: +44 (0) 1489 558101 www.tuv-sud.co.uk TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom

Contents

1	Report Summary	2
1.1	Report Modification Record	2
1.2	Introduction	2
1.3	Brief Summary of Results	3
1.4	Application Form	4
1.5	Product Information	5
1.6	Deviations from the Standard	
1.7	EUT Modification Record	5
1.8	Test Location	5
2	Test Details	6
2.1	Authorised Band Edges Spurious Radiated Emissions	6
2.2	Spurious Radiated Emissions	. 10
3	Photographs	. 33
3.1	Test Setup Photographs	. 33
4	Measurement Uncertainty	. 34

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
1	First Issue	10 May 2021

Table 1

1.2 Introduction

Applicant	DETNET SOUTH AFRICA (PTY) LTD
Manufacturer	DETNET SOUTH AFRICA (PTY) LTD
Model Number(s)	CE4
Serial Number(s)	183000010
Hardware Version(s)	V6
Software Version(s)	45232
Number of Samples Tested	1
Test Specification/Issue/Date	FCC 47 CFR Part 15C, ISED RSS-247 and ISED RSS- GEN: 2019, Issue 2 (02-2017) and Issue 5 (04-2018) + A1 (03-2019)
Order Number Date	4500432723 05-August-2020
Date of Receipt of EUT	28-September-2020
Start of Test	18-January-2021
Finish of Test	25-January-2021
Name of Engineer(s)	Callum Smith
Related Document(s)	ANSI C63.10 (2013) KDB 996369 D04 Module Integration Guide v02 remove

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15C and ISED RSS-247 and ISED RSS-GEN is shown below.

Section	Section Specification Clause		Test Description	Result	Comments/Base Standard	
Section	FCC Part 15C	RSS-247	RSS-GEN	Test Description	Result	Comments/Dase Standard
Configuratio	n and Mode: Tagger	- Battery powered - 9	15 MHz transmitter			
2.1	15.247 (d)	5.5	-	Authorised Band Edges	Pass	ANSI C63.10 (2013)
2.2	15.247 (d) and 15.205	5.5	6.13	Spurious Radiated Emissions	Pass	ANSI C63.10 (2013)

Table 2

1.4 Application Form

Technical Description: (Please provide a brief description of the intended use of the equipment including the technologies the product supports)	Blasting control of electronic detonators	
Manufacturer:	DetNet South Africa Pty (Ltd)	
Model:	DGPS CE4 Tagger	
Part Number:	183000010	
Hardware Version:	V6	
Software Version:	45232	
FCC ID of the product under test – see guidance here		2ARNH-18362211
IC ID of the product under test – see guidance here		24476-18362211

Intentional Radiators

Technology	RF	WiFi	NFC
Frequency Range (MHz to MHz)	902-928	2412-2457	13.553-13.567
Conducted Declared Output Power (dBm)	27	18	6
Antenna Gain (dBi)	0	2.1	2.1
Supported Bandwidth(s) (MHz) (e.g 1 MHz, 20 MHz, 40 MHz)	50	22	
Modulation Scheme(s) (e.g GFSK, QPSK etc)	GFSK	BPSK, QPSK, 16QAM, 64QAM	Point to point communication
ITU Emission Designator (see guidance here)	900MF1D	2G4G1D	13M5D1D
Bottom Frequency (MHz)	902.26	2412	-
Middle Frequency (MHz)	914.74	2437	13.56
Top Frequency (MHz)	927.74	2457	-

I hereby declare that the information supplied is correct and complete.

Name:	Suzette Menezes
Position held:	Approvals Manager
Date:	14-Aug-2020

1.5 Product Information

1.5.1 Technical Description

The Equipment under test (EUT) was a DetNet South Africa Pty (Ltd), a DGPS CE4 Tagger.

The primary function of the EUT is to be used as a Blasting control for electronic detonators.

1.6 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

1.7 EUT Modification Record

The table below details modifications made to the EUT during the test programme.

The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State Description of Modification still fitted to EUT		Modification Fitted By	Date Modification Fitted	
Model: CE4, Serial	Model: CE4, Serial Number: 183000010			
0 As supplied by the customer		Not Applicable	Not Applicable	

Table 3

1.8 Test Location

TÜV SÜD conducted the following tests at our Bearley Test Laboratory.

Test Name	Name of Engineer(s)	Accreditation		
Configuration and Mode: Tagger - Battery powered - 915 MHz transmitter				
Authorised Band Edges	Callum Smith	UKAS		
Spurious Radiated Emissions	Callum Smith	UKAS		

Table 4

Office Address:

Snitterfield Road Bearley Stratford-upon-Avon Warwickshire CV37 0EX United Kingdom

2 Test Details

2.1 Authorised Band Edges

2.1.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.247 (d), ISED RSS-247 Clause 5.5

2.1.2 Equipment Under Test and Modification State

CE4, S/N: 183000010 - Modification State 0

2.1.3 Date of Test

19-January-2021 to 25-January-2021

2.1.4 Test Method

The test was performed in accordance with ANSI C63.10, clause 6.10.4.

