

Choose certainty. Add value.

Report On

Specific Absorption Rate Testing of the DetNet CE4 Tagger

FCC ID: 2ARNH-1654161Ø IC: 24476-1654161Ø

COMMERCIAL-IN-CONFIDENCE

Document 75943624 Report 08 Issue 1

November 2018

Product Service

TÜV SÜD Product Service, Octagon House, Concorde Way, Segensworth North, Fareham, Hampshire, United Kingdom, PO15 5RL Tel: +44 (0) 1489 558100. Website: <u>www.tuv-sud.co.uk</u>

COMMERCIAL-IN-CONFIDENCE

REPORT ON

Specific Absorption Rate Testing of the DetNet CE4 Tagger

Document 75943624 Report 08 Issue 1

November 2018

PREPARED FOR

DetNet South Africa (Pty) Ltd, Block 1B Founders Hill Office Park Centenary Road Modderfontein P O Box 10 Modderfontein, 1645 South Africa

PREPARED BY

J. fold.

Stephen Dodd SAR Engineer

APPROVED BY

Nigel Grigsby Authorised Signatory

DATED

22 November 2018

CONTENTS

Section

Page No

1	REPORT SUMMARY	3
1.1 1.2 1.3 1.4	Introduction Brief Summary of Results Test Results Summary FCC Power Measurements	4 5 6 9
2	TEST DETAILS	10
2.1 2.2	DASY5 Measurement System WLAN 2450 MHz - 802.11b 20 MHz 11 Mbps - Body SAR Test Results	11 15
3	TEST EQUIPMENT USED	17
3.1 3.2 3.3 3.4 3.5	Test Equipment Used Test Software Dielectric Properties of Simulant Liquids Test Conditions Measurement Uncertainty	18 19 19 19 20
4	ACCREDITATION, DISCLAIMERS AND COPYRIGHT	22
4.1	Accreditation, Disclaimers and Copyright	23
ANNEX ANNEX	A Probe Calibration Reports	A.2 B.2

SECTION 1

REPORT SUMMARY

Specific Absorption Rate Testing of the DetNet CE4 Tagger

1.1 INTRODUCTION

The information contained in this report is intended to show verification of the Specific Absorption Rate Testing of the DetNet CE4 Tagger to the requirements of KDB 447498 D01 v06 General RF Exposure Guidance.

Objective	To perform Specific Absorption Rate Testing to determine the Equipment Under Test's (EUT's) compliance with the requirements specified of KDB 447498 D01 v06 General RF Exposure Guidance, for the series of tests carried out.
Applicant	DetNet South Africa (Pty) Ltd
Manufacturer	DetNet South Africa (Pty) Ltd
Manufacturing Description	Hand held electronic tester for use with electronic detonators in the mining and blasting industry.
Model Number	CE4 Tagger v4
Declared Variant	CE4 Tagger v3
Serial/IMEI Number(s)	Not Serialised (75943624-TSR0005)
Number of Samples Tested	1
Hardware Version	V4
Software Version	36230B
Battery Cell Manufacturer	EEMB
Battery Model Number	LP605590-PCM-NTC-LD
Test Specification/Issue/Date	KDB 447498 D01 v06 General RF Exposure Guidance
Start of Test	19 September 2018
Finish of Test	19 September 2018
Related Document(s)	FCC 47 CFR 2.1093: 2017
	KDB 865664 – D01 v01r04
	KDB 865664 – D02 v01r02
	KDB 248227 – D01 v02r02
	IEEE 1528 - 2013
	KOO - 102 ISSUE D - MARCH 2015
Name of Engineer(s)	Stephen Dodd

1.2 BRIEF SUMMARY OF RESULTS

The measurements shown in this report were made in accordance with the procedures specified KDB 447498 D01 v06 General RF Exposure Guidance.

The maximum 1 g volume averaged stand-alone SAR found during this Assessment:

 Max 1 g SAR (W/kg) Body
 0.003 (Measured)
 0.02 (Scaled)

 The maximum 1 g volume averaged SAR level measured for all the tests performed did not exceed the limits for General Population/Uncontrolled Exposure (W/kg) Partial Body of 1.6 W/kg.

The maximum 1 g volume averaged stand-alone Reported SAR found during this Assessment for each supported mode:

Band	Test Configuration	Max Reported Scaled SAR (W/kg)	Highest Simultaneous Transmission Scaled SAR (W/kg)		
2.4 GHz WLAN	Body	0.02	0.02		
13.56 MHz NFC	Body	0.01 (Estimated)	0.03		
The maximum 1 g volume averaged SAR level measured for all the tests performed (including simultaneous					

transmission analysis results) did not exceed the limits for General Population/Uncontrolled Exposure (W/kg) Partial Body of 1.6 W/kg.

1.3 TEST RESULTS SUMMARY

1.3.1 System Performance / Validation Check Results

Prior to formal testing being performed a System Check was performed in accordance with KDB 865664 and the results were compared against published data in Standard IEEE 1528-2013. The following results were obtained: -

System performance / Validation results

Date	Frequency (MHz)	Max 1 g SAR (W/kg)*	Percentage Drift on Reference
19/09/2018	2450	50.56	-1.25

*Normalised to a forward power of 1W

1.3.2 Results Summary Tables

WLAN 2450 MHz - 802.11b 20MHz 11 Mbps - Body Specific Absorbtion Rate (Maximum SAR) 1 g Results

Test Position	Channel Number	Frequency (MHz)	SAR Scan Type	Measured Average Power (dBm)	Tune Up (dBm)	Measured 1 g SAR (W/kg)	Scaled 1 g SAR (W/kg)	Duty Factor Scaled 1 g SAR (W/kg)	Scan Figure Number
0 mm Front Face	1	2412	Fast	16.88	18.00	0.002	0.003	0.01	2
0 mm Rear Face	1	2412	Fast	16.88	18.00	0.003	0.004	0.02	3
0 mm Left Edge	1	2412	Fast	16.88	18.00	0.005	0.006	0.03	4
0 mm Left Edge	1	2412	Full	16.88	18.00	0.003	0.004	0.02	5

Limit for General Population (Uncontrolled Exposure) 1.6 W/kg (1 g)

KDB 248227 D01 v02 – A duty factor scaling was applied to the scaled SAR as per section 2.2

KDB 248227 D01 v02 - Fast SAR was used to determine the initial test position as per Section 5.1.1

KDB 248227 D01 v02 – When the *reported* SAR of the highest measured maximum output power channel for the exposure configuration is \leq 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration as per Section 5.2.1

KDB 248227 D01 v02 - Testing was not required for OFDM as per Section 5.2.2

Position	WLAN 2.4 GHz 1 g SAR (W/kg) (Scaled SAR values)	NFC - 13.56 MHz 1 g SAR (W/kg) (Estimated SAR values)	∑ 1 g SAR (W/kg)		
Front Face	0.01 (Fast)	0.01	0.02		
Rear Face	0.02 (Fast)	0.01	0.03		
Left Face	0.03 (Fast)	0.01	0.04		
Left Face 0.02 (Full)		0.01	0.03		
Simultaneous Transmission KDB 447498 D01					

1.3.3 Simultaneous Transmission

SAR estimation KDB 447498 D01 Section 4.3.2b

When an antenna qualifies for the standalone SAR test exclusion of 4.3.1 and also transmits simultaneously with other antennas, the standalone SAR value must be estimated according to the following to determine the simultaneous transmission SAR test exclusion criteria:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg, for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR and x = 18.75 for 10-g SAR.

Therefore the estimated SAR for NFC =

 $[(3.98 \text{ mW}) / (5 \text{ mm})] \cdot [\sqrt{0.01356 \text{ GHz}/7.5}] = 0.01 \text{ W/kg for 1 g SAR}$

1.3.4 Standalone SAR Test Exclusion Considerations (KDB 447498 D01

The 1 g SAR Test exclusion thresholds for 100 MHz to 6 GHz *test separation distances* \leq 50 mm are determined by:

[(max power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] [$\sqrt{f} (_{GHz})$] ≤ 3.0 , where

- f (GHz) is the RF channel transmit frequency in GHz.
- Power and distance are rounded to the nearest mW and mm before calculation.
- The result is rounded to one decimal place for comparison.
- When the maximum test separation distance is < 5 mm, a distance of 5 mm is applied.

RAT & Band	Frequency (MHz)	Power (dBm)	Power (mW)	Test Position	Distance (mm)	Threshold	Test Exclusion
WLAN 2450 MHz	2412	18.00	63.10	Body	<5	19.6	No
WLAN 2450 MHz	2432	18.00	63.10	Body	<5	19.6	No
WLAN 2450 MHz	2437	18.00	63.10	Body	<5	19.7	No
WLAN 2450 MHz	2457	18.00	63.10	Body	<5	19.7	No

Note: The EUT also supports NFC at 13.56 MHz. As SAR measurement procedures are not established for frequencies below 100 MHz, SAR test exclusion was applied.

1.3.5 Technical Description

The equipment under test (EUT) was a DetNet CE4 Tagger. A full technical description can be found in the manufacturer's documentation.

1.3.6 Test Configuration and Modes of Operation

The testing was performed with an Integral 3.7 Volt Lithium-ion battery supplied by DetNet South Africa (Pty) Ltd and manufactured by EEMB.

The product is a Hand held electronic tester for use with electronic detonators in the mining and blasting industry.

Both product variants (CE4 Tagger v3 / CE4 Tagger v4) contain a Gainspain GS1011MEP preapproved 2.4 GHz WLAN module which is FCC and Industry Canada certified (FCC ID: YOPGS101MEP and IC: 9154AGS1011MEP). The modules are located in the main unit of the EUT.

CE4 Tagger v4 also incorporates NFC while the CE4 Tagger v3 does not. Estimated SAR was used for NFC to cover simultaneous transmission assessment of the CE4 Tagger v4.

The EUT Firmware limits the device to 802.11b 20 MHz at 11 Mbps for the 2.4 GHz frequency band. Testing was achieved using the EUT's internal software and settings supplied by the customer. For each scan the EUT was configured into a continuous transmission test mode by a DetNet Engineer.

All channels tested had a Duty Cycle of 20 %, therefore duty cycle scaling was applied to the scaled SAR results as per section 2.2 of KDB 248227.

All surfaces of the EUT that are within 25 mm of the Wifi Antenna were assessed for SAR at a 0 mm separation distance from the phantom.

All testing was performed against an Elliptical Flat Phantom. The Elliptical Phantom dimensions are 600 mm major axis and 400 mm minor axis with a shell thickness of 2.00mm. The phantom was filled to a minimum depth of 150 mm with the appropriate simulant liquid. The dielectric properties were in accordance with the requirements specified in KDB 865665.

Included in this report are descriptions of the test method; the equipment used and an analysis of the test uncertainties applicable and diagrams indicating the locations of maximum SAR for each test position.

1.4 FCC POWER MEASUREMENTS

1.4.1 Method

Conducted power measurements were made using a power meter.

1.4.2 Conducted Power Measurements

WLAN 2450 MHz

Mode	Frequency (MHz)	Duty Cycle (%)	Burst Average Power (dBm)	Tune Up Value (dBm)
802.11b - 20 MHz – 11 Mbps	2412	20.00	16.88	18.00
802.11b - 20 MHz – 11 Mbps	2432	20.00	16.54	18.00
802.11b - 20 MHz – 11 Mbps	2437	20.00	16.51	18.00
802.11b - 20 MHz – 11 Mbps	2457	20.00	16.33	18.00

SECTION 2

TEST DETAILS

Specific Absorption Rate Testing of the DetNet CE4 Tagger

2.1 DASY5 MEASUREMENT SYSTEM

2.1.1 System Description

The DASY5 system for performing compliance tests consists of the following items:

Figure 1 System Description Diagram

A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).

An isotropic field probe optimized and calibrated for the targeted measurement.

A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.

The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.

The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.

A computer running Win8.1 professional operating system and the DASY5 software.

Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.

The phantom, the device holder and other accessories according to the targeted measurement.

2.1.2 Probe Specification

The probes used by the DASY system are isotropic E-field probes, constructed with a symmetric design and a triangular core. The probes have built-in shielding against static charges and are contained within a PEEK enclosure material. These probes are specially designed and calibrated for use in liquids with high permittivities. The frequency range of the probes are from 6 MHz to 6 GHz.

2.1.3 Data Acquisition Electronics

The data acquisition electronics (DAE4 or DAE3) consist of a highly sensitive electrometergrade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit ADconverter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of both the DAE4 as well as of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

2.1.4 SAR Evaluation Description

The DASY5 software includes all numerical procedures necessary to evaluate the spatial peak SAR values.

Based on the IEEE 1528 standard, a new algorithm has been implemented. The spatial-peak SAR can be computed over any required mass.

The base for the evaluation is a "cube" measurement in a volume of 30 mm³ (7x7x7 points). The measured volume must include the 1 g and 10 g cubes with the highest averaged SAR values. For that purpose, the centre of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. If the 10 g cube or both cubes are not entirely inside the measured volumes, the system issues a warning regarding the evaluated spatial peak values within the Post processing engine (SEMCAD X). This means that if the measured volume is shifted, higher values might be possible. To get the correct values you can use a finer measurement grid for the area scan. In complicated field distributions, a large grid spacing for the area scan might miss some details and give an incorrectly interpolated peak location.

The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD X). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- 1. extraction of the measured data (grid and values) from the Zoom Scan
- 2. calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. generation of a high-resolution mesh within the measured volume
- 4. interpolation of all measured values from the measurement grid to the high-resolution grid
- 5. extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- 6. calculation of the averaged SAR within masses of 1 g and 10 g

2.1.5 Interpolation, Extrapolation and Detection of Maxima

The probe is calibrated at the centre of the dipole sensors which is located 1 to 2.7 mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated.

In DASY5, the choice of the coordinate system defining the location of the measurement points has no influence on the uncertainty of the interpolation, Maxima Search and extrapolation routines. The interpolation, extrapolation and maximum search routines are all based on the modified Quadratic Shepard's method. Thereby, the interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation. The DASY5 routines construct a once-continuously differentiable function that interpolates the measurement values as follows:

For each measurement point a trivariate (3-D) / bivariate (2-D) quadratic is computed. It interpolates the measurement values at the data point and forms a least-square fit to neighbouring measurement values. The spatial location of the quadratic with respect to the measurement values is attenuated by an inverse distance weighting. This is performed since the calculated quadratic will fit measurement values at nearby points more accurate than at points located further away.

After the quadratics are calculated for at all measurement points, the interpolating function is calculated as a weighted average of the quadratics.

