Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No.....: CTA23102700401 FCC ID.....:: 2ARNF-M07526

Compiled by

(position+printed name+signature)... File administrators Zoev Cao

Supervised by

(position+printed name+signature)... Project Engineer Amy Wen

Approved by

(position+printed name+signature)... RF Manager Eric Wang

Date of issue....: Nov. 06, 2023

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Address:

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name..... Hyperkin,inc

Address: 1939 W. Mission Blvd., Pomona, California, United States, 91766

Test specification:

FCC Part 15.247 Standard::

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description **NuForce Wireless Game Controller for PS4/PC/Mac**

Trade Mark: Cirka

Manufacturer: Shenzhen Auzmichain Electronic Co., Limited

Model/Type reference.....: M07526

CTATESTIN M07526-BK, M07526-WH, M07526-RD, M07526-TB Listed Models:

Modulation: GFSK, Π/4DQPSK, 8DPSK

Frequency..... From 2402MHz to 2480MHz

DC 3.7V From battery and DC 5.0V From external circuit Rating:

Result....:: CTATESTIN

Page 2 of 51 Report No.: CTA23102700401

TEST REPORT

NuForce Wireless Game Controller for PS4/PC/Mac Equipment under Test

Model /Type M07526

Listed Models M07526-BK, M07526-WH, M07526-RD, M07526-TB

Applicant Hyperkin,inc

Address 1939 W. Mission Blvd., Pomona, California, United States, 91766

Manufacturer Shenzhen Auzmichain Electronic Co.,Limited

3/F, Bldg 2, Yongi Science&Technology Park, xixiang Town, Baoan Address

District Shenzhen, China

Test Result: **PASS**

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test CTATE laboratory.

Report No.: CTA23102700401 Page 3 of 51

Contents

	Contents	
1	TEST STANDARDS	4
C C	TEST STANDARDS	***************************************
G VIII	aumus sy safes.	
Dasding	SUMMARY	<u>5</u>
		CTATESTIII 5 5 5 5 5
2.1	General Remarks	5
2.2	Product Description	5
2.3	Equipment Under Test	5
2.4	Short description of the Equipment under Test (EUT)	5
2.5	EUT operation mode	6
2.6	Block Diagram of Test Setup	6
2.7	Related Submittal(s) / Grant (s)	6
2.8	Modifications	6
	TES	
3_	TEST ENVIRONMENT	7
<u> </u>	ETT	E2.
3.1	Address of the test laboratory Test Facility	ESTAVI
3.2	Test Facility	ZES\7
3.3	Environmental conditions	7
3.4	Summary of measurement results	8
3.5	Statement of the measurement uncertainty	CTATEST7
3.6	Equipments Used during the Test	9
	_quipments cood during the root	•
	TEST THE STATE OF STA	
<u> </u>	TEST CONDITIONS AND RESULTS	<u></u>
4.1	AC Power Conducted Emission	11
4.2	Radiated Emission	14
4.3	Maximum Peak Output Power	11 14 20 21 25 27
1.4	20dB Bandwidth	21
4.5	Frequency Separation	25
4.6	Number of hopping frequency	27
4.7	Time of Occupancy (Dwell Time)	23
4.8	Out-of-band Emissions	33
4.9	Pseudorandom Frequency Hopping Sequence	42
4.10	Antenna Requirement	43
<u>5</u>	TEST SETUP PHOTOS OF THE EUT	44
_	-10	A.G.
_	Due Co Co	GTING
<u>6</u>	PHOTOS OF THE EUT	
		TES
		CTA
		CTA TESTING

Page 4 of 51 Report No.: CTA23102700401

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

Report No.: CTA23102700401 Page 5 of 51

SUMMARY

2.1 General Remarks

Date of receipt of test sample	10 10	Oct. 27, 2023
Testing commenced on		Oct. 27, 2023
Testing concluded on	:	Nov. 06, 2023