Since compliance with the power limits were shown by a peak measurement, a 20 dBc limit was applied in accordance with FCC 47 CFR Part 15.247(d) and RSS-247 clause 5.5.

2.1.5 Environmental Conditions

Ambient Temperature18.2 - 19.4 °CRelative Humidity49.6 - 50.2 %

2.1.6 Test Results

Tagger - Battery powered - 915 MHz transmitter

Mode	Frequency (MHz)	Band Edge Frequency (MHz)	Level (dBc)
Static	901.626	902	-42.21
Static	928.038	928	-44.64
Hopping	880.920	902	-36.03
Hopping	928.038	928	-45.49

Table 5 - Authorised Band Edge Results

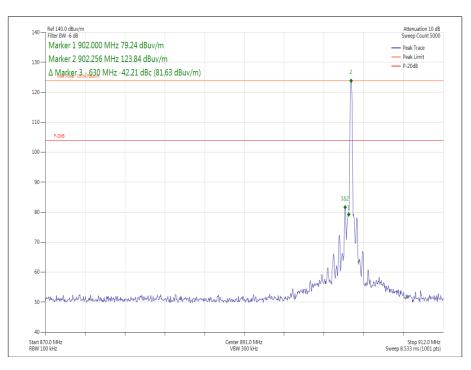


Figure 1 – Static - 902.26 MHz - Measured Frequency 901.63 MHz

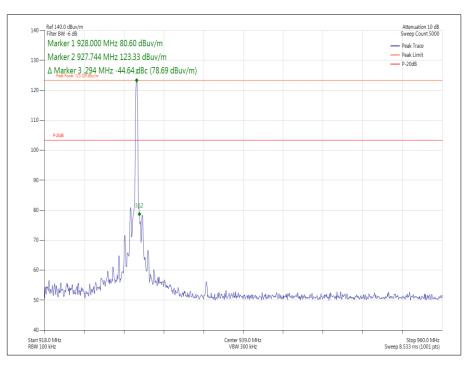


Figure 2 - Static 927.74 MHz - Measured Frequency 928.03 MHz

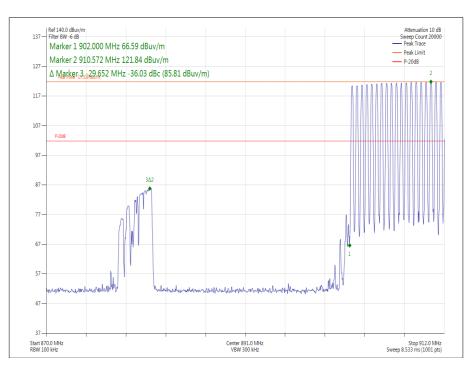


Figure 3 - Hopping - Measured Frequency 880.92 MHz

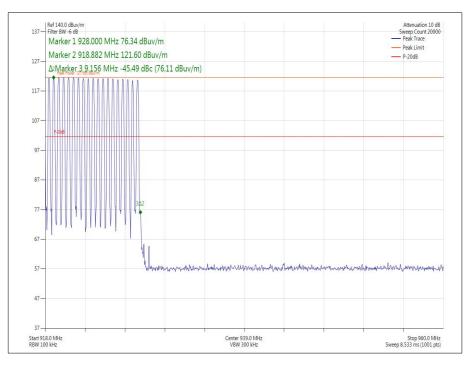


Figure 4 - Hopping - Measured Frequency 928.038 MHz

FCC 47 CFR Part 15, Limit Clause 15.247 (d)

20 dB below the fundamental measured in a 100 kHz bandwidth using a peak detector. If the transmitter complies with the conducted power limits, based on the use of RMS averaging over a time interval, the attenuation required shall be 30 dB below the fundamental instead of 20 dB.

ISEDC RSS-247, Limit Clause 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

2.1.7 Test Location and Test Equipment Used

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Expires
Hygromer	Rotronic	A2	1698	12	18-Nov-2021
Bilog Antenna	Schaffner	CBL6143	1858	24	10-Nov-2022
EMC 3m Semi Anechoic Chamber	Rainford	Hybrid	4160	36	16-Dec-2021
7m N-Type Cable	Teledyne Storm	SA90-195-7MTR	4168	12	10-Mar-2021
EMC Mast controller	Innco Systems	CONTROLLER CO3000	4728	-	TU
EMI Receiver	Keysight Technologies	N9038A MXE	4974	12	11-Feb-2021
EmX Emissions Software	TUV SUD	V2.1.1	5125	-	Software
Cable (18GHz N Type 3m)	Rosenberger	LU7-036-3000	5163	12	10-Dec-2021
Turntable Controller	Maturo	Maturo NCD	5275	-	TU
4dB Attenuator	Pasternack	PE7047-4	5647	24	10-Nov-2022

This test was carried out in Bearley EMC Chamber 1.