There are two control parameters that govern the behaviour of the interpolation method. One specifies the number of measurement points to be used in computing the least-square fits for the local quadratics. These measurement points are the ones nearest the input point for which the quadratic is being computed. The second parameter specifies the number of measurement points that will be used in calculating the weights for the quadratics to produce the final function. The input data points used there are the ones nearest the point at which the interpolation is desired. Appropriate defaults are chosen for each of the control parameters

The trivariate quadratics that have been previously computed for the 3-D interpolation and whose input data are at the closest distance from the phantom surface, are used in order to extrapolate the fields to the surface of the phantom.

In order to determine all the field maxima in 2-D (Area Scan) and 3-D (Zoom Scan), the measurement grid is refined by a default factor of 10 and the interpolation function is used to evaluate all field values between corresponding measurement points. Subsequently, a linear search is applied to find all the candidate maxima. In a last step, non-physical maxima are removed and only those maxima which are within 2 dB of the global maximum value are retained.

In the Area Scan, the gradient of the interpolation function is evaluated to find all the extrema of the SAR distribution. The uncertainty on the locations of the extrema is less than 1/20 of the grid size. Only local maxima within 2 dB of the global maximum are searched and passed for the Zoom Scan measurement.

In the Zoom Scan, the interpolation function is used to extrapolate the Peak SAR from the lowest measurement points to the inner phantom surface (the extrapolation distance). The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1 % for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

2.1.6 Averaging and Determination of Spatial Peak SAR

The interpolated data is used to average the SAR over the 1 g and 10 g cubes by spatially discretising the entire measured volume. The resolution of this spatial grid used to calculate the averaged SAR is 1 mm or about 42875 interpolated points. The resulting volumes are defined as cubical volumes containing the appropriate tissue parameters that are cantered at the location. The location is defined as the centre of the incremental volume (voxel).

The spatial-peak SAR must be evaluated in cubical volumes containing a mass that is within 5 % of the required mass. The cubical volume centred at each location, as defined above, should be expanded in all directions until the desired value for the mass is reached, with no surface boundaries of the averaging volume extending beyond the outermost surface of the considered region. In addition, the cubical volume should not consist of more than 10 % of air. If these conditions are not satisfied, then the centre of the averaging volume is moved to the next location. Otherwise, the exact size of the final sampling cube is found using an inverse polynomial approximation algorithm, leading to results with improved accuracy. If one boundary of the averaging volume reaches the boundary of the measured volume during its expansion, it will not be evaluated at all. Reference is kept of all locations used and those not used for averaging the SAR. All average SAR values are finally assigned to the centred location in each valid averaging volume.

All locations included in an averaging volume are marked to indicate that they have been used at least once. If a location has been marked as used but has never been assigned to the centre of a cube, the highest averaged SAR value of all other cubical volumes which have used this location for averaging is assigned to this location. Only those locations that are not part of any valid averaging volume should be marked as unused. For the case of an unused location, a new averaging volume must be constructed which will have the unused location centred at one surface of the cube. The remaining five surfaces are expanded evenly in all directions until the required mass is enclosed, regardless of the amount of included air. Of the six possible cubes with one surface centred on the unused location, the smallest cube is used, which still contains the required mass.

If the final cube containing the highest averaged SAR touches the surface of the measured volume, an appropriate warning is issued within the Post-processing engine.

2.2 WLAN 2450 MHz - 802.11b 20 MHz 11 Mbps - BODY SAR TEST RESULTS

SOFTWARE VERSION:	52.10.1(1476)	AMBIENT TEMPERATURE:	23.4 °C			
DATE:	19/09/2018	RELATIVE HUMIDITY:	62.3 %			
PHANTOM:	QD OVA 004 Ax	CONDUCTIVITY:	1.995 S/m			
DUT CONFIGURATION:	802.11b 20 MHz 11 Mbps	RELATIVE PERMITTIVITY:	53.020 ε _r			
DUT POSITION:	0 mm – Front Face	LIQUID TEMPERATURE:	20.9 °C			
RAT:	WLAN	SCAN TYPE:	Fast			
FREQUENCY:	2412 MHz	DRIFT:	0.77 dB			
MODULATION:	DSSS	PEAK SAR:	<0.01 W/kg			
DUTY CYCLE:	20.0 % (scaled to 100 %)	SAR (1g) - REPORTED:	0.01 W/kg			
	W/kg 0.00546 0.00437 0.00328 0.00218 0.00109					

Figure 2: SAR Body Testing Results for the CE4 Tagger at 2412 MHz

	Í.		
SOFTWARE VERSION:	52.10.1(1476)	AMBIENT TEMPERATURE:	23.4 °C
DATE:	19/09/2018	RELATIVE HUMIDITY:	62.3 %
PHANTOM:	QD OVA 004 Ax	CONDUCTIVITY:	1.995 S/m
DUT CONFIGURATION:	802.11b 20 MHz 11 Mbps	RELATIVE PERMITTIVITY:	53.020 ε _r
DUT POSITION:	0 mm – Rear Face	LIQUID TEMPERATURE:	20.9 °C
RAT:	WLAN	SCAN TYPE:	Fast
FREQUENCY:	2412 MHz	DRIFT:	0.14 dB
MODULATION:	DSSS	PEAK SAR:	<0.01 W/kg
DUTY CYCLE:	20.0 % (scaled to 100 %)	SAR (1g) - REPORTED:	0.02 W/kg
	0.010 0.0084 0.0063 0.0042 0.0021		

Figure 3: SAR Body Testing Results for the CE4 Tagger at 2412 MHz

SOFTWARE VERSION:	52.10.1(1476)	AMBIENT TEMPERATURE:	23.4 °C
DATE:	19/09/2018	RELATIVE HUMIDITY:	62.3 %
PHANTOM:	QD OVA 004 Ax	CONDUCTIVITY:	1.995 S/m
DUT CONFIGURATION:	802.11b 20 MHz 11 Mbps	RELATIVE PERMITTIVITY:	53.020 ε _r
DUT POSITION:	0 mm – Left Edge	LIQUID TEMPERATURE:	20.9 °C
RAT:	WLAN	SCAN TYPE:	Fast
FREQUENCY:	2412 MHz	DRIFT:	1.16 dB
MODULATION:	DSSS	PEAK SAR:	<0.01 W/kg
DUTY CYCLE:	20.0 % (scaled to 100 %)	SAR (1g) - REPORTED:	0.03 W/kg
	0.00612 0.0049 0.00367 0.00245 0.00122		

	D 1 7		D 1/	e	0 - 4 -	-	10110	
	POdv	Locting	DACINHO	tor tho	('`````	Logar	<u></u>	
		resurio	RESUIIS.	IOF THE	VIE 4	LAUGEL	ai /4 //	
					~			
0						00		

SOFTWARE VERSION:	52.10.1(1476)	AMBIENT TEMPERATURE:	23.4 °C
DATE:	19/09/2018	RELATIVE HUMIDITY:	62.3 %
PHANTOM:	QD OVA 004 Ax	CONDUCTIVITY:	1.995 S/m
DUT CONFIGURATION:	802.11b 20 MHz 11 Mbps	RELATIVE PERMITTIVITY:	53.020 ε _r
DUT POSITION:	0 mm – Left Edge	LIQUID TEMPERATURE:	20.9 °C
RAT:	WLAN	SCAN TYPE:	Full
FREQUENCY:	2412 MHz	DRIFT:	-0.98 dB
MODULATION:	DSSS	PEAK SAR:	<0.01 W/kg
DUTY CYCLE:	20.0 % (scaled to 100 %)	SAR (1g) - REPORTED:	0.02 W/kg
	0.00346 0.00277 0.00208 0.00138 0.000692		

SECTION 3

TEST EQUIPMENT USED

3.1 **TEST EQUIPMENT USED**

The following test equipment was used at TÜV SÜD Product Service:

Instrument Description	Manufacturer	Model Type	TE Number	Cal Period (months)	Calibration Due Date
10MHz - 2.5GHz, Amplifier	IndexSar Ltd	VBM2500-3	0051	-	O/P Mon
Power Sensor	Rohde & Schwarz	NRV-Z1	0178	12	08-Jun-2019
Power Sensor	Rohde & Schwarz	NRV- Z1	3563	12	08-Jun-2019
P-Series Power Meter	Agilent Technologies	N1911A	3981	12	29-Sep-2018
Power Sensor	Agilent Technologies	N1921A	3983	12	29-Sep-2018
Signal Generator	Hewlett Packard	ESG4000A	61	12	20-Jul-2019
Attenuator (20dB, 10W)	Weinschel	37-20-34	482	12	01-Nov-2018
Bi-directional Coupler	IndexSar Ltd	7401 (VDC0830-20)	2414	-	O/P Mon
Thermometer	Digitron	T208	64	12	23-May-2019
K Type Thermocouple	Unknown	ТҮРЕ К	65	12	23-May-2019
Hygrometer	Rotronic	I-1000	2784	12	09-Apr-2019
Dual Channel Power Meter	Rohde & Schwarz	NRVD	2979	12	08-Jun-2019
Data Acquisition Electronics	Speag	DAE 4 - SD 000 D04 BM	4689	12	15-Dec-2018
Measurement Server	Speag	DASY 5 Measurement Server	4692	-	TU
Elliptical Phantom	Speag	ELI Phantom	4833	-	TU
Dosimetric SAR Probe	Speag	EX3DV4	4700	12	15-Dec-2018
Mounting Platform for TX90XL Robot and Phantoms	Speag	MP6C-TX90XL Mounting Platform Extended	4702	-	TU
Robot	Speag	TX90 XLspeag Robot	4704	-	TU
EUT Holder	Speag	N/A	3870	-	TU
MBBL Fluid	Speag	Batch 2	N/A	Weekly	24-Sep-2018
2450 MHz Dipole	Speag	D2450V2	3875	12	8-Dec-2018

TU - Traceability Unscheduled O/P Mon – Output Monitored using calibrated equipment

3.2 TEST SOFTWARE

The following software was used to control the TÜV SÜD Product Service DASY System.

Instrument	Version Number
DASY system	52.10.1(1476)

3.3 DIELECTRIC PROPERTIES OF SIMULANT LIQUIDS

The fluid properties of the simulant fluids used during routine SAR evaluation meet the dielectric properties required KDB 865665.

The dielectric properties of the tissue simulant liquids used for the SAR testing at TÜV SÜD Product Service are as follows:-

Fluid Type and Frequency	ype and encyRelative Permittivity TargetRelative Permittivity Measured		Conductivity Target	Conductivity Measured
2450 MHz MBBL	52.70	52.96	1.95	2.03

3.4 TEST CONDITIONS

3.4.1 Test Laboratory Conditions

Ambient temperature: Within +15°C to +35°C. The actual temperature during the testing ranged from 23.4 °C to 23.4 °C. The actual humidity during the testing ranged from 62.3 % to 62.3 % RH.

3.4.2 Test Fluid Temperature Range

Frequency	Fluid	Min Temperature °C	Max Temperature °C
2450 MHz	MBBL	20.9	20.9

3.4.3 SAR Drift

The maximum SAR Drift was recorded as 1.16 dB

3.5 MEASUREMENT UNCERTAINTY

Body, Fast SAR Measurements, 300 MHz to 3 GHz Using Probe EX3DV4 - SN3759

Source of Uncertainty	Uncertainty ± %	Probability distribution	Div	с _і (10 g)	Standard Uncertainty ± % (10 g)	V _{i (} V _{eff)}
Measurement System						
Probe calibration	6.0	N	1.00	0.00	0.0	
Axial Isotropy	4.7	R	1.73	0.70	1.9	Infinity
Hemispherical Isotropy	9.6	R	1.73	0.70	3.9	Infinity
Boundary effect	1.0	R	1.73	1.00	0.6	Infinity
Linearity	4.7	R	1.73	1.00	2.7	Infinity
System Detection limits	1.0	R	1.73	1.00	0.6	Infinity
Modulation response	2.4	R	1.73	1.00	1.4	Infinity
Readout electronics	0.3	N	1.00	0.00	0.0	
Response time	0.8	R	1.73	0.00	0.0	
Integration time	2.6	R	1.73	1.00	1.5	Infinity
RF ambient noise	3.0	R	1.73	1.00	1.7	Infinity
RF ambient reflections	3.0	R	1.73	0.00	0.0	
Probe positioner	0.4	R	1.73	1.00	0.2	Infinity
Probe positioning	2.9	R	1.73	1.00	1.7	Infinity
Spatial x-y-Resolution	10.0	R	1.73	1.00	5.8	Infinity
Fast SAR z-Approximation	7.0	R	1.73	1.00	4.0	Infinity
Test sample related						
Device Positioning	2.9	N	1.00	1.00	2.9	145
Device Holder	3.6	N	1.00	1.00	3.6	5
Input Power and SAR Drift	5.0	R	1.73	1.00	0.2	Infinity
Phantom and Setup						
Phantom uncertainty	6.1	R	1.73	1.00	3.5	Infinity
SAR Correction	1.9	R	1.73	0.00	0.0	
Liquid conductivity Meas.	2.5	R	1.73	0.00	0.0	
Liquid Permittivity Meas.	2.5	R	1.73	0.00	0.0	
Temp. Unc. Conductivity	3.4	R	1.73	0.00	0.0	
Temp. Unc. Permittivity	0.4	R	1.73	0.00	0.0	
Combined Standard Uncertaint	t y	RSS			11.0	
Expanded Standard Uncertaint	У	K=2			21.9	

Source of Uncertainty	Uncertainty ± %	Probability distribution	Div	с _і (10 g)	Standard Uncertainty ± % (10 g)	Vi (Veff)
Measurement System						
Probe calibration	6.0	Ν	1.00	1.00	6.0	Infinity
Axial Isotropy	4.7	R	1.73	0.70	1.9	Infinity
Hemispherical Isotropy	9.6	R	1.73	0.70	3.9	Infinity
Boundary effect	1.0	R	1.73	1.00	0.6	Infinity
Linearity	4.7	R	1.73	1.00	2.7	Infinity
System Detection limits	1.0	R	1.73	1.00	0.6	Infinity
Modulation response	2.4	R	1.73	1.00	1.4	Infinity
Readout electronics	0.3	N	1.00	1.00	0.3	Infinity
Response time	0.8	R	1.73	1.00	0.5	Infinity
Integration time	2.6	R	1.73	1.00	1.5	Infinity
RF ambient noise	3.0	R	1.73	1.00	1.7	Infinity
RF ambient reflections	3.0	R	1.73	1.00	1.7	Infinity
Probe positioner	0.4	R	1.73	1.00	0.2	Infinity
Probe positioning	2.9	R	1.73	1.00	1.7	Infinity
Max SAR Evaluation	2.0	R	1.73	1.00	1.2	Infinity
Test sample related						
Device Positioning	2.9	N	1.00	1.00	2.9	145
Device Holder	3.6	N	1.00	1.00	3.6	5
Input Power and SAR Drift	5.0	R	1.73	1.00	0.2	Infinity
Phantom and Setup						
Phantom uncertainty	6.1	R	1.73	1.00	3.5	Infinity
SAR Correction	1.9	R	1.73	0.84	0.9	Infinity
Liquid conductivity Meas.	2.5	R	1.73	0.71	1.0	Infinity
Liquid Permittivity Meas.	2.5	R	1.73	0.26	0.4	Infinity
Temp. Unc. Conductivity	3.4	R	1.73	0.71	1.4	Infinity
Temp. Unc. Permittivity	0.4	R	1.73	0.26	0.1	Infinity
Combined Standard Uncertain	ty	RSS			10.7	361
Expanded Standard Uncertaint	y	K=2			21.5	

Body, Full SAR Measurements, 300 MHz to 3 GHz Using Probe EX3DV4 - SN3759

SECTION 4

ACCREDITATION, DISCLAIMERS AND COPYRIGHT

4.1 ACCREDITATION, DISCLAIMERS AND COPYRIGHT

This report relates only to the actual item/items tested.