2.2 Product Description

	Oct. 27, 2023	- CTA	
:	Nov. 06, 2023		CTA
tion			
NuForce V	Wireless Game Contro	oller for PS4/PC/Mac	
M07526	70		
DC 3.7V F	From battery and DC 5	5.0V From external circuit	
Input: AC	100-240V 50/60Hz	TATESTING	3
V1.0		(Env. Ct.)	
V1.0			
Bluetooth	BR/EDR	.6	
GFSK, π/4	4DQPSK, 8DPSK	ESTING	
2402MHz	~2480MHz	CTA	
79		City	TA
1MHz		(EV)	
PCB antei	nna		
1.57 dBi	NG.		
	M07526 DC 3.7V F Model: EF Input: AC Output: D V1.0 V1.0 CTA2310: CTA2310: CTA2310: TA2310: AC	i Nov. 06, 2023 tion NuForce Wireless Game Contro M07526 DC 3.7V From battery and DC 8 Model: EP-TA20CBC Input: AC 100-240V 50/60Hz Output: DC 5V 2A V1.0 V1.0 CTA231027004-1# (Engineer scand) CTA231027004-2# (Normal sard) Bluetooth BR/EDR GFSK, π/4DQPSK, 8DPSK 2402MHz~2480MHz 79 1MHz PCB antenna	tion NuForce Wireless Game Controller for PS4/PC/Mac M07526 DC 3.7V From battery and DC 5.0V From external circuit Model: EP-TA20CBC Input: AC 100-240V 50/60Hz Output: DC 5V 2A V1.0 V1.0 CTA231027004-1# (Engineer sample) CTA231027004-2# (Normal sample) Bluetooth BR/EDR GFSK, π/4DQPSK, 8DPSK 2402MHz~2480MHz 79 1MHz PCB antenna

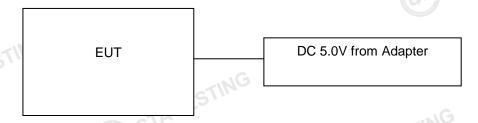
Equipment Under Test

2.3 Equipment Under Test			TESTIN	NG.	3	
Power supply system utilised	k		CTA.		271	
Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz	
		0	12 V DC	0	24 V DC	
		•	Other (specified in blank belo	ow		

DC 3.7V From battery and DC 5.0V From external circuit

Short description of the Equipment under Test (EUT)

This is a NuForce Wireless Game Controller for PS4/PC/Mac. For more details, refer to the user's manual of the EUT.


Page 6 of 51 Report No.: CTA23102700401

2.5 EUT operation mode

The Applicant provides communication tools software (Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test.

Operation Frequ	lency.	TATESTING	
peration requ	Channel	Frequency (MHz)	
	00	2402	
. C.	01	2403	
UNG	:	:	The way the first
	38	2440	
	39	2441	
	40	2442	
	C. V.	-STIME	
	77	2479	
	78	2480	
2.6 Block D	iagram of Test Setup	CTA CTA	

Block Diagram of Test Setup

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 **Modifications**

No modifications were implemented to meet testing criteria.

Page 7 of 51 Report No.: CTA23102700401

TEST ENVIRONMENT

Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory
Accreditation to perform electromagnetic emission measurement

CAB identifier: CN0127 ISED#: 27890

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

CTA TESTING During the measurement the environmental conditions were within the listed ranges:

Radiated Emission:

tadiated Elimeelein	
Temperature:	24 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

AC Power Conducted Emission:

Temperature:	25 ° C
TES!	
Humidity:	46 %
CAN U.	
Atmospheric pressure:	950-1050mbar

Conducted testina:

onaactea teetiing.	
Temperature:	25 ° C
Humidity:	44 %
Atronous aria a na antiva	050 4050
Atmospheric pressure:	950-1050mbar
CTATE	TESTIN

Page 8 of 51 Report No.: CTA23102700401

3.4 Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel	Reco In Re		Test result
§15.247(a)(1)	Carrier Frequency separation	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK	⊠ Middle	Compliant
§15.247(a)(1)	Number of Hopping channels	GFSK П/4DQPSK 8DPSK	⊠ Full	GFSK	⊠ Full	Compliant
§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK		Compliant
§15.247(a)(1)	Spectrumbandwidth of aFHSS system20dB bandwidth	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.247(b)(1)	Maximum output peak power	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	Compliant
§15.247(d)	Band edgecompliance conducted	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Highest	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Highest	Compliant
§15.205	Band edgecompliance radiated	GFSK П/4DQPSK 8DPSK		GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Highest	Compliant
§15.247(d)	TX spuriousemissions conducted	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	Compliant
§15.247(d)	TX spuriousemissions radiated	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	GFSK	✓ Lowest✓ Middle✓ Highest	Compliant
§15.209(a)	TX spurious Emissions radiated Below 1GHz	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK	⊠ Middle	Compliant
§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	GFSK		Compliant