Table 6

TU - Traceability Unscheduled

2.2 Spurious Radiated Emissions

2.2.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.247(d) and 15.205 ISED RSS-247, Clause 5.5 ISED RSS-GEN, Clause 6.13

2.2.2 Equipment Under Test and Modification State

CE4, S/N: 183000010 - Modification State 0

2.2.3 Date of Test

18-January-2021 to 20-January-2021

2.2.4 Test Method

This test was performed in accordance with ANSI C63.10, clause 6.3, 6.5 and 6.6.

The EUT was placed on the non-conducting platform in a manner typical of a normal installation. As the EUT could reasonable be used in multiple planes, pre-scans were performed with the EUT orientated in X, Y and Z planes from 30 MHz to 1 GHz. For measurements above 1 GHz, pre-scans were only performed in the plane resulting in the highest field strength of the fundamental.

For frequencies > 1 GHz, plots for average measurements were taken in accordance with ANSI C63.10, clause 4.1.4.2.5 to characterize the EUT. Where emissions were detected, final average measurements were taken in accordance with ANSI C63.10, clause 4.1.4.2.2.

The plots shown are the characterisation of the EUT. The limits on the plots represent the most stringent case for restricted bands, (74/54 dBuV/m) when compared to 20 dBc outside restricted bands. The limits shown have been used as a threshold to determine where further measurements are necessary. Where results are within 10 dB of the limits within the restricted bands, shown on the plots, further investigation was carried out and reported in results tables.

The following conversion can be applied to convert from $dB\mu V/m$ to $\mu V/m$: 10⁽Field Strength in $dB\mu V/m/20$).

To determine the emission characteristic of the EUT above 18 GHz, the test antenna was swept over all faces of the EUT whilst observing a spectral display. The frequency of any emissions of interest was noted for formal measurement at the correct measurement distance of 1m. This procedure was repeated for all relevant transmit operating channels.

At a measurement distance of 1 meter the limit line was increased by 20*LOG(3/1) = 9.54 dB.

Where formal measurements have been necessary, the results have been presented in the emissions table.

2.2.5 Example Test Setup Diagram

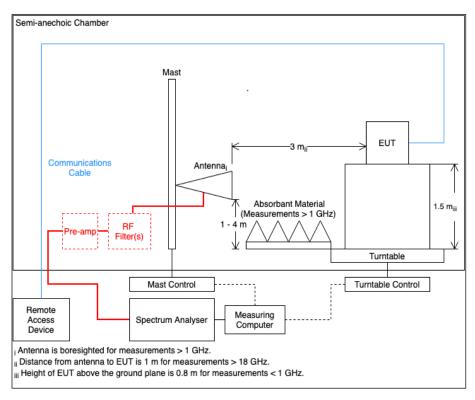


Figure 5

2.2.6 Environmental Conditions

Ambient Temperature	17.4 - 17.9 °C
Relative Humidity	32.1 - 35.8 %

2.2.7 Test Results

Tagger - Battery powered - 915 MHz transmitter

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
323.993	39.8	46.0	-6.2	Q-Peak	360	150	Vertical	Z
267.778	34.9	46.0	-11.2	Q-Peak	168	100	Horizontal	Z

Table 7 - 902.26 MHz, 30 MHz to 1 GHz - Emission Results

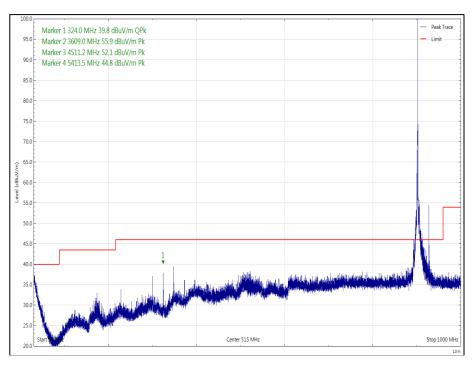


Figure 6 - 902.26 MHz, 30 MHz to 1 GHz, Vertical, Z Orientation

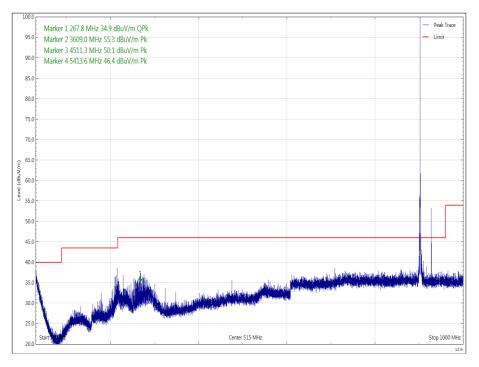


Figure 7 - 902.26 MHz, 30 MHz to 1 GHz, Horizontal, Z Orientation

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
3608.971	55.9	74.0	-18.1	Peak	206	100	Vertical	Z
3609.063	36.4	54.0	-17.6	CISPR Average	206	100	Vertical	Z

No other emissions were detected within 6 dB of the limit within the restricted bands. The 2nd and 8th harmonics do not fall in Restricted Bands and therefore were not measured.