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation.

Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

This report must not be reproduced, except in its entirety, without the written permission of TÜV SÜD Product Service

© 2018 TÜV SÜD Product Service

ANNEX A

PROBE CALIBRATION REPORT

Schmid & Partner	ory of	BIOCHERA C	Schweizerischer Kalibrierdienst Service suisse d'étalonnage
Zeughausstrasse 43, 8004 Zu	rich, Switzerland	S S	Servizio svizzero di taratura Swiss Calibration Service
A		and the	
Accredited by the Swiss Accred The Swiss Accreditation Serv Multilateral Agreement for the	itation Service (SAS) ice is one of the signatories recognition of calibration o	Acc to the EA certificates	reditation No.: SCS 0108
Client TüV SÜD UK		Certificate No:	EX3-3759_Dec17
	CEDTIEICATE		
CALIBRATION	CERTIFICATE		
Object	EX3DV4 - SN:375	59	
Calibration procedure(s)	04 04 01 00 0	A CAL 40. 0. 04 041 44 4 04	
contractor procedure(s)	QA CAL-01.V9, Q	A GAL-12.V9, QA CAL-14.V4, QA	CAL-23.v5,
	Calibration proceed	dure for dosimetric E-field probes	
Calibration date:	December 15, 20	17	
	December 15, 20	11	
All calibrations have been cond	ucted in the closed laboratory	facility: environment temperature (22 \pm 3)°C a	and humidity < 70%.
All calibrations have been cond Calibration Equipment used (Mi Primary Standards	ucted in the closed laboratory	facility: environment temperature (22 ± 3)°C a	and humidity < 70%.
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter NRP	ucted in the closed laboratory &TE critical for calibration) ID SN: 104778	facility: environment temperature (22 ± 3)°C a	and humidity < 70%. Scheduled Calibration Apr-18
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter NRP Power sensor NRP-291	Ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521)	And humidity < 70%. Scheduled Calibration Apr-18 Apr-18
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91	ID SN: 104778 SN: 103244 SN: 103245 SN: 103245	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525)	Apr-18 Apr-18 Apr-18
All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES30V2	ID SN: 104778 SN: 103244 SN: 103245 SN: S5277 (20x) SN: 3013	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02528) 31 Dec 16 (No. 523 0010 Dec 16)	Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18
All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4	ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 3013 SN: 654	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02528) 31-Dec-16 (No. ES3-3013_Dec16) 24-Jul-17 (No. DAE4-654_Jul17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Jul-18
All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	Ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 3013 SN: 654 ID	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02528) 31-Dec-16 (No. ES3-3013_Dec16) 24-Jul-17 (No. DAE4-654_Jul17)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Jul-18
All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B	ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 3013 SN: 654 ID SN: GB41293874	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02525) 31-Dec-16 (No. ES3-3013_Dec16) 24-Jul-17 (No. DAE4-654_Jul17) Check Date (in house) 06-Apr-16 (in house)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Jul-18 Scheduled Check
All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A	ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 3013 SN: 654 ID SN: GB41293874 SN: MY41498087	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02528) 31-Dec-16 (No. ES3-3013_Dec16) 24-Jul-17 (No. DAE4-654_Jul17) Check Date (in house) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Jul-18 Scheduled Check In house check: Jun-18
All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 3013 SN: 654 ID ID SN: GB41293874 SN: MY41498087 SN: 000110210	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02528) 31-Dec-16 (No. ES3-3013_Dec16) 24-Jul-17 (No. DAE4-654_Jul17) 	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Jul-18 Dec-17 Jul-18 Scheduled Check In house check: Jun-18 In house check: Jun-18
All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A RF generator HP 8648C	ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 3013 SN: 654 ID SN: GB41293874 SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02528) 31-Dec-16 (No. ES3-3013_Dec16) 24-Jul-17 (No. DAE4-654_Jul17) - Check Date (in house) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16)	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Jul-18 Scheduled Check In house check: Jun-18 In house check: Jun-18 In house check: Jun-18 In house check: Jun-18
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer HP 8753E	ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 3013 SN: 654 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US37390585	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02525) 31-Dec-16 (No. ES3-3013_Dec16) 24-Jul-17 (No. DAE4-654_Jul17) Check Date (in house) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 04-Aug-99 (in house check Jun-16) 18-Oct-01 (in house check Jun-16)	Scheduled Calibration Apr-18 Apr-18 Apr-18 Dec-17 Jul-18 Scheduled Check In house check: Jun-18
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer HP 8753E	ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: S5277 (20x) SN: 3013 SN: 654 ID SN: GB41293874 SN: GB41293874 SN: WY41498087 SN: 000110210 SN: US3642U01700 SN: US37390585 Name	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02528) 31-Dec-16 (No. ES3-3013_Dec16) 24-Jul-17 (No. DAE4-654_Jul17) Check Date (in house) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 04-Aug-99 (in house check Jun-16) 18-Oct-01 (in house check Jun-16) 18-Oct-01 (in house check Oct-17) Function	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Jul-18 Scheduled Check In house check: Jun-18 In house check: Jun-18
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	Ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 3013 SN: 654 ID SN: GB41293874 SN: 00110210 SN: US3642U01700 SN: US3642U01700 SN: US37390585 Name Michael Weber	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02528) 31-Dec-16 (No. ES3-3013_Dec16) 24-Jul-17 (No. DAE4-654_Jul17) Check Date (in house) 06-Apr-16 (in house check Jun-16) 08-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 07-Apr-17 (in house check Jun-16) 08-Apr-16 (in house check Jun-16) 18-Oct-01 (in house check Oct-17) Function Laboratory Technician	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Jul-18 Scheduled Check In house check: Jun-18 In house check: Jun-18
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 654 ID SN: GB41293874 SN: WY41498087 SN: 000110210 SN: US3642U01700 SN: US3642U01700 SN: US37390585 Name Michael Weber Katja Pokovic	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02528) 31-Dec-16 (No. ES3-3013_Dec16) 24-Jul-17 (No. DAE4-654_Jul17) Check Date (in house) 06-Apr-16 (in house check Jun-16) 18-Oct-01 (in house check Jun-16) I8-Oct-01 (in house check Jun-16) I8-Oct-01 (in house check Jun-16) Laboratory Technician Technical Manager	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Jul-18 Scheduled Check In house check: Jun-18 In house check: Jun-18
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A RF generator HP 8648C Network Analyzer HP 8753E Calibrated by: Approved by:	ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 654 ID SN: GB41293874 SN: 000110210 SN: US37390585 Name Michael Weber Katja Pokovic	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02528) 31-Dec-16 (No. ES3-3013_Dec16) 24-Jul-17 (No. DAE4-654_Jul17) Check Date (in house) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 18-Oct-01 (in house check Jun-16) 18-Oct-01 (in house check Oct-17) Function Laboratory Technician Technical Manager ull without written approval of the laboratory.	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Jul-18 Scheduled Check In house check: Jun-18 In house check: Jun-18
All calibrations have been cond Calibration Equipment used (M Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E44198 Power sensor E4412A RF generator HP 8648C Network Analyzer HP 8753E Calibrated by: Approved by:	ID SN: 104778 SN: 103244 SN: 103245 SN: 3013 SN: 654 ID SN: GB41293874 SN: 00110210 SN: US3642U01700 SN: US37390585 Name Michael Weber Katja Pokovic	facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02525) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02528) 31-Dec-16 (No. ES3-3013_Dec16) 24-Jul-17 (No. DAE4-654_Jul17) Check Date (in house) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 18-Oct-01 (in house check Jun-16) 18-Oct-01 (in house check Oct-17) Function Laboratory Technician Technical Manager	Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Jul-18 Scheduled Check In house check: Jun-18 In house check: Oct-18 Signature