Remark:

- The measurement uncertainty is not included in the test result. 1.
- 2. We tested all test mode and recorded worst case in report

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density		0.57 dB	(1)
Spectrum bandwidth	/	1.1%	(1)

Page 9 of 51 Report No.: CTA23102700401

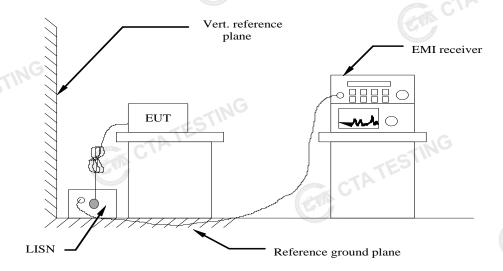
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

3.6 Equipments	Used during the	e Test				
Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date	
LISN	R&S	ENV216	CTA-308	2023/08/02	2024/08/01	
LISN	R&S	ENV216	CTA-314	2023/08/02	2024/08/01	
EMI Test Receiver	R&S	ESPI	CTA-307	2023/08/02	2024/08/01	
EMI Test Receiver	R&S	ESCI	CTA-306	2023/08/02	2024/08/01	
Spectrum Analyzer	Agilent	N9020A	CTA-301	2023/08/02	2024/08/01	
Spectrum Analyzer	G R&S	FSP	CTA-337	2023/08/02	2024/08/01	
Vector Signal generator	Agilent	N5182A	CTA-305	2023/08/02	2024/08/01	
Analog Signal Generator	R&S	SML03	CTA-304	2023/08/02	2024/08/01	
WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2023/08/02	2024/08/01	
Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2023/08/02	2024/08/01	
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16	
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12	
Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16	
Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06	
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2023/08/02	2024/08/01	
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2023/08/02	2024/08/01	
Directional coupler	NARDA	4226-10	CTA-303	2023/08/02	2024/08/01	
High-Pass Filter	_ XingBo	XBLBQ-GTA18	CTA-402	2023/08/02	2024/08/01	
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2023/08/02	2024/08/01	
Automated filter bank	Tonscend	JS0806-F	CTA-404	2023/08/02	2024/08/01	
Power Sensor	Agilent	U2021XA	CTA-405	2023/08/02	2024/08/01	
Amplifier	Schwarzbeck	BBV9719	CTA-406	2023/08/02	2024/08/01	

Report No.: CTA23102700401 Page 10 of 51


Test Equipment	st Equipment Manufacturer		Version number	Calibration Date	Calibration Due Date	
EMI Test Software Tonscend		TS®JS32-RE	5.0.0.2	N/A	N/A	
EMI Test Software	EMI Test Software Tonscend		5.0.0.1	N/A	N/A	
RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A	
RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A	

Report No.: CTA23102700401 Page 11 of 51

TEST CONDITIONS AND RESULTS

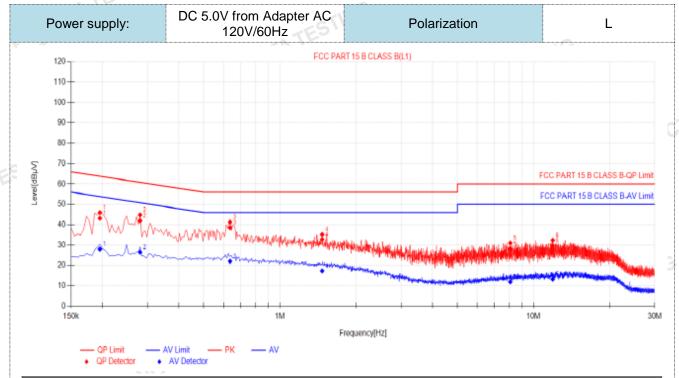
AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT.The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