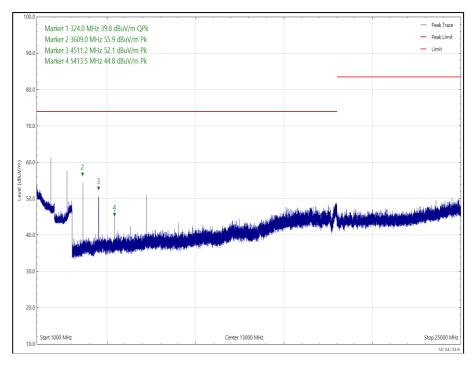


Figure 8 - 902.26 MHz, 1 GHz to 25 GHz, Vertical, Z Orientation: - Peak

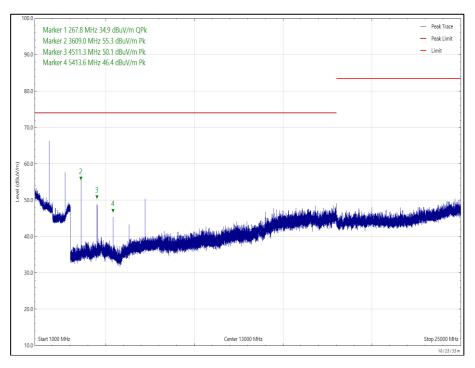


Figure 9 - 902.26 MHz, 1 GHz to 25 GHz, Horizontal, Z Orientation: - Peak

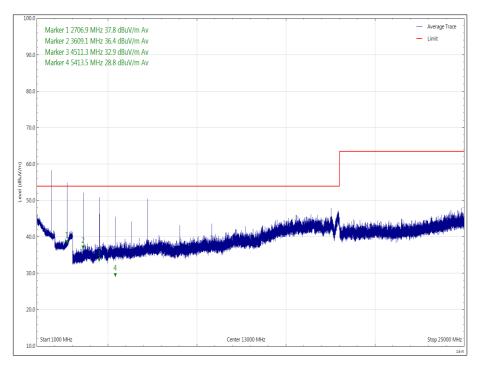


Figure 10 - 902.26 MHz, 1 GHz to 25 GHz, Vertical, Z Orientation: - Average

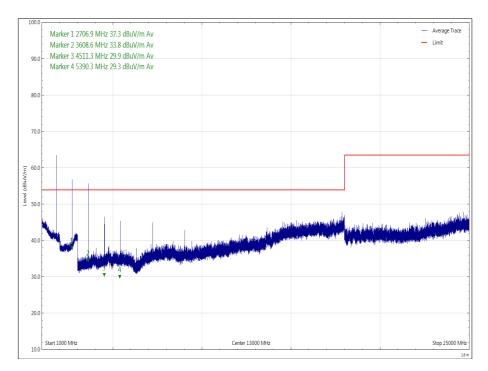


Figure 11 - 902.26 MHz, 1 GHz to 25 GHz, Horizontal, Z Orientation: - Average

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
399.478	32.1	46.0	-14.0	Q-Peak	197	131	Vertical	Z
228.006	37.7	46.0	-8.4	Q-Peak	139	100	Horizontal	Z
267.754	34.9	46.0	-11.1	Q-Peak	190	110	Horizontal	Z

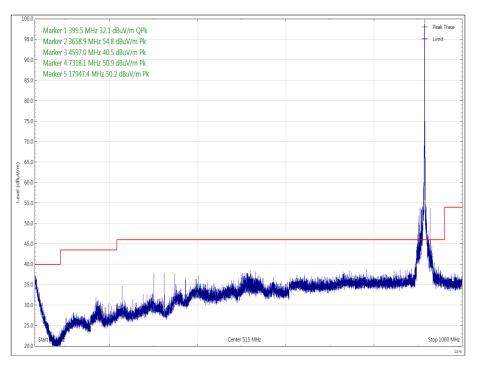


Figure 12 - 914.74 MHz, 30 MHz to 1 GHz, Vertical, Z Orientation

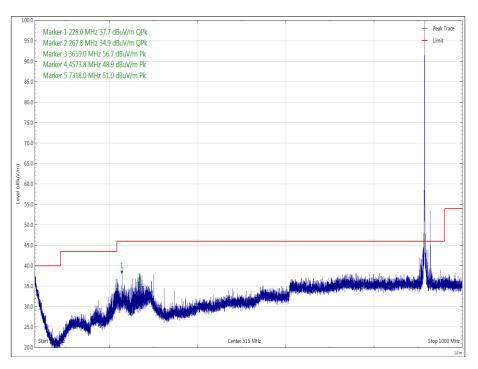
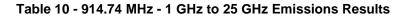