	hid & Partner		A COM	ASS ACCREDITAD	S Schweizerischer Kalibrierdienst
End			Hac-MRA		C Service suisse d'étalonnage
eugha	usstrasse 43, 800	4 Zurich, Switzerland		(s C a)	S Servizio svizzero di taratura
			"Malahahaha	Admin.ch scho	Swiss Calibration Service
Accredi	ited by the Swiss A	ccreditation Service (SAS)			Accreditation No.: SCS 0108
he Sw Aultilat	viss Accreditation teral Agreement f	Service is one of the signator of the recognition of calibra	tories to the EA tion certificates		
Glos	sary:				
SL		tissue simulating liqu	uid		
VORN	1x,y,z	sensitivity in free spa	ace		
ConvF		sensitivity in TSL / N	ORMx,y,z		
		diode compression p	point		
RC	0.0	crest factor (1/duty_0	cycle) of the RF sig	nal	
olariz	zation o	(rotation around pro	the axis	ameters	
Polariz	zation 9	9 rotation around pro	axis that is in the r	ane normal to proh	
		i.e., $\vartheta = 0$ is normal t	o probe axis	name normal to prob	e axis (at measurement center),
Conne	ctor Angle	information used in I	DASY system to ali	gn probe sensor X to	o the robot coordinate system
alih	ration is Po	rformed According	to the Fallent	ing Step lead	system
al	IFFF Std 150	8-2013 "IEEE Boog	anded Breating (ng Standards:	
ч)	Absorption R	ate (SAR) in the Human	Head from Wireley	Determining the Pe	Participation Averaged Specific
	Techniques".	June 2013		ss communications	Devices: Measurement
b)	IEC 62209-1	", "Measurement proce	dure for the assess	ment of Specific Ah	sorption Rate (SAR) from hand
	held and bod	y-mounted devices used	d next to the ear (fr	equency range of 30	00 MHz to 6 GHz)". July 2016
c)	IEC 62209-2.	"Procedure to determin	e the Specific Abso	orntion Rate (SAR) f	
				orphon Mate (OAN) I	for wireless communication devices
d)	used in close	proximity to the human	body (frequency ra	ange of 30 MHz to 6	GHz)", March 2010
d)	used in close KDB 865664,	proximity to the human "SAR Measurement Re	body (frequency ra equirements for 100	ange of 30 MHz to 6 MHz to 6 GHz"	GHz)", March 2010
d) Meth	used in close KDB 865664, ods Applied	proximity to the human "SAR Measurement Re and Interpretation	body (frequency ra equirements for 100 of Parameters	ange of 30 MHz to 6 0 MHz to 6 GHz"	or wireless communication devices GHz)", March 2010
d) Vleth •	used in close KDB 865664 ods Applied NORMx,y,z: 1 NORMx,y,z a	proximity to the human "SAR Measurement Re and Interpretation Assessed for E-field poly re only intermediate val	body (frequency ratequirements for 100 n of Parameters arization $\vartheta = 0$ (f \leq ues, i.e., the uncert	ange of 30 MHz to 6 D MHz to 6 GHz" S: 900 MHz in TEM-ce tainties of NORMx,y	II; f > 1800 MHz: R22 waveguide).
d) Metho •	used in close KDB 865664, ods Applied NORMx,y,z a uncertainty in NORM(fly, v.z	proximity to the human "SAR Measurement Re I and Interpretation Assessed for E-field poli- re only intermediate val side TSL (see below C2 = NORMX v. z.* frequent	body (frequency ra- equirements for 100 n of Parameters arization $\vartheta = 0$ (f \le ues, i.e., the uncert on vF).	ange of 30 MHz to 6 0 MHz to 6 GHz" 5: 900 MHz in TEM-ce tainties of NORMx,y	GHz)", March 2010 III; f > 1800 MHz: R22 waveguide). ,z does not affect the E ² -field
d) Vietho •	used in close KDB 865664, ods Applied NORMx,y,z: NORMx,y,z a uncertainty in NORM(f)x,y,z implemented in the stated	proximity to the human "SAR Measurement Re and Interpretation Assessed for E-field pol- re only intermediate val side TSL (see below Co z = NORMx,y,z * frequer in DASY4 software vers uncertainty of ConvE	body (frequency ra equirements for 100 n of Parameters arization $\vartheta = 0$ (f \le ues, i.e., the uncert onvF). ncy_response (see sions later than 4.2.	ange of 30 MHz to 6 0 MHz to 6 GHz" 900 MHz in TEM-ce tainties of NORMx,y Frequency Respons The uncertainty of i	II; f > 1800 MHz: R22 waveguide). ,z does not affect the E ² -field se Chart). This linearization is the frequency response is included
d) Metho •	used in close KDB 865664, ods Appliec NORMx,y,z: NORMx,y,z a uncertainty in NORM(f)x,y,z implemented in the stated DCPx,y,z: DC signal (no un	proximity to the human "SAR Measurement Re and Interpretation Assessed for E-field pol- re only intermediate val side TSL (see below Co z = NORMx,y,z * frequer in DASY4 software vers uncertainty of ConvF. CP are numerical lineariz certainty required). DCP	body (frequency ra equirements for 100 n of Parameters arization $\vartheta = 0$ (f \leq ues, i.e., the uncert onvF). ncy_response (see sions later than 4.2. zation parameters a does not depend	ange of 30 MHz to 6 0 MHz to 6 GHz" 900 MHz in TEM-ce tainties of NORMx,y Frequency Respons The uncertainty of it assessed based on the	or wireless communication devices GHz)", March 2010 all; f > 1800 MHz: R22 waveguide). ,z does not affect the E ² -field se Chart). This linearization is the frequency response is included the data of power sweep with CW
d) Vleth •	used in close KDB 865664, ods Appliec NORMx,y,z: a NORMx,y,z a uncertainty in NORM(f)x,y,z implemented in the stated DCPx,y,z: DC signal (no um PAR: PAR is characteristic	proximity to the human "SAR Measurement Re I and Interpretation Assessed for E-field poli- re only intermediate val side TSL (see below Co <i>z</i> = <i>NORMx,y,z</i> * frequer in DASY4 software vers uncertainty of <i>ConvF</i> . CP are numerical linearia certainty required). DCP the Peak to Average Ra s	body (frequency ra equirements for 100 n of Parameters arization $\vartheta = 0$ (f \le ues, i.e., the uncert onvF). mcy_response (see sions later than 4.2. zation parameters a e does not depend of atio that is not calib	ange of 30 MHz to 6 0 MHz to 6 GHz" 900 MHz in TEM-ce tainties of NORMx,y Frequency Respons The uncertainty of the assessed based on the on frequency nor me rated but determined	GHz)", March 2010 III; f > 1800 MHz: R22 waveguide). Az does not affect the E ² -field se Chart). This linearization is the frequency response is included the data of power sweep with CW edia. d based on the signal
d) Vleth • •	used in close KDB 865664, ods Appliec NORMx,y,z: a NORMx,y,z a uncertainty in NORM(f)x,y,z implemented in the stated DCPx,y,z: DC signal (no um PAR: PAR is characteristic Ax,y,z; Bx,y,z	proximity to the human "SAR Measurement Re I and Interpretation Assessed for E-field poli- re only intermediate val side TSL (see below Cd z = NORMx,y,z * frequer in DASY4 software vers uncertainty of ConvF. CP are numerical lineariz certainty required). DCP the Peak to Average Re s	body (frequency ra equirements for 100 n of Parameters arization $\vartheta = 0$ (f \le ues, i.e., the uncert onvF). mcy_response (see sions later than 4.2. zation parameters a does not depend of atio that is not calib z: A, B, C, D are nu	ange of 30 MHz to 6 0 MHz to 6 GHz" 900 MHz in TEM-ce tainties of NORMx,y Frequency Respons The uncertainty of i assessed based on to on frequency nor me rated but determined umerical linearization	II; f > 1800 MHz: R22 waveguide). ,z does not affect the E ² -field se Chart). This linearization is the frequency response is included the data of power sweep with CW edia. d based on the signal
d) Metho • •	used in close KDB 865664, Ods Applied NORMx,y,z a uncertainty in NORM(f)x,y,z implemented in the stated DCPx,y,z: DC signal (no um PAR: PAR is characteristic Ax,y,z; Bx,y,z the data of po	proximity to the human "SAR Measurement Re I and Interpretation Assessed for E-field poli- re only intermediate val side TSL (see below Ce z = NORMx,y,z * frequer in DASY4 software vers uncertainty of ConvF. CP are numerical lineariz certainty required). DCP the Peak to Average Re s ; Cx,y,z; Dx,y,z; VRx,y,; ower sweep for specific	body (frequency ra equirements for 100 n of Parameters arization $\vartheta = 0$ (f \le ues, i.e., the uncert <i>ancy_response</i> (see sions later than 4.2. zation parameters a does not depend d atio that is not calib z: A, B, C, D are nu modulation signal.	ange of 30 MHz to 6 0 MHz to 6 GHz" 900 MHz in TEM-ce tainties of NORMx,y Frequency Respons The uncertainty of 1 assessed based on 1 on frequency nor me rated but determined umerical linearization The parameters do 1	Il; f > 1800 MHz: R22 waveguide). ,z does not affect the E ² -field se Chart). This linearization is the frequency response is included the data of power sweep with CW edia. d based on the signal n parameters assessed based on not depend on frequency nor
d) Metho •	used in close KDB 865664, ods Appliec NORMx,y,z: NORMx,y,z a uncertainty in NORM(f)x,y,z implemented in the stated DCPx,y,z: DC signal (no un PAR: PAR is characteristic Ax,y,z; Bx,y,z the data of po media. VR is	proximity to the human "SAR Measurement Re I and Interpretation Assessed for E-field poli- re only intermediate val side TSL (see below Co z = NORMx,y,z * frequer in DASY4 software vers uncertainty of ConvF. CP are numerical lineariz certainty required). DCP the Peak to Average Re s ;; Cx,y,z; Dx,y,z; VRx,y,z ower sweep for specific the maximum calibration	body (frequency ra equirements for 100 n of Parameters arization $\vartheta = 0$ (f \le ues, i.e., the uncert <i>anvF</i>). <i>incy_response</i> (see sions later than 4.2. zation parameters a does not depend d atio that is not calib z: <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> are nu modulation signal. n range expressed	ange of 30 MHz to 6 0 MHz to 6 GHz" 5: 900 MHz in TEM-ce tainties of NORMx,y Frequency Respons The uncertainty of 1 assessed based on 1 on frequency nor me rated but determined umerical linearization The parameters do 1 in RMS voltage acro	II; f > 1800 MHz: R22 waveguide). ,z does not affect the E ² -field se Chart). This linearization is the frequency response is included the data of power sweep with CW edia. d based on the signal n parameters assessed based on not depend on frequency nor oss the diode.
d) Metho • •	used in close KDB 865664, Ods Applied NORMx,y,z: NORMx,y,z a uncertainty in NORM(f)x,y,z implemented in the stated DCPx,y,z: DC signal (no un PAR: PAR is characteristic Ax,y,z; Bx,y,z the data of po media. VR is ConvF and B	proximity to the human "SAR Measurement Re I and Interpretation Assessed for E-field poli- re only intermediate val side TSL (see below Co z = NORMx,y,z * frequer in DASY4 software vers uncertainty of ConvF. CP are numerical lineariz certainty required). DCP the Peak to Average Re s ; Cx,y,z; Dx,y,z; VRx,y,; wer sweep for specific the maximum calibration oundary Effect Paramet	body (frequency ra equirements for 100 n of Parameters arization $\vartheta = 0$ (f \le ues, i.e., the uncert <i>anvF</i>). <i>incy_response</i> (see sions later than 4.2. zation parameters a does not depend of atio that is not calib z: <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> are nu- modulation signal. n range expressed in flat	ange of 30 MHz to 6 0 MHz to 6 GHz" 5: 900 MHz in TEM-ce tainties of NORMx,y Frequency Respons The uncertainty of 1 assessed based on 1 on frequency nor me rated but determined umerical linearization The parameters do 1 in RMS voltage acro at phantom using E-	II; f > 1800 MHz: R22 waveguide). ,z does not affect the E ² -field se Chart). This linearization is the frequency response is included the data of power sweep with CW edia. d based on the signal n parameters assessed based on not depend on frequency nor oss the diode. field (or Temperature Transfer
d) Metho • •	used in close KDB 865664, Ods Applied NORMx,y,z: NORMx,y,z a uncertainty in NORM(f)x,y,z implemented in the stated 1 DCPx,y,z: DC signal (no un PAR: PAR is characterisic Ax,y,z; Bx,y,z the data of po media. VR is ConvF and B Standard for	proximity to the human "SAR Measurement Re I and Interpretation Assessed for E-field poli- re only intermediate val side TSL (see below Co z = NORMx, y, z * frequeriin DASY4 software versuncertainty of ConvF.CP are numerical lineariz-certainty required). DCPthe Peak to Average Res;($x, y, z; Dx, y, z; VRx, y;$, wer sweep for specific the maximum calibration oundary Effect Paramet f ≤ 800 MHz) and inside	body (frequency ra equirements for 100 n of Parameters arization $\vartheta = 0$ (f \le ues, i.e., the uncert <i>anvF</i>). <i>ncy_response</i> (see sions later than 4.2. zation parameters a does not depend of atio that is not calib z: <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> are nu- modulation signal. n range expressed in fla waveguide using a	Ange of 30 MHz to 6 0 MHz to 6 GHz" 5: 900 MHz in TEM-ce tainties of NORMx,y Frequency Respons The uncertainty of i assessed based on 1 on frequency nor me rated but determined umerical linearization The parameters do 1 in RMS voltage acro at phantom using E- analytical field distrib	III; f > 1800 MHz: R22 waveguide). ,z does not affect the E ² -field se Chart). This linearization is the frequency response is included the data of power sweep with CW adia. d based on the signal n parameters assessed based on not depend on frequency nor oss the diode. field (or Temperature Transfer putions based on power
d) Metho • •	used in close KDB 865664, Ods Applied NORMx,y,z: NORMx,y,z a uncertainty in NORM(f)x,y,z implemented in the stated DCPx,y,z: DC signal (no un PAR: PAR is characteristic Ax,y,z; Bx,y,z the data of po media. VR is ConvF and B Standard for measuremen boundary con	proximity to the human "SAR Measurement Re I and Interpretation Assessed for E-field pol- re only intermediate val side TSL (see below Co z = NORMx, y, z * frequerin DASY4 software versuncertainty of ConvF.CP are numerical linearizcertainty required). DCPthe Peak to Average Res; Cx, y, z; Dx, y, z; VRx, y, ;wer sweep for specificthe maximum calibratiooundary Effect Paramettf ≤ 800 MHz) and insidets for f > 800 MHz. Thepage state of the doct	body (frequency ra equirements for 100 n of Parameters arization $\vartheta = 0$ (f \le ues, i.e., the uncert <i>anvF</i>). <i>ncy_response</i> (see sions later than 4.2. zation parameters a does not depend d atio that is not calib z: <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> are nu modulation signal. n range expressed <i>ters:</i> Assessed in fla- waveguide using a same setups are u- b) of which trained	ange of 30 MHz to 6 0 MHz to 6 GHz" 900 MHz in TEM-ce tainties of NORMx,y Frequency Respons The uncertainty of in assessed based on 1 on frequency nor me rated but determined umerical linearization The parameters do 1 in RMS voltage acro- tin RMS voltage acro- tanget and the second the second analytical field distribused for assessment	II; f > 1800 MHz: R22 waveguide). ,z does not affect the E ² -field se Chart). This linearization is the frequency response is included the data of power sweep with CW adia. d based on the signal n parameters assessed based on not depend on frequency nor oss the diode. field (or Temperature Transfer putions based on power of the parameters applied for the divertime of the parameters applied for
d) Vlethu • •	used in close KDB 865664, Ods Applied NORMx,y,z: NORMx,y,z: implemented in the stated DCPx,y,z: DC signal (no un PAR: PAR is characteristic Ax,y,z; Bx,y,z the data of po media. VR is ConvF and B Standard for measuremen boundary cor used in DAS	proximity to the human "SAR Measurement Re I and Interpretation Assessed for E-field pol- re only intermediate val side TSL (see below Co z = NORMx,y,z * frequentin DASY4 software versuncertainty of ConvF.CP are numerical linearizecertainty required). DCPthe Peak to Average Res;; Cx,y,z; Dx,y,z; VRx,y,;ower sweep for specificthe maximum calibratiooundary Effect Paramettf ≤ 800 MHz) and insidets for f > 800 MHz. Thenpensation (alpha, deptif 4 software to improve	body (frequency ra equirements for 100 n of Parameters arization $\vartheta = 0$ (f \le ues, i.e., the uncert <i>anvF</i>). <i>rcy_response</i> (see sions later than 4.2. zation parameters a does not depend a atio that is not calib z: <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> are nu modulation signal. n range expressed <i>ters</i> : Assessed in fla- waveguide using a same setups are using a same setups are using a same setups are using a same setups a same setups are using a sa	signe of 30 MHz to 6 0 MHz to 6 GHz" 900 MHz in TEM-ce tainties of NORMx,y Frequency Respons The uncertainty of in assessed based on the on frequency nor me rated but determined umerical linearization The parameters do to in RMS voltage acro- tanget and the second distribu- set of the boundary.	or wireless communication devices GHz)", March 2010 III; f > 1800 MHz: R22 waveguide). ,z does not affect the E ² -field se Chart). This linearization is the frequency response is included the data of power sweep with CW adia. d based on the signal n parameters assessed based on not depend on frequency nor oss the diode. field (or Temperature Transfer butions based on power of the parameters applied for re given. These parameters are The sensitivity in T21 corresponde
d) /leth • •	used in close KDB 865664, ods Applied NORMx,y,z: NORMx,y,z: implemented in the stated DCPx,y,z: DC signal (no un PAR: PAR is characteristic Ax,y,z; Bx,y,z the data of por media. VR is ConvF and B Standard for measuremen boundary cor used in DAS' to NORMx,y,	proximity to the human "SAR Measurement Re I and Interpretation Assessed for E-field pol- re only intermediate val side TSL (see below Co z = NORMx, y, z * frequerin DASY4 software versuncertainty of ConvF.CP are numerical linearizcertainty required). DCPthe Peak to Average Res;; Cx, y, z; Dx, y, z; VRx, y,wer sweep for specificthe maximum calibrationoundary Effect Paramettf ≤ 800 MHz) and insidets for f > 800 MHz. Thenpensation (alpha, deptif 4 software to improvez * ConvF whereby the t	body (frequency ra equirements for 100 n of Parameters arization $\vartheta = 0$ (f \le ues, i.e., the uncert onvF). ncy_response (see sions later than 4.2. zation parameters a does not depend d atio that is not calib z: A, B, C, D are nu modulation signal. n range expressed ters: Assessed in fla waveguide using a same setups are using orobe accuracy clos uncertainty corresp	signe of 30 MHz to 6 0 MHz to 6 GHz" 900 MHz in TEM-ce tainties of NORMx,y Frequency Respons The uncertainty of in assessed based on the on frequency nor me rated but determined umerical linearization The parameters do no in RMS voltage acr- analytical field distrib sed for assessment uncertainty values an set to the boundary. ² onds to that oiven for	or wireless communication devices GHz)", March 2010 III; f > 1800 MHz: R22 waveguide). ,z does not affect the E ² -field se Chart). This linearization is the frequency response is included the data of power sweep with CW adia. d based on the signal n parameters assessed based on not depend on frequency nor oss the diode. field (or Temperature Transfer putions based on power of the parameters applied for re given. These parameters are The sensitivity in TSL corresponds or <i>ConVF</i> . A frequency dependent
d) /leth •	used in close KDB 865664, ods Applied NORMx,y,z: NORMx,y,z: uncertainty in NORM(f)x,y,z; implemented in the stated DCPx,y,z: DC signal (no un PAR: PAR is characteristic Ax,y,z; Bx,y,z the data of po media. VR is ConvF and B Standard for measuremen boundary cor used in DAS' to NORMx,y, ConvF is use	proximity to the human "SAR Measurement Re I and Interpretation Assessed for E-field poli- re only intermediate val side TSL (see below Co z = NORMx, y, z * frequen-in DASY4 software versuncertainty of ConvF.Pare numerical lineariti-certainty required). DCPthe Peak to Average Ras;; Cx, y, z; Dx, y, z; VRx, y, ;were sweep for specific o-the maximum calibrationoundary Effect Parametf ≤ 800 MHz) and insidets for f > 800 MHz. Thenpensation (alpha, deptf 4 software to improvez * ConvF whereby the ud in DASY version 4.4 a	body (frequency ra equirements for 100 n of Parameters arization $\vartheta = 0$ (f \le ues, i.e., the uncert onvF). They_response (see sions later than 4.2. zation parameters a ϑ does not depend of atio that is not calib z: A, B, C, D are nu modulation signal. In range expressed ters: Assessed in fit waveguide using a same setups are us h) of which typical u probe accuracy clos uncertainty corresp and higher which all	ange of 30 MHz to 6 0 MHz to 6 GHz" 5: 900 MHz in TEM-ce tainties of NORMx,y Frequency Respons The uncertainty of i assessed based on for on frequency nor me rated but determined umerical linearization The parameters do ri in RMS voltage acro at phantom using E- analytical field distrib sed for assessment uncertainty values and set to the boundary. onds to that given for lows extending the v	or Wireless communication devices GHz)", March 2010 All; f > 1800 MHz: R22 waveguide). ,z does not affect the E ² -field se Chart). This linearization is the frequency response is included the data of power sweep with CW adia. d based on the signal n parameters assessed based on not depend on frequency nor oss the diode. field (or Temperature Transfer putions based on power of the parameters applied for re given. These parameters are The sensitivity in TSL corresponds or <i>ConvF</i> . A frequency dependent validity from ± 50 MHz to ± 100
d) Methu • •	used in close KDB 865664, Ods Applied NORMx,y,z: A NORMx,y,z: a uncertainty in NORM(f)x,y,z implemented in the stated DCPx,y,z: DC Signal (no um PAR: PAR is characteristic Ax,y,z; Bx,y,z the data of po media. VR is ConvF and B Standard for measuremen boundary cor used in DAS to NORMx,y, ConvF is use MHz.	proximity to the human "SAR Measurement Re I and Interpretation Assessed for E-field pol- re only intermediate val side TSL (see below Cd z = NORMx, y, z * frequerin DASY4 software versuncertainty of ConvF.CP are numerical linearitycertainty required). DCPthe Peak to Average Ras(; Cx, y, z; Dx, y, z; VRx, y,ower sweep for specificthe maximum calibratiooundary Effect Parametf ≤ 800 MHz) and insidets for f > 800 MHz. Thenpensation (alpha, deptf4 software to improve pz * ConvF whereby the tod in DASY version 4.4 a	body (frequency ra equirements for 100 n of Parameters arization $\vartheta = 0$ (f \leq ues, i.e., the uncert onvF). <i>Incy_response</i> (see sions later than 4.2. zation parameters a P does not depend of atio that is not calib z: <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> are nu modulation signal. n range expressed in flat waveguide using a same setups are us h) of which typical to probe accuracy clos uncertainty corresp ind higher which all	ange of 30 MHz to 6 0 MHz to 6 GHz" 5: 900 MHz in TEM-ce tainties of NORMx,y Frequency Respons The uncertainty of the assessed based on the on frequency nor me rated but determined umerical linearization The parameters do the in RMS voltage acru- at phantom using E- analytical field distrib sed for assessment uncertainty values at set of the boundary. ² onds to that given for lows extending the v	for wireless communication devices GHz)", March 2010 All; f > 1800 MHz: R22 waveguide). ,z does not affect the E ² -field se Chart). This linearization is the frequency response is included the data of power sweep with CW adia. d based on the signal n parameters assessed based on not depend on frequency nor oss the diode. field (or Temperature Transfer putions based on power of the parameters applied for re given. These parameters are The sensitivity in TSL corresponds or <i>ConvF</i> . A frequency dependent validity from \pm 50 MHz to \pm 100
d) /leth • • •	used in close KDB 865664, Ods Applied NORMx,y,z: MORMx,y,z a uncertainty in NORM(f)x,y,z implemented in the stated DCPx,y,z: DC signal (no un PAR: PAR is characteristic Ax,y,z; Bx,y,z the data of po media. VR is ConvF and B Standard for measuremen boundary cor used in DASN to NORMx,y. ConvF is use MHz. Spherical ison exposed by a	proximity to the human "SAR Measurement Re I and Interpretation Assessed for E-field poli- re only intermediate val side TSL (see below Co z = NORMx, y, z * frequeriin DASY4 software versuncertainty of ConvF.CP are numerical lineariz-certainty required). DCPthe Peak to Average Resc; Cx, y, z; Dx, y, z; VRx, y, jower sweep for specificthe maximum calibrationoundary Effect Parametitf ≤ 800 MHz) and insidets for f > 800 MHz. Thenpensation (alpha, deptif4 software to improve pz * ConvF whereby the ud in DASY version 4.4 atropy (3D deviation frompatch antenna.	body (frequency ra equirements for 100 n of Parameters arization $\vartheta = 0$ (f \leq ues, i.e., the uncert <i>anvF</i>). <i>incy_response</i> (see sions later than 4.2. zation parameters a does not depend d atio that is not calib z: <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> are nu modulation signal. in range expressed in far waveguide using a same setups are us h) of which typical u orobe accuracy clos uncertainty corresp ind higher which all <i>hisotropy</i>): in a field	signe of 30 MHz to 6 0 MHz to 6 GHz" 5: 900 MHz in TEM-ce tainties of NORMx,y Frequency Respons The uncertainty of i assessed based on 1 on frequency nor me rated but determined immerical linearization The parameters do 1 in RMS voltage acro at phantom using E- analytical field distrib sed for assessment uncertainty values a se to the boundary. onds to that given for lows extending the v	It; f > 1800 MHz: R22 waveguide). ,z does not affect the E ² -field se Chart). This linearization is the frequency response is included the data of power sweep with CW edia. d based on the signal n parameters assessed based on not depend on frequency nor oss the diode. field (or Temperature Transfer putions based on power of the parameters applied for re given. These parameters are The sensitivity in TSL corresponds or <i>ConvF</i> . A frequency dependent validity from ± 50 MHz to ± 100 alized using a flat phantom
d) Vleth • • •	used in close KDB 865664, Ods Applied NORMx,y,z: NORMx,y,z a uncertainty in NORM(f)x,y,z implemented in the stated DCPx,y,z: DC signal (no un PAR: PAR is characteristic Ax,y,z; Bx,y,z the data of po media. VR is ConvF and B Standard for measuremen boundary cor used in DASY to NORMx,y, ConvF is use MHz. Spherical ison exposed by a Sensor Offse	proximity to the human "SAR Measurement Re I and Interpretation Assessed for E-field poli- re only intermediate val side TSL (see below Co z = NORMx,y,z * frequer in DASY4 software vers uncertainty of ConvF. CP are numerical lineariz certainty required). DCP the Peak to Average Re s; (cx,y,z; Dx,y,z; VRx,y,; wer sweep for specific the maximum calibration oundary Effect Paramet f ≤ 800 MHz) and inside ts for f > 800 MHz. The npensation (alpha, dept f4 software to improve p z * ConvF whereby the to d in DASY version 4.4 a tropy (3D deviation from patch antenna.	body (frequency ra equirements for 100 n of Parameters arization $\vartheta = 0$ (f \leq ues, i.e., the uncert <i>anyF</i>). <i>incy_response</i> (see sions later than 4.2. zation parameters a does not depend of atio that is not calib z: <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> are nu- modulation signal. In range expressed <i>isrs</i> : Assessed in fit waveguide using a same setups are us h) of which typical isrobe accuracy clos uncertainty corresp and higher which all <i>isotropy</i>): in a field responds to the offs	ange of 30 MHz to 6 0 MHz to 6 GHz" 5: 900 MHz in TEM-ce tainties of NORMx,y Frequency Respons The uncertainty of i assessed based on 1 on frequency nor me rated but determined umerical linearization The parameters do 1 in RMS voltage acro at phantom using E- analytical field distrib sed for assessment uncertainty values and set to the boundary. onds to that given fo lows extending the v d of low gradients rea- set of virtual measure	or Wireless communication devices GHz)", March 2010 III; f > 1800 MHz: R22 waveguide). ,z does not affect the E ² -field se Chart). This linearization is the frequency response is included the data of power sweep with CW adia. d based on the signal n parameters assessed based on not depend on frequency nor oss the diode. field (or Temperature Transfer putions based on power of the parameters applied for re given. These parameters are The sensitivity in TSL corresponds or <i>ConvF</i> . A frequency dependent validity from ± 50 MHz to ± 100 alized using a flat phantom ement center from the probe tip
d) /leth • • • •	used in close KDB 865664, Ods Applied NORMx,y,z: NORMx,y,z a uncertainty in NORM(f)x,y,z implemented in the stated 1 DCPx,y,z: DC signal (no un PAR: PAR is characteristic Ax,y,z; Bx,y,z the data of po media. VR is ConvF and B Standard for measuremen boundary cor used in DASN to NORMx,y, ConvF is use MHz. Spherical isol exposed by a Sensor Offse (on probe axi	proximity to the human "SAR Measurement Re I and Interpretation Assessed for E-field poli- re only intermediate val side TSL (see below Co z = NORMx, y, z * frequeriin DASY4 software versuncertainty of ConvF.CP are numerical lineariz-certainty required). DCPthe Peak to Average Res;($x, y, z; Dx, y, z; VRx, y;$, wer sweep for specific the maximum calibration oundary Effect Paramet f ≤ 800 MHz) and inside ts for f > 800 MHz. The npensation (alpha, dept (4 software to improve p z * ConvF whereby the to d in DASY version 4.4 a tropy (3D deviation from patch antenna. t: The sensor offset corr s). No tolerance require	body (frequency ra equirements for 100 n of Parameters arization $\vartheta = 0$ (f \leq ues, i.e., the uncert <i>anyF</i>). <i>incy_response</i> (see sions later than 4.2. zation parameters a does not depend of atio that is not calib z: <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> are nu- modulation signal. In range expressed <i>ters:</i> Assessed in fit waveguide using a same setups are un h) of which typical probe accuracy clos uncertainty corresp and higher which all <i>tisotropy</i>): in a field responds to the offs d.	ange of 30 MHz to 6 0 MHz to 6 GHz" 5: 900 MHz in TEM-ce tainties of NORMx,y Frequency Respons The uncertainty of it assessed based on 1 on frequency nor me rated but determined umerical linearization The parameters do 1 in RMS voltage acr at phantom using E- analytical field distrib sed for assessmust uncertainty voltage acr analytical field distrib sed for assessmust uncertainty voltage acr onds to that given fo lows extending the v I of low gradients reases set of virtual measure	or wireless communication devices GHz)", March 2010 all; f > 1800 MHz: R22 waveguide). ,z does not affect the E ² -field se Chart). This linearization is the frequency response is included the data of power sweep with CW adia. d based on the signal n parameters assessed based on not depend on frequency nor oss the diode. field (or Temperature Transfer butions based on power of the parameters applied for re given. These parameters are The sensitivity in TSL corresponds or <i>ConvF</i> . A frequency dependent validity from ± 50 MHz to ± 100 alized using a flat phantom ement center from the probe tip