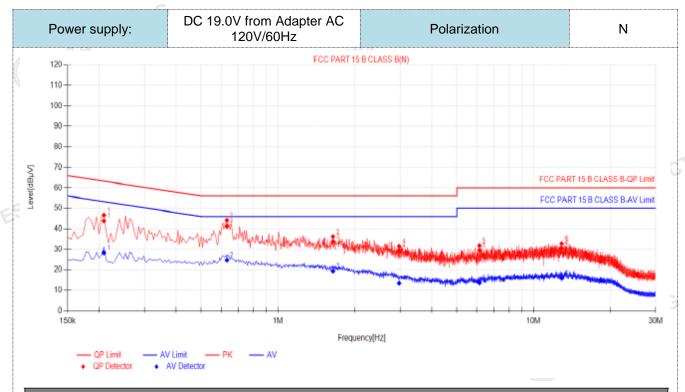

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Eroguepov renge (MHz)	Limit (dBuV)							
Frequency range (MHz)	Quasi-peak	Average						
0.15-0.5	66 to 56*	56 to 46*						
0.5-5	56	46						
5-30	60	50						
* Decreases with the logarithm of the frequency.								

TEST RESULTS

1. All modes of GFSK, Π/4 DQPSK and 8DPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:



Final	Final Data List													
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dΒμV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict			
1	0.195	10.08	33.09	43.17	63.82	20.65	17.94	28.02	53.82	25.80	PASS			
2	0.2805	9.95	32.06	42.01	60.80	18.79	16.62	26.57	50.80	24.23	PASS			
3	0.636	10.00	28.49	38.49	56.00	17.51	12.06	22.06	46.00	23.94	PASS			
4	1.464	9.90	22.90	32.80	56.00	23.20	7.38	17.28	46.00	28.72	PASS			
5	8.079	10.28	17.80	28.08	60.00	31.92	1.71	11.99	50.00	38.01	PASS	-		
6	11.913	10.27	19.47	29.74	60.00	30.26	3.06	13.33	50.00	36.67	PASS	٦		

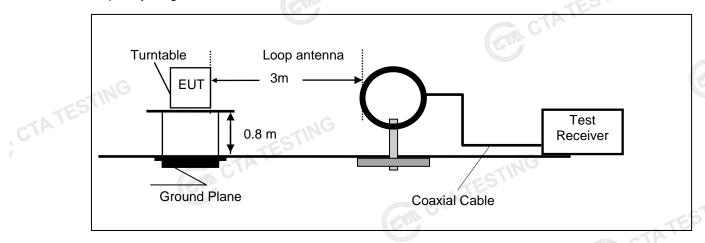
Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB)

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
 - CTA TESTING 4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V)

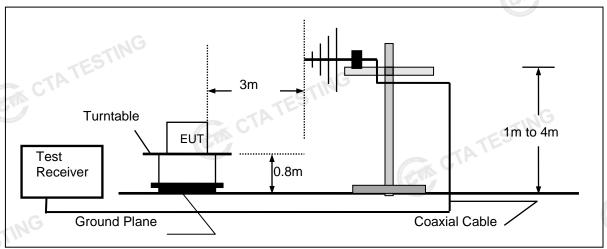
Page 13 of 51 Report No.: CTA23102700401

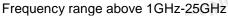
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBμV]	ΑV Value [dBμV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict	
1	0.2085	9.96	33.85	43.81	63.26	19.45	18.39	28.35	53.26	24.91	PASS	
2	0.6315	10.12	31.12	41.24	56.00	14.76	14.61	24.73	46.00	21.27	PASS	
3	1.6395	10.15	23.75	33.90	56.00	22.10	9.24	19.39	46.00	26.61	PASS	
4	2.976	10.24	19.13	29.37	56.00	26.63	3.29	13.53	46.00	32.47	PASS	
5	6.144	10.28	19.21	29.49	60.00	30.51	3.45	13.73	50.00	36.27	PASS	
6	12.8985	10.41	20.05	30.46	60.00	29.54	5.47	15.88	50.00	34.12	PASS	
	.QP Value tor (dB)=in	` ' '		• •	• ,	`	•				GTA C	

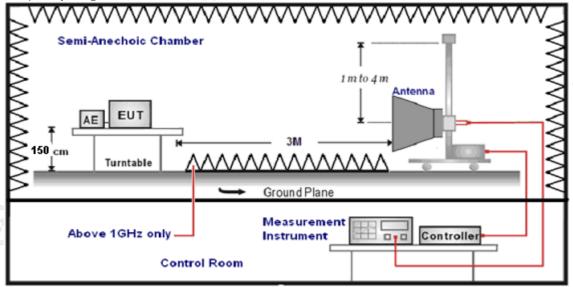
CTA TESTING


- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$
 - 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$