Figure 13 - 914.74 MHz, 30 MHz to 1 GHz, Horizontal, Z Orientation

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
3658.936	54.8	74.0	-19.3	Peak	189	396	Vertical	Z
3659.003	38.6	54.0	-15.4	CISPR Average	189	396	Vertical	Z
17915.243	37.5	54.0	-16.5	CISPR Average	36	386	Vertical	Z
3658.903	34.7	54.0	-19.3	CISPR Average	307	110	Horizontal	Z
3659.001	56.7	74.0	-17.3	Peak	307	110	Horizontal	Z

No other emissions were detected within 6 dB of the limit within the restricted bands. The 2nd and 8th harmonics do not fall in Restricted Bands and therefore were not measured.

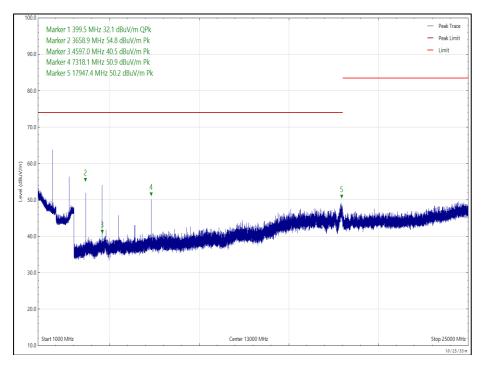


Figure 14 - 914.74 MHz - 1 GHz to 25 GHz, Polarity: Vertical, EUT Orientation: Z, Peak

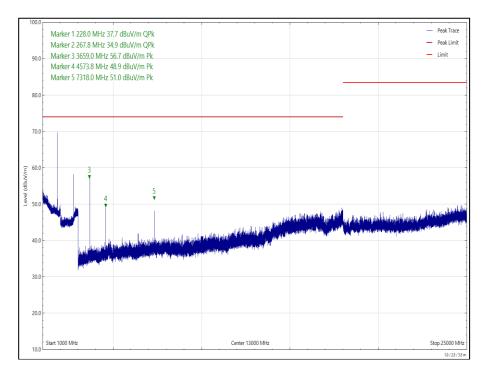


Figure 15 - 914.74 MHz - 1 GHz to 25 GHz, Polarity: Horizontal, EUT Orientation: Z, Peak

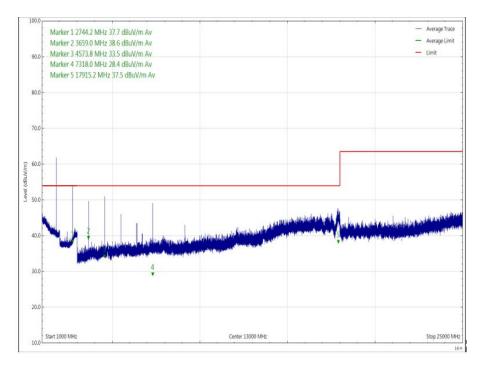


Figure 16 - 914.74 MHz - 1 GHz to 25 GHz, Polarity: Vertical, EUT Orientation: Z, Average

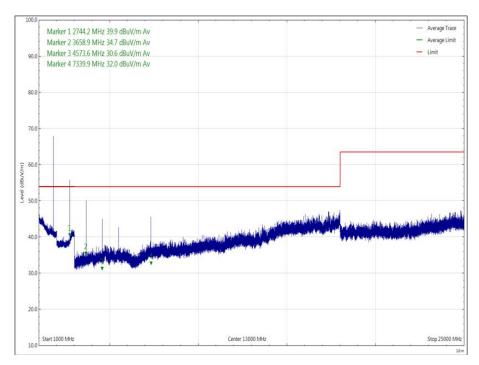


Figure 17 - 914.74 MHz - 1 GHz to 25 GHz, Polarity: Horizontal, EUT Orientation: Z, Average

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
171.385	23.8	43.5	-19.7	Q-Peak	322	103	Vertical	Y
324.025	40.6	46.0	-5.4	Q-Peak	5	157	Vertical	Z
209.983	30.8	43.5	-12.7	Q-Peak	324	128	Horizontal	Z
233.410	33.3	46.0	-12.7	Q-Peak	122	100	Horizontal	Z
253.501	29.4	46.0	-16.6	Q-Peak	352	115	Horizontal	Z
269.473	30.4	46.0	-15.7	Q-Peak	52	112	Horizontal	Z
275.991	35.0	46.0	-11.0	Q-Peak	77	120	Horizontal	Z