COMMERCIAL-IN-CONFIDENCE

COMMERCIAL-IN-CONFIDENCE

EX3DV4-SN:3759

December 15, 2017

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3759

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.47	0.43	0.44	+ 10 1 %
DCP (mV) ^B	96.3	101.3	104.4	10.178

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	175.9	±2.7 %
		Y	0.0	0.0	1.0		176.6	
1000		Z	0.0	0.0	1.0		190.7	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
Х	41.32	316.6	37.15	11.64	0.646	5.078	0.000	0.575	1 009
Y	45.97	342.8	35.45	15.74	0.369	5 100	0.925	0.377	1.000
Ζ	41.91	321.1	37.19	13.86	1.049	5.067	0.000	0.617	1.008

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX3-3759_Dec17

Page 4 of 39

EX3DV4- SN:3759

December 15, 2017

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3759

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	43.5	0.87	11.17	11.17	11.17	0.13	1.20	± 13.3 %
750	41.9	0.89	10.54	10.54	10.54	0.26	1.13	± 12.0 %
835	41.5	0.90	10.15	10.15	10.15	0.20	1.15	± 12.0 %
900	41.5	0.97	9.96	9,96	9.96	0.22	1.12	± 12.0 %
1640	40.2	1.31	8.76	8.76	8.76	0.17	1.00	± 12.0 %
1750	40.1	1.37	8.66	8.66	8.66	0.24	0.87	± 12.0 %
1900	40.0	1.40	8.34	8.34	8.34	0.16	0.99	± 12.0 %
2100	39.8	1.49	8.38	8.38	8.38	0.17	0.90	± 12.0 %
2300	39.5	1.67	7.66	7.66	7.66	0.23	0.86	± 12.0 %
2450	39.2	1.80	7.32	7.32	7.32	0.25	0.86	± 12.0 %
2600	39.0	1.96	7.06	7.06	7.06	0.25	0.92	± 12.0 %
5200	36.0	4.66	4.51	4.51	4.51	0.40	1.80	± 13.1 %
5300	35.9	4.76	4.36	4.36	4.36	0.40	1.80	± 13.1 %
5500	35.6	4.96	3.87	3.87	3.87	0.40	1.80	± 13.1 %
5600	35.5	5.07	3.83	3.83	3.83	0.40	1.80	± 13.1 %
5800	35.3	5.27	3.88	3.88	3.88	0.40	1.80	+ 13 1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity and the uncertainty for the indicated frequency band. Frequency validity and the extended to ± 110 MHz. The validity of tissue parameters (c and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3759_Dec17

Page 5 of 39

EX3DV4-SN:3759

December 15, 2017

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3759

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	56.7	0.94	11.45	11.45	11.45	0.05	1.20	± 13.3 %
750	55.5	0.96	10.23	10.23	10.23	0.21	1.15	± 12.0 %
835	55.2	0.97	9.95	9.95	9.95	0.21	1.08	± 12.0 %
900	55.0	1.05	9.83	9.83	9.83	0.17	1.25	± 12.0 %
1640	53.7	1.42	8.79	8.79	8.79	0.26	0.83	± 12.0 %
1750	53.4	1.49	8.24	8.24	8.24	0.28	0.80	± 12.0 %
1900	53.3	1.52	7.95	7.95	7.95	0.14	1.20	± 12.0 %
2100	53.2	1.62	8.35	8.35	8.35	0.22	0.95	± 12.0 %
2300	52.9	1.81	7.64	7.64	7.64	0.26	0.86	± 12.0 %
2450	52.7	1.95	7.49	7.49	7.49	0.25	0.85	± 12.0 %
2600	52.5	2.16	7.20	7.20	7.20	0.22	0.90	± 12.0 %
5200	49.0	5.30	4.03	4.03	4.03	0.40	1.90	± 13.1 %
5300	48.9	5.42	3.88	3.88	3.88	0.40	1.90	± 13.1 %
5500	48.6	5.65	3.38	3.38	3.38	0.45	1.90	± 13.1 %
5600	48.5	5.77	3.29	3.29	3.29	0.45	1.90	± 13.1 %
5800	48.2	6.00	3.34	3.34	3.34	0.45	1.90	+ 13 1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. The validity of tissue parameters (c and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3759_Dec17

Page 6 of 39

COMMERCIAL-IN-CONFIDENCE

EX3DV4- SN:3759

December 15, 2017

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3759

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	0.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-3759_Dec17