Page 14 of 51 Report No.: CTA23102700401


4.2 **Radiated Emission**


TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Page 15 of 51 Report No.: CTA23102700401

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- Radiated emission test frequency band from 9KHz to 25GHz. 5.
- The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance	Ter I
9KHz-30MHz	Active Loop Antenna	3	72) 1104
30MHz-1GHz	Ultra-Broadband Antenna	3	
1GHz-18GHz	Double Ridged Horn Antenna	3	
18GHz-25GHz	Horn Anternna	1	

Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	
1GHz-40GHz	Sweep time=Auto	Peak
IGHZ-40GHZ	Average Value: RBW=1MHz/VBW=10Hz,	reak
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

sample calculation is as follows:	
FS = RA + AF + CL - AG	CTATES
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	(-Car.)

Transd=AF +CL-AG

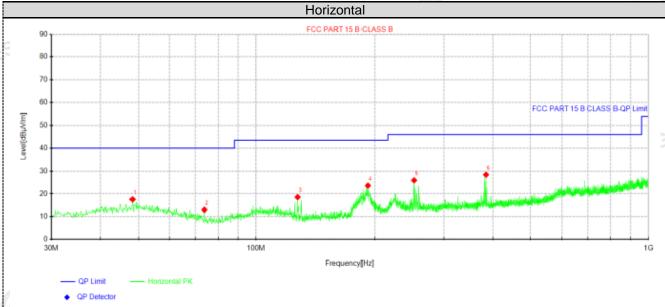
RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance	Radiated (dBµV/m)	Radiated (µV/m)
	(Meters)		
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

Page 16 of 51 Report No.: CTA23102700401

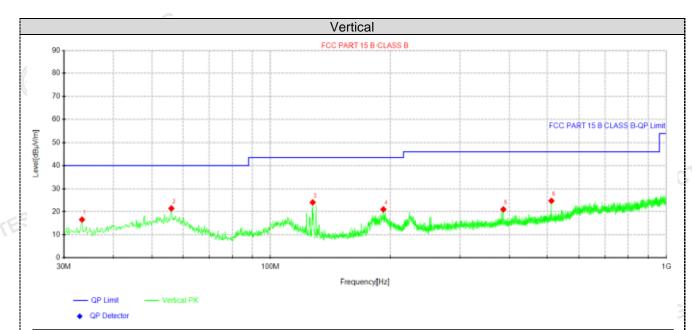

TEST RESULTS

Remark:

CTATE

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- We measured Radiated Emission at GFSK,π/4 DQPSK and 8DPSK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode.
- For below 1GHz testing recorded worst at GFSK DH5 middle channel. 3.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz



Susp	ected Data	List								
NO	Freq.	Reading	Level	Level Factor Limit Margin Height		Height	Angle	Dolorita		
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	48.3088	29.07	17.53	-11.54	40.00	22.47	100	192	Horizontal	
2	73.65	28.93	12.99	-15.94	40.00	27.01	100	0	Horizontal	
3	127.606	35.08	18.51	-16.57	43.50	24.99	100	159	Horizontal	
4	191.868	37.51	23.62	-13.89	43.50	19.88	100	248	Horizontal	
5	251.523	38.57	25.95	-12.62	46.00	20.05	100	327	Horizontal	
6	384.05	39.03	28.42	-10.61	46.00	17.58	100	215	Horizontal	

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Report No.: CTA23102700401 Page 17 of 51

Susp	ected Data	List							
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolovity
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	33.2738	30.72	16.53	-14.19	40.00	23.47	100	216	Vertical
2	56.0688	33.62	21.41	-12.21	40.00	18.59	100	357	Vertical
3	127.848	40.65	24.05	-16.60	43.50	19.45	100	33	Vertical
4	191.99	34.87	20.99	-13.88	43.50	22.51	100	45	Vertical
5	386.111	31.56	20.99	-10.57	46.00	25.01	100	45	Vertical
6	511.968	33.90	24.73	-9.17	46.00	21.27	100	78	Vertical

CTATE

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Report No.: CTA23102700401 Page 18 of 51

For 1GHz to 25GHz

Note: GFSK , $\pi/4$ DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

GFSK (above 1GHz)