Table 11 - 927.74 MHz, 30 MHz to 1 GHz - Emission Results

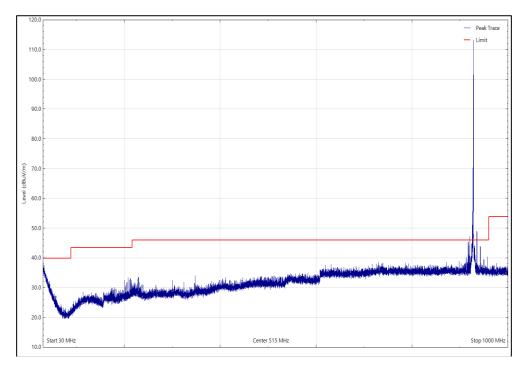


Figure 18 - 927.74 MHz, 30 MHz to 1 GHz, Vertical, X Orientation

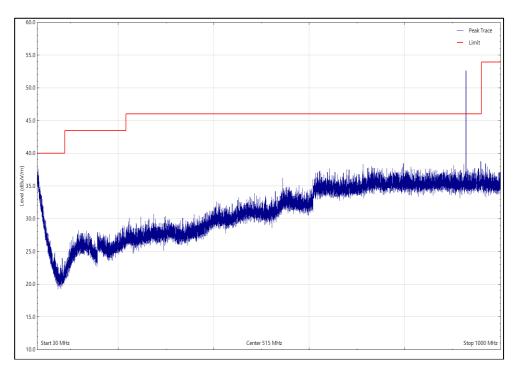


Figure 19 - 927.74 MHz, 30 MHz to 1 GHz, Horizontal, X Orientation

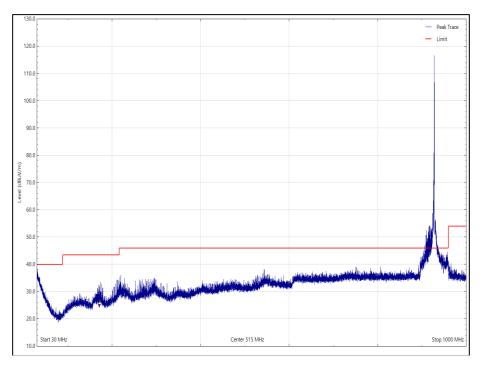


Figure 20 - 927.74 MHz, 30 MHz to 1 GHz, Vertical, Y Orientation

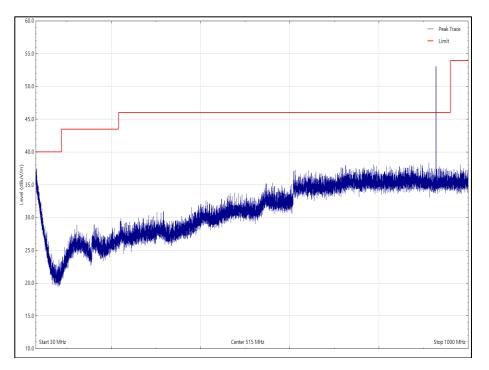


Figure 21 - 927.74 MHz, 30 MHz to 1 GHz, Horizontal, Y Orientation

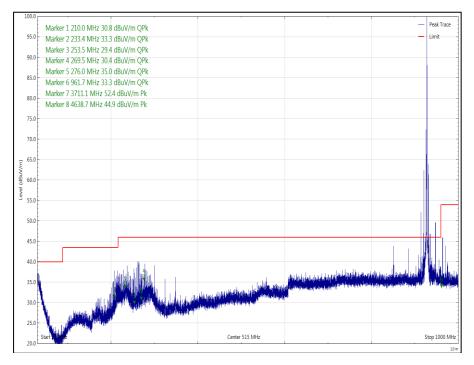


Figure 22 - 927.74 MHz, 30 MHz to 1 GHz, Vertical, Z Orientation

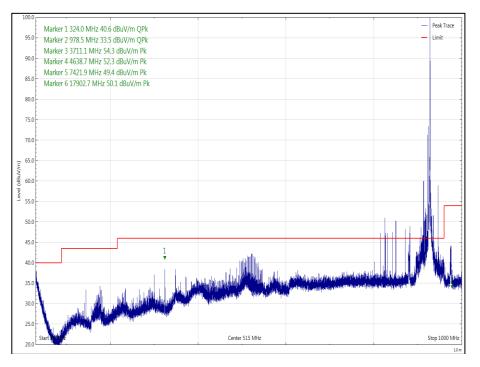


Figure 23 - 927.74 MHz, 30 MHz to 1 GHz, Horizontal, Z Orientation

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
3710.864	34.4	54.0	-19.6	CISPR Average	15	291	Vertical	Z
3711.081	54.3	74.0	-19.7	Peak	15	291	Vertical	Z
17946.855	37.4	54.0	-16.6	CISPR Average	359	378	Vertical	Z