Page 11 of 39

EX3DV4- SN:3759

December 15, 2017

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max Unc ^E (k=2)
0	CW	Х	0.00	0.00	1.00	0.00	175.9	± 2.7 %
		Y	0.00	0.00	1.00		176.6	
10010		Z	0.00	0.00	1.00		190.7	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	X	2.16	64.99	9.77	10.00	20.0	±9.6 %
		Y	3.58	71.18	12.76		20.0	
10011		Z	2.56	66.02	10.70		20.0	
CAB	UMIS-FDD (WCDMA)	X	0.82	64.99	13.21	0.00	150.0	± 9.6 %
		Y	0.93	65.90	14.15	Even and	150.0	
10012	IEEE 202 115 WIE 2 4 OUE (DDDDD 4	Z	0.83	65.44	13.47		150.0	
CAB	Mbps)	X	1.05	62.93	14.36	0.41	150.0	± 9.6 %
		Y	1.14	63.57	14.90		150.0	
10013		Z	1.06	63.23	14.54		150.0	
CAB	OFDM, 6 Mbps)	X	4.72	66.54	16.95	1.46	150.0	± 9.6 %
		Y	4.84	66.70	17.07		150.0	
10021-	GSM-FDD (TDMA, GMSK)	X	4.74	66.60 112.49	16.98 26.59	9.39	150.0 50.0	± 9.6 %
DAG		V	100.00	440.00	00.07		50.0	
		7	100.00	110.38	28.37		50.0	
10023-	GPRS-EDD (TDMA GMSK TN 0)	X	100.00	113.08	27.50	0.57	50.0	1000
DAC			100.00	112.09	20.45	9.57	50.0	± 9.6 %
		7	100.00	115.90	28.18		50.0	
10024- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	100.00	110.48	24.56	6.56	60.0	± 9.6 %
0/10		V	100.00	115.06	27.23		60.0	
		7	100.00	110.50	24.97		60.0	
10025- DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	X	3.88	67.91	24.69	12.57	50.0	± 9.6 %
		Y	5.94	82.56	33.20		50.0	
		Z	3.91	66.61	23.43		50.0	
10026- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	X	8.32	90.19	32.05	9.56	60.0	± 9.6 %
		Y	12.26	100.74	36.43		60.0	
		Z	9.34	91.12	31.85	1.200	60.0	
10027- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	100.00	109.42	23.29	4.80	80.0	± 9.6 %
		Y	100.00	117.00	26.96		80.0	
10028-	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	100.00	108.73 108.14	23.36 22.04	3.55	80.0 100.0	± 9.6 %
DAC								
		Y	100.00	118.82	27.05		100.0	
10000		Z	100.00	107.04	21.91	7.00	100.0	
DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	X	5.36	80.23	26.94	7.80	80.0	± 9.6 %
		Y	6.85	86.01	29.59		80.0	
10030-	IEEE 802.15.1 Bluetooth (GFSK, DH1)	X	100.00	107.97	27.25	5.30	70.0	± 9.6 %
Unn		V	100.00	11/ /6	26.13		70.0	
		7	100.00	107.80	23.28		70.0	
10031- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	100.00	94.76	15.26	1.88	100.0	± 9.6 %
		Y	100.00	115.48	24.25		100.0	
		7	9.25	80.85	12.65		100.0	

Appendix: Modulation Calibration Parameters

Certificate No: EX3-3759_Dec17

Page 12 of 39

10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	0.19	60.00	4.06	1.17	100.0	±9.6 %
		Y	100.00	117.02	23.90		100.0	
Same and a second	A REAL PROPERTY AND A REAL	Z	0.22	60.00	4 29		100.0	
10033- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	×	17.87	99.83	26.24	5.30	70.0	±9.6 %
		Y	100.00	129.86	35.03		70.0	
		Z	12.52	92.73	23.92		70.0	
10034-	IEEE 802.15.1 Bluetooth (PI/4-DQPSK,	X	2.49	74.13	15.92	1.88	100.0	+96%
CAA	DH3)	Y	5 30	85.11	20.98	1.00	100.0	10.0 /0
		7	2.68	74 20	15.81		100.0	
10035- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	×	1.53	69.18	13.51	1.17	100.0	± 9.6 %
		Y	2.50	75.76	17.30		100.0	
		Z	1.66	69.63	13.61		100.0	
10036- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	X	33.45	109.44	28.89	5.30	70.0	±9.6 %
		Y	100.00	130.34	35.25		70.0	
		Z	19.06	99.10	25.84		70.0	
10037- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	×	2.28	73.14	15.52	1.88	100.0	± 9.6 %
		Y	4.71	83.61	20.45		100.0	
		Z	2.46	73.29	15.43		100.0	
10038- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Х	1.55	69.55	13.79	1.17	100.0	± 9.6 %
		Y	2.54	76.23	17.60		100.0	
		Z	1.69	70.07	13.91		100.0	
10039- CAB	CDMA2000 (1xRTT, RC1)	Х	1.05	65.59	11.28	0.00	150.0	± 9.6 %
		Y	1.46	69.03	13.93		150.0	
		Z	1.09	66.10	11.54		150.0	
10042- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate)	X	100.00	107.37	23.43	7.78	50.0	± 9.6 %
		Y	100.00	111.98	25.64		50.0	
10011		Z	100.00	108.29	24.22		50.0	
10044- CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	×	0.15	122.74	12.16	0.00	150.0	±9.6 %
		Y	0.00	114.17	0.26		150.0	
		Z	0.24	126.15	5.88		150.0	
10048- CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	×	35.92	97.18	23.96	13.80	25.0	±9.6 %
		Y	100.00	115.10	29.09		25.0	
10040		Z	14.63	86.41	21.72		25.0	
CAA	Slot, 12)	X	78.89	108.38	25.78	10.79	40.0	±9.6 %
		Y	100.00	114.52	27.83		40.0	
10050	LIMTE TOD (TD SCOULD I SOLD	Z	19.09	91.43	22.08		40.0	
CAA	UMITS-TDD (TD-SCDMA, 1.28 Mcps)	X	30.58	103.53	27.64	9.03	50.0	± 9.6 %
		Y	100.00	125.91	34.38		50.0	
10059	EDGE EDD (TDMA SPOULTUS AS	Z	14.97	91.44	24.12		50.0	
DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	X	4.20	75.52	24.15	6.55	100.0	±9.6 %
		Y	5.07	79.42	26.03		100.0	
10050		Z	4.73	77.19	24.56		100.0	
CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	×	1.08	64.00	14.98	0.61	110.0	±9.6 %
		Y	1.19	64.87	15.66		110.0	
10000		Z	1.11	64.48	15.21		110.0	
10060- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	×	11.06	103.11	26.31	1.30	110.0	± 9.6 %
		Y	100.00	137.46	35.45		110.0	
		Z	23.10	110.82	27.74		110.0	

EX3DV4- SN:3759

Certificate No: EX3-3759_Dec17

Page 13 of 39

10061-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11	X	2.76	80.30	21.89	2.04	110.0	± 9.6 %
CAB	Mbps)							
		Y	4.09	86.73	24.67		110.0	
0000		Z	3.43	82.67	22.40		110.0	
0062-	Mbps)	X	4.50	66.42	16.30	0.49	100.0	± 9.6 %
AU	(MDD3)	V	4.62	66.61	16.42		100.0	
		7	4.02	66.47	16.33		100.0	
0063-	IEEE 802.11a/h WiFi 5 GHz (OFDM. 9	X	4.52	66.53	16.41	0.72	100.0	+96%
CAC	Mbps)		4.02	00.00	10.41	0.72	100.0	1 3.0 %
		Y	4.65	66.72	16.54		100.0	
		Z	4.53	66.58	16.44		100.0	
10064- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	X	4.79	66.79	16.65	0.86	100.0	± 9.6 %
		Y	4.93	66 99	16.78		100.0	
		Z	4.80	66.84	16.68		100.0	
10065-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18	X	4.66	66.69	16.75	1.21	100.0	± 9.6 %
CAC	Mbps)							- 0.0 /0
		Y	4.81	66.92	16.91	12.00	100.0	
		Z	4.68	66.75	16.78		100.0	
10066- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	X	4.69	66.73	16.94	1.46	100.0	± 9.6 %
0,10	mapay	Y	4.83	66.96	17.10		100.0	
		Z	4.71	66.81	16.97		100.0	
10067-	IEEE 802.11a/h WiFi 5 GHz (OFDM. 36	X	4.99	67.00	17.44	2.04	100.0	± 9.6 %
CAC	Mbps)							
		Y	5.13	67.17	17.58		100.0	
1000		Z	5.02	67.08	17.47	0.00	100.0	
10068- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	X	5.03	67.00	17.65	2.55	100.0	± 9.6 %
CAC	() () () () () () () () () ()	Y	5.18	67.24	17.83		100.0	
		Z	5.07	67.10	17.68		100.0	
10069-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54	X	5.11	67.03	17.85	2.67	100.0	± 9.6 %
CAC	(MDPS)	V	5.26	67.24	18.00		100.0	
		7	5.15	67.14	17.02		100.0	
10071-	IEEE 802 11g WiEi 2 4 GHz	X	4.82	66.65	17.00	1 99	100.0	+96%
CAB	(DSSS/OFDM, 9 Mbps)	~	4.02	00.00	11.20	1.00	100.0	1 2 0.0 70
		Y	4.94	66.82	17.41		100.0	
No. Westing		Z	4.85	66.72	17.30		100.0	2012 00210
10072-	IEEE 802.11g WiFi 2.4 GHz	X	4.80	66.96	17.50	2.30	100.0	± 9.6 %
CAB	(DSSS/OFDM, 12 Mbps)							
		Y	4.93	67.17	17.66		100.0	
10070		Z	4.83	67.06	17.53	0.00	100.0	1000
CAB	DSSS/OEDM 18 Mbps)	X	4.87	67.16	17.86	2.83	100.0	± 9.6 %
UND		Y	5.00	67.37	18.02		100.0	
		7	4.91	67.29	17.89		100.0	
10074-	IEEE 802.11g WiFi 2.4 GHz	X	4.87	67.10	18.02	3.30	100.0	± 9.6 %
CAB	(DSSS/OFDM, 24 Mbps)							
		Y	4.99	67.29	18.20		100.0	
		Z	4.92	67.25	18.06		100.0	
10075-	IEEE 802.11g WiFi 2.4 GHz	X	4.90	67.19	18.33	3.82	90.0	± 9.6 %
CAB	(DSSS/OFDM, 36 Mbps)	-			10.01			
		Y	5.03	67.42	18.54		90.0	
10070		Z	4.97	67.38	18.37	4.15	90.0	
10076- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	X	4.93	67.03	18.48	4.15	90.0	± 9.6 %
		Y	5.04	67.21	18.67	1000000	90.0	
		Z	5.00	67.24	18.53		90.0	
10077-	IEEE 802.11g WiFi 2.4 GHz	X	4.96	67.11	18.58	4.30	90.0	± 9.6 %
CAB	(D355/OFDM, 54 Mbps)	V	5.06	67.28	18.77		0.00	
		7	5.00	67.33	18.64		00.0	
	and the second se		1 1.1.1.1.4	GL. 10	10.04		1 20.0	

EX3DV4-SN:3759

December 15, 2017

Certificate No: EX3-3759_Dec17

Page 14 of 39

10081- CAB	CDMA2000 (1xRTT, RC3)	Х	0.53	61.78	8.60	0.00	150.0	± 9.6 %
		Y	0.71	64.03	11.02		150.0	
1.00%		7	0.52	61.92	8.65		150.0	
10082- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Fullrate)	X	3.64	66.77	6.58	4.77	80.0	± 9.6 %
		Y	0.77	60.00	4.67		80.0	
		Z	0.81	60.00	4.63		80.0	
10090- DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	100.00	110.59	24.63	6.56	60.0	±9.6 %
		Y	100.00	116.02	27.28		60.0	
		Z	100.00	110.63	25.04		60.0	
10097- CAB	UMTS-FDD (HSDPA)	X	1.61	66.33	14.40	0.00	150.0	± 9.6 %
		Y	1.72	66.87	15.01		150.0	
		Z	1.62	66.63	14.60		150.0	
10098- CAB	UMTS-FDD (HSUPA, Subtest 2)	X	1.57	66.26	14.36	0.00	150.0	± 9.6 %
		Y	1.69	66.81	14.97		150.0	
1000		Z	1.58	66.56	14.55		150.0	
10099- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	X	8.38	90.33	32.10	9.56	60.0	± 9.6 %
		Y	12.39	100.98	36.50		60.0	
		Z	9.40	91.22	31.88		60.0	
10100- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	Х	2.79	68.83	15.78	0.00	150.0	± 9.6 %
		Y	2.97	69.56	16.19		150.0	
		Z	2.82	69.11	15.92		150.0	
10101- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	Х	3.01	66.69	15.35	0.00	150.0	± 9.6 %
		Y	3.15	67.12	15.60		150.0	
		Z	3.02	66.82	15.43		150.0	
10102- CAD	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	3.13	66.73	15.48	0.00	150.0	± 9.6 %
		Y	3.25	67.12	15.71		150.0	
		Z	3.13	66.85	15.57		150.0	
10103- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	Х	5.88	75.21	20.34	3.98	65.0	± 9.6 %
1000		Y	6.97	77.87	21.50		65.0	
		Z	6.29	75.72	20.38		65.0	
10104- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	Х	5.85	73.04	20.17	3.98	65.0	± 9.6 %
		Y	6.55	74.85	21.04		65.0	
1010-		Z	6.18	73.51	20.24		65.0	
10105- CAD	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	X	5.43	71.43	19.75	3.98	65.0	± 9.6 %
		Y	6.19	73.62	20.81		65.0	
10100		Z	5.82	72.23	19.98		65.0	
10108- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	2.41	68.13	15.58	0.00	150.0	± 9.6 %
		Y	2.59	68.78	15.99		150.0	
		Z	2.44	68.41	15.73		150.0	
10109- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	2.66	66.50	15.15	0.00	150.0	± 9.6 %
		Y	2.80	66.92	15.46		150.0	
		Z	2.67	66.65	15.25		150.0	
10110- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	1.92	67.16	14.98	0.00	150.0	± 9.6 %
		Y	2.08	67.83	15.51		150.0	
		Z	1.94	67.46	15.16		150.0	
10111- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	2.35	67.19	15.19	0.00	150.0	± 9.6 %
UAL		Y	2.50	67.61	15.63		150.0	
		7	2 37	67.44	15.00		150.0	