Freque	ncy(MHz)):	24	02	Pola	arity:	HORIZONTAL			
Frequency (MHz)			Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	61.85	PK	74	12.15	66.12	32.33	5.12	41.72	-4.27	
4804.00	44.80	AV	54	9.20	49.07	32.33	5.12	41.72	-4.27	
7206.00	53.80	PK	74	20.20	54.32	36.6	6.49	43.61	-0.52	
7206.00	42.56	AV	54	11.44	43.08	36.6	6.49	43.61	-0.52	

_	- 117												
	Frequency(MHz):			24	02	Pola	arity:	VERTICAL					
	Frequency (MHz) Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)				
ſ	4804.00	59.57	PK	74	14.43	63.84	32.33	5.12	41.72	-4.27			
	4804.00	42.13	AV	54	11.87	46.40	32.33	5.12	41.72	-4.27			
	7206.00	51.35	PK	74	22.65	51.87	36.6	6.49	43.61	-0.52			
Ī	7206.00	39.85	AV	54	14.15	40.37	36.6	6.49	43.61	-0.52			

Freque	ncy(MHz)):	24	41	Pola	arity:	HORIZONTAL		NL
Frequency (MHz)		ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	61.18	PK	74	12.82	65.06	32.6	5.34	41.82	-3.88
4882.00	43.83	AV	54	10.17	47.71	32.6	5.34	41.82	-3.88
7323.00	52.46	PK	74	21.54	52.57	36.8	6.81	43.72	-0.11
7323.00	41.93	AV	54	12.07	42.04	36.8	6.81	3.72	-0.11

Freque	ncy(MHz)	:	24	41	Polarity:		VERTICAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	58.56	PK	74	15.44	62.44	32.6	5.34	41.82	-3.88
4882.00	41.82	AV	54	12.18	45.70	32.6	5.34	41.82	-3.88
7323.00	50.75	PK	74	23.25	50.86	36.8	6.81	43.72	-0.11
7323.00	40.29	AV	54	13.71	40.40	36.8	6.81	43.72	-0.11

Freque	ency(MHz):		2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	60.68	PK	74	13.32	63.76	32.73	5.66	41.47	-3.08
4960.00	45.91	AV	54	8.09	48.99	32.73	5.66	41.47	-3.08
7440.00	53.93	PK	74	20.07	53.48	37.04	7.25	43.84	0.45
7440.00	42.14	PK	54	11.86	41.69	37.04	7.25	43.84	0.45

Freque	ncy(MHz):		2480		Polarity:		VERTICAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	58.01	PK	74	15.99	61.09	32.73	5.66	41.47	-3.08
4960.00	43.63	AV	54	10.37	46.71	32.73	5.66	41.47	-3.08
7440.00	51.25	PK	74	22.75	50.80	37.04	7.25	43.84	0.45
7440.00	41.07	PK	54	12.93	40.62	37.04	7.25	43.84	0.45

Page 19 of 51 Report No.: CTA23102700401

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Note: GFSK, π/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

GFSK

Freque	ncy(MHz)	:	240	02	Pola	arity:	Н	IORIZONTA	\L
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	60.74	PK	74 G	13.26	71.16	27.42	4.31	42.15	-10.42
2390.00	43.35	AV	54	10.65	53.77	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	240	02	Pola	arity:	VERTICAL		
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	58.56	PK	74	15.44	68.98	27.42	4.31	42.15	-10.42
2390.00	41.58	AV	54	12.42	52.00	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	248	80	Pola	arity:	Н	HORIZONTAL	
Frequency (MHz)	Emis Lev		Limit	Margin	Raw Value	Antenna Factor	Cable Factor	Pre- amplifier	Correction Factor
(IVITIZ)	(dBu)	V/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
2483.50	(dBu) 60.22	V/m) PK	(dBuV/m) 74	(dB) 13.78	(dBuV) 70.33	(dB/m) 27.7	(dB) 4.47		(dB/m) -10.11
			,	` ,		· · · · · · · · · · · · · · · · · · ·	, ,	(dB)	, ,
2483.50 2483.50	60.22	PK AV	74	13.78 9.54	70.33 54.57	27.7	4.47 4.47	(dB) 42.28	-10.11 -10.11
2483.50 2483.50	60.22 44.46	PK AV : :ssion	74 54	13.78 9.54	70.33 54.57	27.7 27.7	4.47 4.47	(dB) 42.28 42.28	-10.11 -10.11
2483.50 2483.50 Freque Frequency	60.22 44.46 ncy(MHz) Emis Lev	PK AV : :ssion	74 54 24 Limit	13.78 9.54 80 Margin	70.33 54.57 Pola Raw Value	27.7 27.7 arity: Antenna Factor	4.47 4.47 Cable Factor	(dB) 42.28 42.28 VERTICAL Preamplifier	-10.11 -10.11 Correction Factor