Table 12 - 927.74 MHz - 1 GHz to 25 GHz Emissions Results

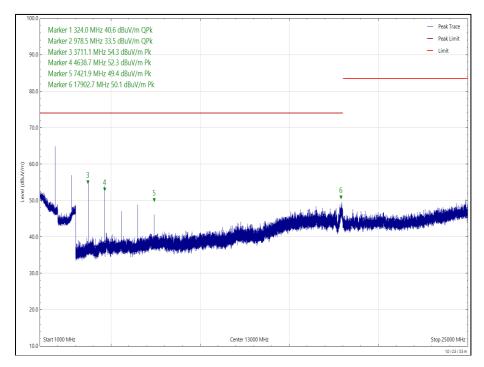
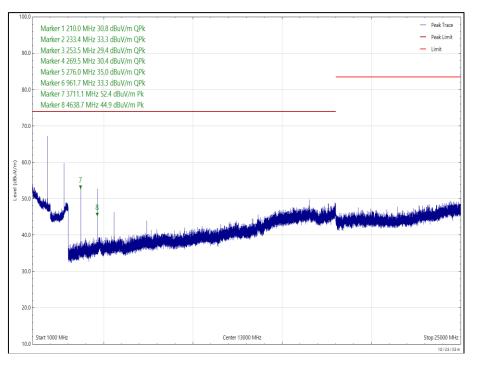