EX3DV4- SN:3759

December 15, 2017

Certificate No: EX3-3759_Dec17

Page 15 of 39

10115	1 70120 00.00 00 10 00 00 00 00 0					2		-11 - 11 - S-
CAE	LIE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	2.79	66.58	15.25	0.00	150.0	± 9.6 %
		Y	2.93	66.95	15.54	Non-Rectify	150.0	
10110		Z	2.80	66.72	15.35		150.0	
CAE	64-QAM)	X	2.50	67.43	15.39	0.00	150.0	± 9.6 %
		Y	2.65	67.79	15.79		150.0	
		Z	2.52	67.68	15.55		150.0	
10114- CAC	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	X	4.95	66.85	16.21	0.00	150.0	± 9.6 %
		Y	5.06	67.04	16.27	Territoria de la	150.0	
		Z	4.95	66.90	16.25		150.0	
10115- CAC	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	X	5.21	66.93	16.27	0.00	150.0	± 9.6 %
		Y	5.33	67.15	16.34	2011	150.0	
		Z	5.21	66.98	16.30		150.0	
10116- CAC	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	X	5.04	67.04	16.23	0.00	150.0	±9.6 %
		Y	5.14	67.22	16.29		150.0	
		Z	5.04	67.09	16.27		150.0	
10117- CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	X	4.92	66.74	16.17	0.00	150.0	± 9.6 %
		Y	5.02	66.90	16.22		150.0	
		Z	4.92	66.78	16.21		150.0	
10118- CAC	IEEE 802.11n (HT Mixed, 81 Mbps, 16- QAM)	X	5.29	67.15	16.38	0.00	150.0	± 9.6 %
		Y	5.41	67.35	16.45	A	150.0	
		Z	5.29	67.20	16.42		150.0	
10119- CAC	IEEE 802.11n (HT Mixed, 135 Mbps, 64- QAM)	X	5.02	67.01	16.23	0.00	150.0	± 9.6 %
		Y	5.12	67.17	16.28		150.0	
		Z	5.03	67.05	16.27		150.0	
10140- CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	3.15	66.73	15.39	0.00	150.0	± 9.6 %
		Y	3.29	67.12	15.63		150.0	
		Z	3.16	66.85	15.47		150.0	
10141- CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	3.28	66.89	15.60	0.00	150.0	± 9.6 %
		Y	3.41	67.25	15.81		150.0	
		Z	3.29	67.01	15.69		150.0	
10142- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	1.66	66.78	14.23	0.00	150.0	± 9.6 %
		Y	1.85	67.64	15.04		150.0	
		Z	1.68	67.14	14.44		150.0	
10143- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	2.11	67.26	14.31	0.00	150.0	± 9.6 %
		Y	2.32	68.10	15.16		150.0	
		Z	2.15	67.60	14.52		150.0	
10144- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	1.90	65.04	12.67	0.00	150.0	± 9.6 %
		Y	2.11	65.93	13.60		150.0	
1		Z	1.92	65.23	12.81		150.0	
10145- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	0.80	61.27	8.23	0.00	150.0	± 9.6 %
		Y	1.06	63.61	10.59		150.0	
10110		Z	0.80	61.38	8.31		150.0	
10146- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	1.28	62.17	8.51	0.00	150.0	± 9.6 %
		Y	1.77	65.15	10.79		150.0	
		Z	1.35	62.63	8.87		150.0	
10147- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	1.38	62.84	8.99	0.00	150.0	± 9.6 %
CAE		Y	2.03	66.75	11.70		150.0	
		Z	1.47	63.45	9.42		150.0	

EX3DV4- SN:3759

December 15, 2017

Certificate No: EX3-3759_Dec17

Page 16 of 39

10149-	LTE-FDD (SC-FDMA, 50% RB, 20 MHz,	X	2.67	66.56	15.19	0.00	150.0	± 9.6 %
CAD	16-QAM)	V	0.04	00.00	45.50			
		7	2.81	66.98	15.50		150.0	
10150-	I TE-EDD (SC-EDMA 50% PR 20 MHz	Z V	2.00	66.72	15.30	0.00	150.0	
CAD	64-QAM)	^	2.19	00.03	15.30	0.00	150.0	± 9.6 %
		Y	2.93	67.01	15.58		150.0	
		Z	2.81	66.78	15.40		150.0	
10151-	LTE-TDD (SC-FDMA, 50% RB, 20 MHz,	X	6.35	78.26	21.62	3.98	65.0	± 9.6 %
GAD	QPSK)	V	7.59	81.00	22.02		05.0	
		7	6.72	01.02	22.83		65.0	
10152-	LTE-TOD (SC-EDMA 50% RB 20 MHz	X	5.20	72.00	21.54	2.00	65.0	
CAD	16-QAM)		5.50	73.00	19.79	3.98	65.0	± 9.6 %
		Y	6.11	74.99	20.82	1.23 2010	65.0	
		Z	5.70	73.46	19.84		65.0	
10153- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	5.78	74.16	20.68	3.98	65.0	± 9.6 %
		Y	6.51	76.00	21.62		65.0	
		Z	6.14	74.67	20.75		65.0	
10154- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	1.95	67.52	15.22	0.00	150.0	±9.6 %
		Y	2.13	68.20	15.75		150.0	
		Z	1.98	67.86	15.41		150.0	
10155- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	2.35	67.22	15.22	0.00	150.0	± 9.6 %
		Y	2.50	67.63	15.65		150.0	
		Z	2.37	67.47	15.38		150.0	
10156- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	1.47	66.38	13.62	0.00	150.0	± 9.6 %
		Y	1.68	67.54	14.70		150.0	
		Z	1.50	66.78	13.86		150.0	
10157- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	Х	1.69	65.05	12.29	0.00	150.0	±9.6 %
		Y	1.93	66.27	13.50		150.0	
		Z	1.71	65.29	12.45		150.0	
10158- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	Х	2.51	67.50	15.44	0.00	150.0	± 9.6 %
		Y	2.66	67.86	15.84		150.0	
		Z	2.53	67.75	15.60	10.00	150.0	
10159- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	Х	1.77	65.37	12.51	0.00	150.0	± 9.6 %
		Y	2.03	66.70	13.76		150.0	
and the second		Z	1.79	65.65	12.69		150.0	-
10160- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, OPSK)	X	2.49	67.67	15.54	0.00	150.0	± 9.6 %
		Y	2.62	68.01	15.83		150.0	
		Z	2.51	67.90	15.68		150.0	
10161- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-0AM)	X	2.68	66.56	15.17	0.00	150.0	± 9.6 %
		Y	2.83	66.94	15.49		150.0	
		Z	2.70	66.71	15.28		150.0	
10162- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	X	2.79	66.77	15.32	0.00	150.0	± 9.6 %
		Y	2.94	67.11	15.61		150.0	
		Z	2.81	66.92	15.43		150.0	
10166- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	Х	3.35	69.05	18.82	3.01	150.0	± 9.6 %
		Y	3.55	69.60	19.05		150.0	
		Z	3.42	69.49	19.09		150.0	
10167-	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-OAM)	X	4.02	71.54	19.06	3.01	150.0	± 9.6 %
CAE		Y	4.43	72 79	19.60		150.0	
		Z	4.17	72.13	19.36		150.0	
					10.00		100.0	

EX3DV4- SN:3759

Certificate No: EX3-3759_Dec17

Page 17 of 39

10168-	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz,	X	4.54	74.20	20.62	3.01	150.0	+9.6 %
CAE	64-QAM)		1.00					
		7	4.98	75.29	21.02		150.0	
10169-	LTE-FDD (SC-FDMA, 1 RB, 20 MHz,	X	2.76	67.82	18 24	3.01	150.0	+06%
CAD	QPSK)			01.02	10.24	5.01	150.0	± 9.0 %
		Y	2.98	69.21	18.88		150.0	
10170		Z	2.85	68.40	18.57		150.0	
CAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	3.64	73.02	20.34	3.01	150.0	± 9.6 %
		Y	4.26	75.86	21.46		150.0	
10171-	LTE-EDD (SC-EDMA 1 PR 20 MHz	 	3.89	74.12	20.86		150.0	
AAD	64-QAM)	~	3.00	68.98	17.51	3.01	150.0	± 9.6 %
		7	3.42	71.30	18.53		150.0	
10172-	LTE-TDD (SC-FDMA 1 RB 20 MHz	X	5.14	85.46	26.72	6.00	150.0	1000
CAD	QPSK)		11.04	00.40	20.73	6.02	65.0	± 9.6 %
		7	7.76	98.40	31.41		65.0	
10173-	LTE-TDD (SC-FDMA 1 RB 20 MHz	X	12 18	09.30	28.11	6.00	65.0	+0.0.01
CAD	16-QAM)		12.10	55.21	20.11	0.02	0.00	± 9.0 %
		Y	41.92	117.86	34.72		65.0	
		Z	14.14	96.40	28.17		65.0	
10174- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	8.79	88.48	25.35	6.02	65.0	± 9.6 %
		Y	24.68	106.58	31.03		65.0	
10175		Z	8.87	87.40	24.76		65.0	
10175- CAE	QPSK)	×	2.72	67.51	17.98	3.01	150.0	± 9.6 %
		Y	2.94	68.89	18.63	1000	150.0	
10170	LTE EDD (00 EDMA / DD (0.10)	Z	2.81	68.06	18.29		150.0	
CAE	16-QAM)	X	3.65	73.04	20.35	3.01	150.0	± 9.6 %
		Y	4.26	75.89	21.48		150.0	
10177-	LTE-EDD (SC EDMA 1 PR E MHZ	Z	3.90	74.15	20.87	0.04	150.0	
CAG	QPSK)		2.74	07.00	18.07	3.01	150.0	± 9.6 %
		7	2.97	69.04	18.72		150.0	
10178-	LTE-EDD (SC-EDMA 1 RB 5 MHz 16	X	2.00	72.96	18.39	2.04	150.0	1000
CAE	QAM)	^	4.22	75.66	20.24	3.01	150.0	± 9.6 %
ar is		7	3.86	73.00	21.30		150.0	
10179- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	3.28	70.83	18.77	3.01	150.0	± 9.6 %
		Y	3.79	73.43	19.85		150.0	
		Z	3.47	71.66	19.17		150.0	
10180- CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	3.00	68.92	17.47	3.01	150.0	± 9.6 %
		Y	3.41	71.23	18.48	1003	150.0	
10101		Z	3.14	69.56	17.78	2 AUGUSTU	150.0	
10181- CAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	2.74	67.63	18.06	3.01	150.0	±9.6 %
		Y	2.96	69.02	18.71		150.0	
10100		Z	2.83	68.20	18.38		150.0	
CAD	LIE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	3.61	72.84	20.23	3.01	150.0	± 9.6 %
A HILVE		Y	4.21	75.63	21.34		150.0	
10102		Z	3.86	73.90	20.74		150.0	
10183- AAC	64-QAM)	X	2.99	68.90	17.46	3.01	150.0	± 9.6 %
		Y	3.40	71.20	18.47		150.0	
-		Z	3.13	69.53	17.77		150.0	

EX3DV4- SN:3759

Certificate No: EX3-3759_Dec17

Page 18 of 39

10184- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	2.75	67.67	18.09	3.01	150.0	± 9.6 %
		Y	2.97	69.07	18 73		150.0	
		7	2.84	68.24	18./1		150.0	
10185- CAD	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	3.63	72.91	20.27	3.01	150.0	± 9.6 %
		Y	4.23	75.71	21.38		150.0	
		7	3.87	73.98	20.78		150.0	
10186-	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-	X	3.00	68.96	17.49	3.01	150.0	+060/
AAD	QAM)	V	3.42	71.27	19.50	5.01	150.0	19.0 %
		7	3.15	60.60	17.90		150.0	
10187- CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	2.76	67.74	18.16	3.01	150.0	± 9.6 %
		Y	2.98	69.13	18.80		150.0	
-		7	2.85	68.31	18.48		150.0	
10188- CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	3.74	73.54	20.65	3.01	150.0	± 9.6 %
		Y	4 38	76.43	21 78		150.0	
		7	4.01	74.70	21.10		150.0	
10189- AAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	3.06	69.34	17.75	3.01	150.0	± 9.6 %
		Y	3,50	71.73	18 79		150.0	
		7	3.21	70.02	18.00		150.0	
10193-	IEEE 802.11n (HT Greenfield, 6.5 Mbps	X	4 33	66 30	15.85	0.00	150.0	+0.0.0/
CAC	BPSK)	v	4.00	66.46	15.05	0.00	150.0	± 9.6 %
		7	4.40	66.34	15.90		150.0	
10194-	IEEE 802 11n (HT Greenfield 30 Mbos	2 V	4.33	66.50	15.90	0.00	150.0	
CAC	16-QAM)	~	4.49	66.58	15.99	0.00	150.0	± 9.6 %
_		Y	4.62	66.77	16.08		150.0	
10105		Z	4.49	66.63	16.03		150.0	
10195- CAC	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	X	4.53	66.61	16.01	0.00	150.0	± 9.6 %
		Y	4.66	66.80	16.10		150.0	
10100		Z	4.53	66.66	16.05		150.0	
10196- CAC	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	X	4.32	66.33	15.86	0.00	150.0	± 9.6 %
		Y	4.45	66.51	15.97	100000	150.0	
		Z	4.33	66.38	15.90		150.0	
10197- CAC	IEEE 802.11n (HT Mixed, 39 Mbps, 16- QAM)	X	4.50	66.60	16.00	0.00	150.0	± 9.6 %
		Y	4.63	66.79	16.10		150.0	
		Z	4.50	66.64	16.04		150.0	
10198- CAC	IEEE 802.11n (HT Mixed, 65 Mbps, 64- QAM)	X	4.52	66.62	16.02	0.00	150.0	± 9.6 %
		Y	4.66	66.81	16.11		150.0	
		Z	4.53	66.67	16.06		150.0	
10219- CAC	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	X	4.27	66.34	15.81	0.00	150.0	± 9.6 %
		Y	4.40	66.52	15.93		150.0	
		Z	4.28	66.39	15.86		150.0	
10220- CAC	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16- QAM)	X	4.49	66.56	15.99	0.00	150.0	± 9.6 %
		Y	4.62	66.75	16.09		150.0	
		Z	4.49	66.61	16.03		150.0	
10221- CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64- QAM)	X	4.54	66.56	16.01	0.00	150.0	± 9.6 %
		Y	4.67	66.75	16 10		150.0	
		Z	4.54	66.61	16.05		150.0	
10222- CAC	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	X	4.89	66.73	16.16	0.00	150.0	± 9.6 %
CAC		Y	5.00	66.91	16.22		150.0	
		Z	4.90	66.77	16.20		150.0	
			1-90		10.60		1 1 1 1 1 1	1