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- CTA TESTING 5. The other emission levels were very low against the limit.

Page 20 of 51 Report No.: CTA23102700401

Maximum Peak Output Power

Limit

The Maximum Peak Output Power Measurement is 125mW (20.97).

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to CTATE the powersensor.

Test Configuration

Test Results

Type	Channel 00 39	Output power (dBm) -1.10 -0.42	Limit (dBm) 20.97	Result
GFSK			20.07	ATES.
GFSK	39	-0.42	20.07	_
		İ	20.97	Pass
	78	0.31		
ING	00	-0.22		
π/4DQPSK	39	0.48	20.97	Pass
CIL	78	1.16		
1	00	-0.27	TING	
8DPSK	39	0.47	20.97	Pass
	78	1.15	CTA.	Car

Page 21 of 51 Report No.: CTA23102700401

20dB Bandwidth

Limit

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration

Test Results

<u>Test Results</u>			CTAT
Modulation	Channel	20dB bandwidth (MHz)	Resul
TING	CH00	1.002	
GFSK	CH39	1.002	
CTA.	CH78	0.987	
Carl	CH00	1.329	NG
π/4DQPSK	CH39	1.290	Pass
	CH78	1.284	
	CH00	1.278	
8DPSK	CH39	1.305	
ING	CH78	1.320	

Test plot as follows:

Page 25 of 51 Report No.: CTA23102700401

Frequency Separation

LIMIT

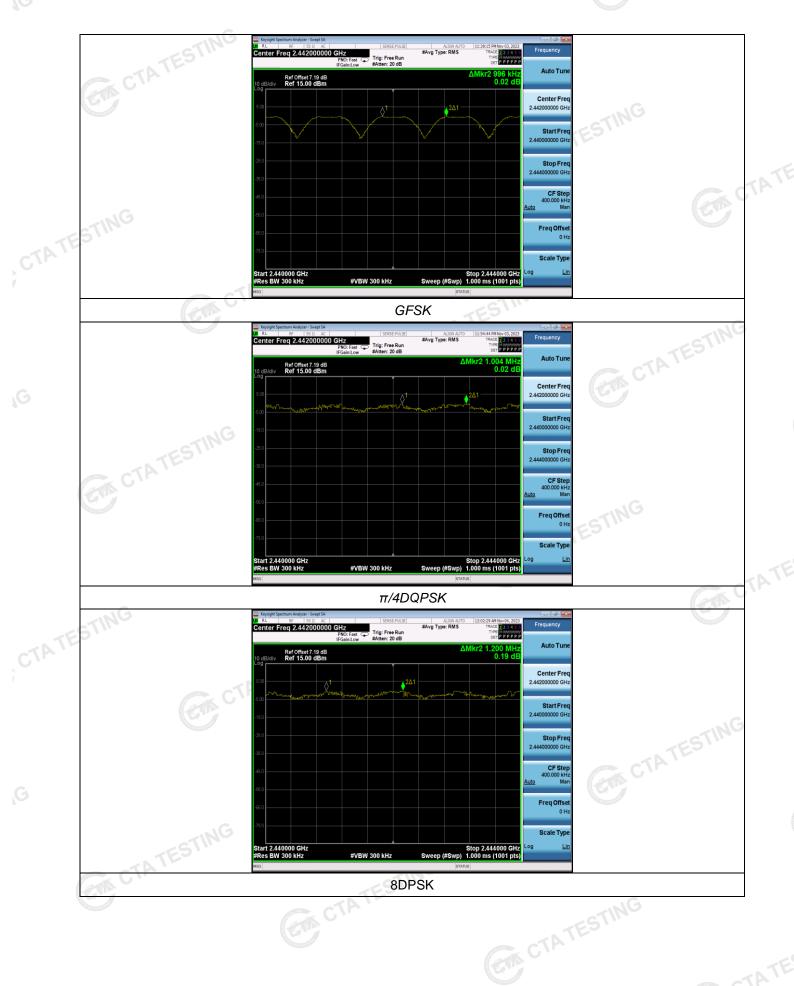
According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW.