Figure 24 - 927.74 MHz, 1 GHz to 25 GHz, Vertical, Z Orientation, Peak

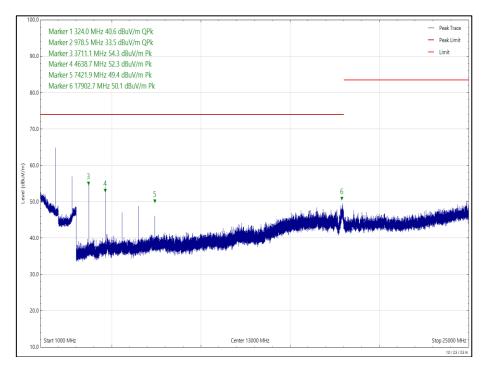


Figure 26 - 927.74 MHz, 1 GHz to 25 GHz, Vertical, Z Orientation, Average

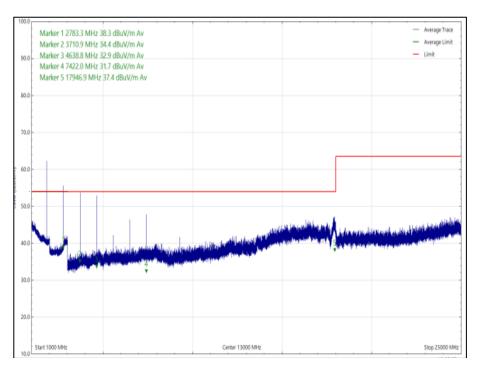


Figure 27 - 927.74 MHz, 1 GHz to 25 GHz, Vertical, Z Orientation, Average

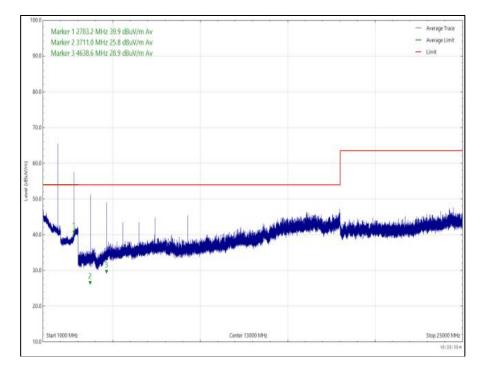


Figure 28 - 927.74 MHz, 1 GHz to 25 GHz, Horizontal, Z Orientation , Average

Figure 29 – Test Setup- 30 MHz to 1 GHz, X Orientation

Figure 30 – Test Setup- 30 MHz to 1 GHz, Y Orientation

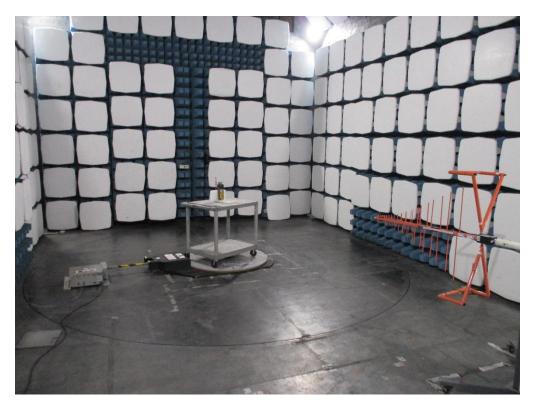


Figure 31 – Test Setup- 30 MHz to 1 GHz, Z Orientation

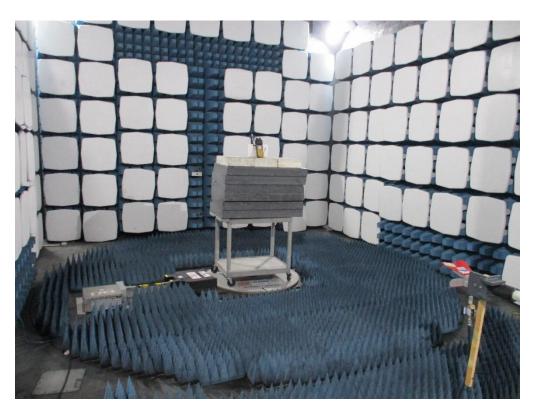


Figure 32 - Test Setup - 1 GHz to 18 GHz

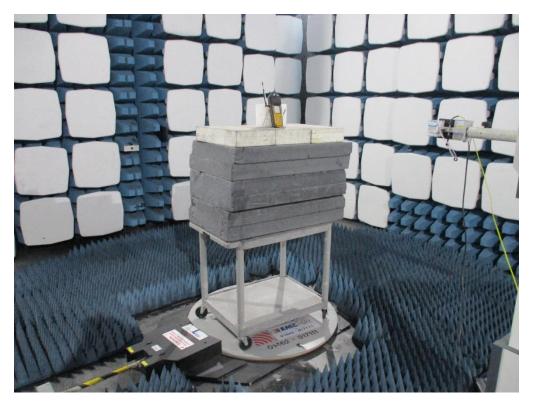


Figure 33 - Test Setup - 18 GHz to 25 GHz

FCC 47 CFR Part 15, Limit Clause 15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in 15.209(a)

ISEDC RSS-247, Limit Clause 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

2.2.8 Test Location and Test Equipment Used

This test was carried out in Bearley EMC Chamber 1.

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Expires
Hygromer	Rotronic	A2	1698	12	18-Nov-2021
Power Supply Unit	Farnell	H60-25	1709	-	ти
Bilog Antenna	Schaffner	CBL6143	1858	24	10-Nov-2022
EMI Test Receiver	Rohde & Schwarz	ESIB26	2028	12	14-Aug-2021
EMC 3m Semi Anechoic Chamber	Rainford	Hybrid	4160	36	16-Dec-2021
Digital Multimeter	Agilent Technologies	U1232A	4161	12	05-Jun-2021
7m N-Type Cable	Teledyne Storm	SA90-195-7MTR	4168	12	10-Mar-2021
1-8 GHz Amplifier	Wright Technologies	APS04-0085	4674	12	18-Aug-2021
8-18 GHz Amplifier	Wright Technologies	APS04-0086	4675	12	18-Aug-2021
EMC Mast controller	Innco Systems	CONTROLLER CO3000	4728	-	TU
1 - 18GHz DRG Horn	ETS-Lindgren	3117	4737	24	28-Jul-2021
EMI Receiver	Keysight Technologies	N9038A MXE	4974	12	11-Feb-2021
EmX Emissions Software	TUV SUD	V2.1.1	5125	-	Software
Cable (18GHz N Type 3m)	Rosenberger	LU7-036-3000	5163	12	10-Dec-2021
3 GHz High Pass Filter	RLC Electronics	F-100-3000-5-R	5228	12	07-Jul-2021
Double Ridge Broadband Horn Antenna	Schwarzbeck	BBHA 9120 B	5232	12	10-Mar-2021
Broad-Band Horn Antenna 15-26.5(40)GHz	Schwarzbeck	BBHA 9170	5233	12	14-Oct-2021
Turntable Controller	Maturo	Maturo NCD	5275	-	TU
3m 40 GHz RF Cable	Scott Cables	KPS-1501-3000- KPS	5408	12	10-Dec-2021
4dB Attenuator	Pasternack	PE7047-4	5647	24	10-Nov-2022

Table 13

TU - Traceability Unscheduled

3 Photographs

3.1 Test Setup Photographs

Figure 34 – Front View - DGPS Tagger

Figure 35 - Rear View - DGPS Tagger

4 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Test Name	Measurement Uncertainty
Authorised Band Edges	30 MHz to 1 GHz: ± 5.2 dB 1 GHz to 40 GHz: ± 6.3 dB
Spurious Radiated Emissions	30 MHz to 1 GHz: ± 5.2 dB 1 GHz to 40 GHz: ± 6.3 dB

Table 14

Measurement Uncertainty Decision Rule

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2007, clause 4.4.3 and 4.5.1.