EX3DV4- SN:3759

Certificate No: EX3-3759_Dec17

Page 19 of 39

10223- CAC	IEEE 802.11n (HT Mixed, 90 Mbps, 16- QAM)	X	5.19	66.98	16.31	0.00	150.0	± 9.6 %
		Y	5.29	67.12	16.34		150.0	
		Z	5.19	67.02	16.35		150.0	
10224- CAC	IEEE 802.11n (HT Mixed, 150 Mbps, 64- QAM)	X	4.93	66.83	16.14	0.00	150.0	± 9.6 %
		Y	5.04	67.02	16.20		150.0	
		Z	4.94	66.87	16.17		150.0	
10225- CAB	UMTS-FDD (HSPA+)	X	2.58	65.45	14.55	0.00	150.0	± 9.6 %
		Y	2.72	65.79	14.95		150.0	
		7	2.58	65.57	14.65		150.0	
10226- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	X	13.21	96.88	28.71	6.02	65.0	± 9.6 %
den la la		Y	48.32	120.69	35.56		65.0	
		Z	15.42	98.09	28.79		65.0	
10227- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	12.96	95.10	27.51	6.02	65.0	±9.6 %
		Y	42.82	116.12	33.61		65.0	
		Z	14.64	95.75	27.45		65.0	
10228- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	7.91	91.63	29.01	6.02	65.0	±9.6 %
		Y	15.33	105.12	33.58	1.000	65.0	
		Z	9.96	94.76	29.71		65.0	
10229- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	12.28	95.39	28.16	6.02	65.0	±9.6 %
11210		Y	42.32	118.01	34.77		65.0	
		Z	14.25	96.52	28.22		65.0	
10230- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	11.97	93.63	26.97	6.02	65.0	±9.6 %
		Y	37.57	113.66	32.89		65.0	
		Z	13.49	94.26	26.91		65.0	
10231- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	7.51	90.51	28.54	6.02	65.0	±9.6 %
20.00		Y	14.32	103.60	33.03		65.0	10000
		Z	9.38	93.48	29.20		65.0	
10232- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	12.26	95.37	28.15	6.02	65.0	± 9.6 %
		Y	42.27	118.00	34.76		65.0	
		Z	14.22	96.50	28.21		65.0	0.00000000
10233- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	11.93	93.59	26.96	6.02	65.0	± 9.6 %
		Y	37.45	113.62	32.88		65.0	100000000000000000000000000000000000000
		Z	13.46	94.22	26.90		65.0	
10234- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	7.21	89.55	28.08	6.02	65.0	±9.6 %
PIE CIECCE		Y	13.54	102.26	32.49		65.0	
		Z	8.94	92.35	28.71	1	65.0	
10235- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	12.27	95.41	28.17	6.02	65.0	± 9.6 %
		Y	42.45	118.10	34.79		65.0	
		Z	14.25	96.54	28.23		65.0	
10236- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	12.08	93.76	27.01	6.02	65.0	±9.6 %
		Y	38.28	113.96	32.96		65.0	
		Z	13.60	94.38	26.94		65.0	
10237- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	7.52	90.56	28.56	6.02	65.0	±9.6 %
		Y	14.38	103.73	33.07		65.0	
		Z	9.40	93.55	29.23		65.0	1.0.00100
10238- CAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	12.23	95.34	28.14	6.02	65.0	±9.6 %
CAD		Y	42.21	117.99	34.76		65.0	
		Z	14.20	96.48	28.21		65.0	

EX3DV4-SN:3759

December 15, 2017

Certificate No: EX3-3759_Dec17

Page 20 of 39

10239-	LTE-TDD (SC-FDMA, 1 RB, 15 MHz,	X	11.89	93.55	26.95	6.02	65.0	± 9.6 %
CAD	64-QAM)	V	07.04	110 50				
		7	12.42	04.10	32.87		65.0	
10240-	LTE-TDD (SC-FDMA, 1 RB, 15 MHz,	X	7.50	94.19	28.55	6.02	65.0	+96%
CAD	QPSK)			00102	20.00	0.02	00.0	1 5.0 %
		Y	14.33	103.67	33.05		65.0	
10044		Z	9.37	93.50	29.21		65.0	
10241- CAA	16-QAM)	X	7.72	81.00	25.36	6.98	65.0	±9.6 %
		Y	8.93	83.90	26.72		65.0	
10242	LTE TOD (SC EDMA 50% DD 4 4 MIL	Z	8.35	81.91	25.55		65.0	
10242- CAA	64-QAM)	X	6.86	78.55	24.27	6.98	65.0	± 9.6 %
		Y	8.10	81.84	25.82		65.0	
10243-	LTE-TOD (SC EDMA EOV BR 1 4 MUS	4	7.56	79.84	24.62		65.0	
CAA	QPSK)	^	5.57	75.12	23.69	6.98	65.0	± 9.6 %
		Y	6.32	77.64	25.00		65.0	
10244-	I TE-TOD (SC-EDMA 50% PB 2 MU-	2 V	6.12 E.08	70.56	24.16	0.00	65.0	
CAB	16-QAM)	^	5.08	/3./1	17.06	3.98	65.0	± 9.6 %
		Y	7.25	79.22	19.87		65.0	
10245-	LTE-TOD (SC-EDMA 50% PR 3 MU-	L V	5.48	74.15	17.22	0.00	65.0	
CAB	64-QAM)	^	4.89	72.89	10.65	3.98	65.0	± 9.6 %
		Y 7	6.91	78.19	19.41		65.0	
10246-	LTE-TDD (SC-EDMA 50% RB 3 MHz	X	0.28	76.35	10.83	2.00	65.0	1000
CAB	QPSK)	^	4.70	70.38	18.35	3.98	65.0	± 9.6 %
		Y	7.68	83.90	21.89		65.0	
10247- CAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz,	X	4.98	76.12	18.11	3.98	65.0 65.0	± 9.6 %
	10 (27111)	V	5.60	76.01	10.55		05.0	
		7	4 75	70.01	17.48		65.0	
10248-	LTE-TDD (SC-FDMA, 50% RB, 5 MHz,	X	4.42	71.82	17.40	3.98	65.0	+06%
CAD	64-QAM)			11.02	17.10	0.00	05.0	± 9.0 %
		Y	5.49	75.14	19.17		65.0	
10249-	LTE-TOD (SC-EDMA 50% PR 5 MHz	4	4.69	72.06	17.18		65.0	
CAD	QPSK)	^	0.44	81.59	21.53	3.98	65.0	± 9.6 %
		Y	9.29	87.62	24.21		65.0	
10250-	LTE-TOD (SC-EDMA 50% RB 10 MH-	2 V	5.52	81.3/	21.26	0.00	65.0	
CAD	16-QAM)	^	0.03	75.83	20.90	3.98	65.0	± 9.6 %
		Y	6.42	78.16	22.13		65.0	
10251-	LTE-TDD (SC-EDMA 50% RB 10 MHz	2 V	5.92	76.34	20.95	0.00	65.0	
CAD	64-QAM)	^	5.17	73.33	19,42	3.98	65.0	± 9.6 %
		Y	5.99	75.59	20.68		65.0	
10252-	LTE-TOD (SC-EDMA 50% PR 40 MUS	2	5.50	73.74	19.45		65.0	
CAD	QPSK)	X	6.66	81.53	22.77	3.98	65.0	± 9.6 %
		Y	8.45	85.35	24.44		65.0	
10253-	TETDD (SC-EDMA 50% PR 15 MUS	4	7.14	81.76	22.64		65.0	
CAD	16-QAM)	X	5.29	72.55	19.53	3.98	65.0	± 9.6 %
		Y	5.97	74.40	20.54		65.0	
10054	I TE TOD (SC EDMA FOR DD IS NO	Z	5.60	72.99	19.59		65.0	
CAD	64-QAM)	X	5.65	73.58	20.31	3.98	65.0	± 9.6 %
		Y	6.34	75.34	21.26		65.0	
		Z	5.99	74.07	20.39		65.0	

EX3DV4- SN:3759

Certificate No: EX3-3759_Dec17

Page 21 of 39

10255- CAD	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	6.02	77.52	21.52	3.98	65.0	±9.6 %
		Y	7.10	80.07	22.69		65.0	
		Z	6.42	77.87	21.47	The state of the state	65.0	
10256- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	3.54	68.37	13.49	3.98	65.0	±9.6 %
		Y	5.29	74.03	16.69	Station (65.0	
		Z	3.86	68.87	13.74		65.0	
10257- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	3.42	67.60	13.01	3.98	65.0	±9.6 %
		Y	4.99	72.81	16.07		65.0	
		Z	3.73	68.11	13.28	10.202	65.0	
10258- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	3.13	69.87	14.54	3.98	65.0	±9.6 %
		Y	5.24	77.34	18.52		65.0	
10050		Z	3.34	69.92	14.48		65.0	
10259- CAB	16-QAM)	X	4.91	73.87	18.79	3.98	65.0	±9.6 %
		Y	5.94	76.85	20.50		65.0	i salas a
10000		Z	5.22	74.16	18.78		65.0	
10260- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	4.92	73.53	18.64	3.98	65.0	±9.6 %
		Y	5.92	76.42	20.33		65.0	
10001		Z	5.23	73.83	18.64		65.0	2010.001
10261- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	6.15	80.57	21.67	3.98	65.0	± 9.6 %
		Y	8.19	85.26	23.83		65.0	
		Z	6.54	80.61	21.49		65.0	
10262- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	5.51	75.75	20.85	3.98	65.0	± 9.6 %
		Y	6.40	78.10	22.09		65.0	
		Z	5.90	76.26	20.89		65.0	
10263- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	5.16	73.31	19.41	3.98	65.0	± 9.6 %
		Y	5.98	75.56	20.68		65.0	
		Z	5.49	73.72	19.45		65.0	1.000
10264- CAD	QPSK)	X	6.58	81.27	22.65	3.98	65.0	± 9.6 %
		Y	8.34	85.09	24.32		65.0	
		Z	7.05	81.50	22.52		65.0	
10265- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	5.38	73.01	19.80	3.98	65.0	± 9.6 %
		Y	6.11	74.99	20.82		65.0	
		Z	5.70	73.46	19.85		65.0	
10266- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	5.78	74.14	20.67	3.98	65.0	± 9.6 %
		Y	6.51	75.99	21.61		65.0	
10000		Z	6.13	74.65	20.74		65.0	
10267- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	6.33	78.21	21.60	3.98	65.0	± 9.6 %
		Y	7.56	80.96	22.81		65.0	
		Z	6.72	78.46	21.52		65.0	
10268- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	6.01	72.96	20.24	3.98	65.0	± 9.6 %
		Y	6.67	74.61	21.04		65.0	
1000-		Z	6.33	73.43	20.31		65.0	
10269- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	6.00	72.55	20.10	3.98	65.0	± 9.6 %
		Y	6.62	74.12	20.89		65.0	
		Z	6.32	73.03	20.19		65.0	
10270- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	6.14	75.26	20.57	3.98	65.0	± 9.6 %
		Y	6.99	77.24	21.47		65.0	
		7	6 48	75 59	20.55		65.0	

EX3DV4- SN:3759

December 15, 2017

Certificate No: EX3-3759_Dec17

Page 22 of 39

10274-	UMTS-FDD (HSUPA, Subtest 5, 3GPP	X	2.38	65.77	14.42	0.00	150.0	± 9.6 %
CAB	Rel8.10)	V	2.50	00.44	11.01			
		7	2.50	65.01	14.84		150.0	
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	1.36	66.07	14.03	0.00	150.0	± 9.6 %
		Y	1.49	66.85	14.75		150.0	
		Z	1.37	66.42	14.23		150.0	
10277- CAA	PHS (QPSK)	X	2.00	60.93	6.54	9.03	50.0	±9.6 %
		Y	2.12	61.80	7.32		50.0	
		Z	2.35	61.71	7.39		50.0	
10278- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	X	3.87	69.34	13.60	9.03	50.0	±9.6 %
		Y	7.52	79.85	18.67		50.0	
10270	PHS (OPSK PW 004MUL P-1-KO 00)	Z	4.12	69.28	13.80		50.0	
CAA	PHS (QPSK, BW 884MHZ, KOllott 0.38)	X	3.98	69.65	13.80	9.03	50.0	± 9.6 %
		Y	1.72	80.17	18.86		50.0	
10290-	CDMA2000 RC1 SO55 Full Pate	2 V	4.22	69.53	13.97	0.00	50.0	
AAB	Comparison, No 1, 5055, Full Rate	X	0.89	03.74	10.06	0.00	150.0	± 9.6 %
		7	1.20	64.00	12.44		150.0	
10291-	CDMA2000, RC3, SO55, Full Rate	X	0.57	61.67	9.51	0.00	150.0	10.00
AAB			0.02	01.07	0.01	0.00	150.0	±9.6 %
		7	0.69	63.86	10.91		150.0	
10292-	CDMA2000, RC3, SO32, Full Rate	X	0.52	63.56	9.86	0.00	150.0	±9.6 %
		Y	0.83	66.87	12.83		150.0	
10000		Z	0.60	63.91	10.02		150.0	
AAB	CDMA2000, RC3, SO3, Full Rate	X	0.80	66.95	12.03	0.00	150.0	±9.6 %
		Y	1.20	71.76	15.51		150.0	
10205	CDMA2000 PC1 SO3 1/8th Bata 25 6	4	0.86	68.00	12.49		150.0	
AAB	00 MA2000, RC1, 303, 1/801 Rate 25 II.	^	12.96	89.74	24.64	9.03	50.0	± 9.6 %
		Y	13.49	93.15	26.96	1961 B 11	50.0	
10297-	LTE-EDD (SC-EDMA 50% PR 20 MHz	Z	10.90	85.76	23.20		50.0	
AAC	QPSK)		2.43	68.23	15.64	0.00	150.0	±9.6 %
		7	2.60	68.68	16.05		150.0	
10298- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	1.11	64.06	15.80	0.00	150.0	± 9.6 %
		Y	1.37	66.07	12 92		150.0	
		Z	1.13	64.37	11.27		150.0	
10299- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	Х	1.86	65.69	11.54	0.00	150.0	±9.6 %
		Y	2.49	68.84	13.59		150.0	
	A 1001000 001400 000 000 000 000 000 000	Z	2.01	66.59	12.08	(ASSERTION OF	150.0	
10300- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	1.49	62.59	9.22	0.00	150.0	±9.6 %
		Y	1.85	64.50	10.79		150.0	
10304		Z	1.55	62.97	9.52		150.0	
10301- AAA	10MHz, QPSK, PUSC)	X	4.67	65.81	17.39	4.17	50.0	±9.6 %
		Y	4.91	66.35	17.80		50.0	
		Z	4.81	66.37	17.68		50.0	
10302- AAA	10MHz, QPSK, PUSC, 3 CTRL symbols)	X	5.07	65.96	17.83	4.96	50.0	±9.6 %
		Y	5.25	66.31	18.15		50.0	
		Z	5.15	66.23	17.95		50.0	

EX3DV4- SN:3759

December 15, 2017

Certificate No: EX3-3759_Dec17

Page 23 of 39