TEST CONFIGURATION

TEST RESULTS


TEST RESULTS		CTATES CTATES	_	TESTING	
Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result	
GFSK	CH38	0.996	25KHz or 2/3*20dB	Pass	
GFSK	CH39	0.990	bandwidth	1 033	
π/4DQPSK	CH38	1 004	25KHz or 2/3*20dB	Pass	
II/4DQF3K	CH39	1.004	bandwidth	Fass	
8DPSK	CH38	1 200	25KHz or 2/3*20dB	Door	
ODPSK	CH39	1.200	bandwidth	Pass	

Note:

We have tested all mode at high, middle and low channel, and recorded worst case at middle

Test plot as follows: CTATESTING

Page 26 of 51 Report No.: CTA23102700401

Page 27 of 51 Report No.: CTA23102700401

Number of hopping frequency

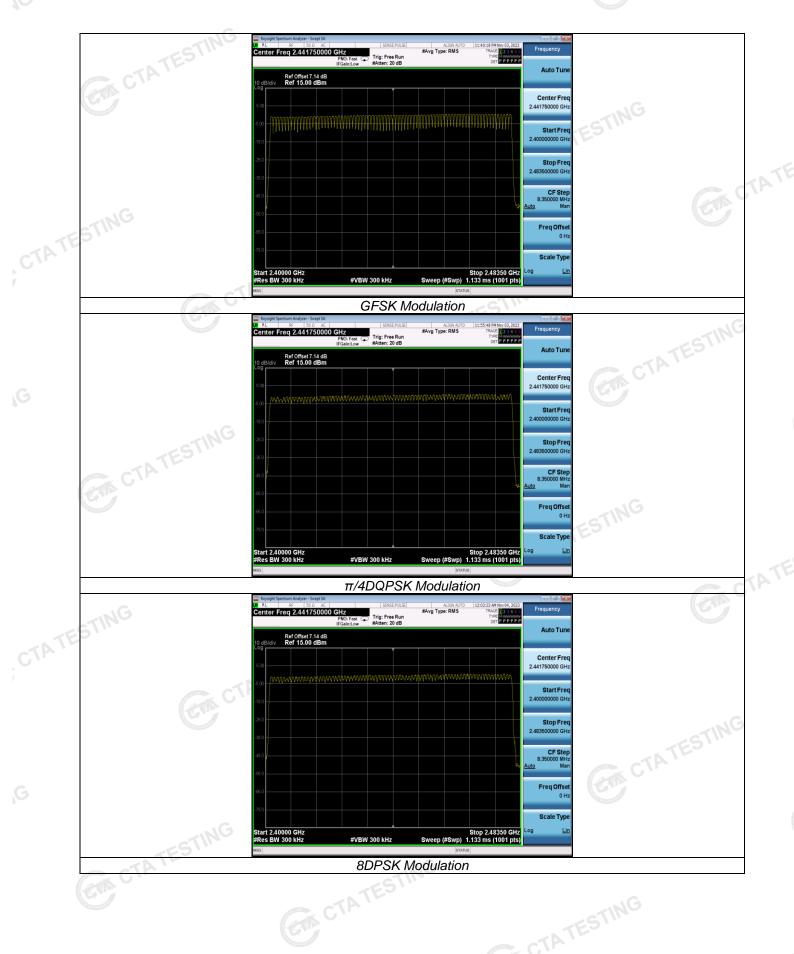
Limit C

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Procedure

CTATE The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with 100 KHz RBW and 300 KHz VBW.

Test Configuration



Test Results

Test Results	CTA	(E)	STING
Modulation	Number of Hopping Channel	Limit	Result
GFSK	79	(2)	
π/4DQPSK	79	≥15	Pass
8DPSK	79		

Test plot as follows:

Report No.: CTA23102700401 Page 28 of 51

Page 29 of 51 Report No.: CTA23102700401

Time of Occupancy (Dwell Time)

Limit

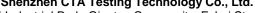
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

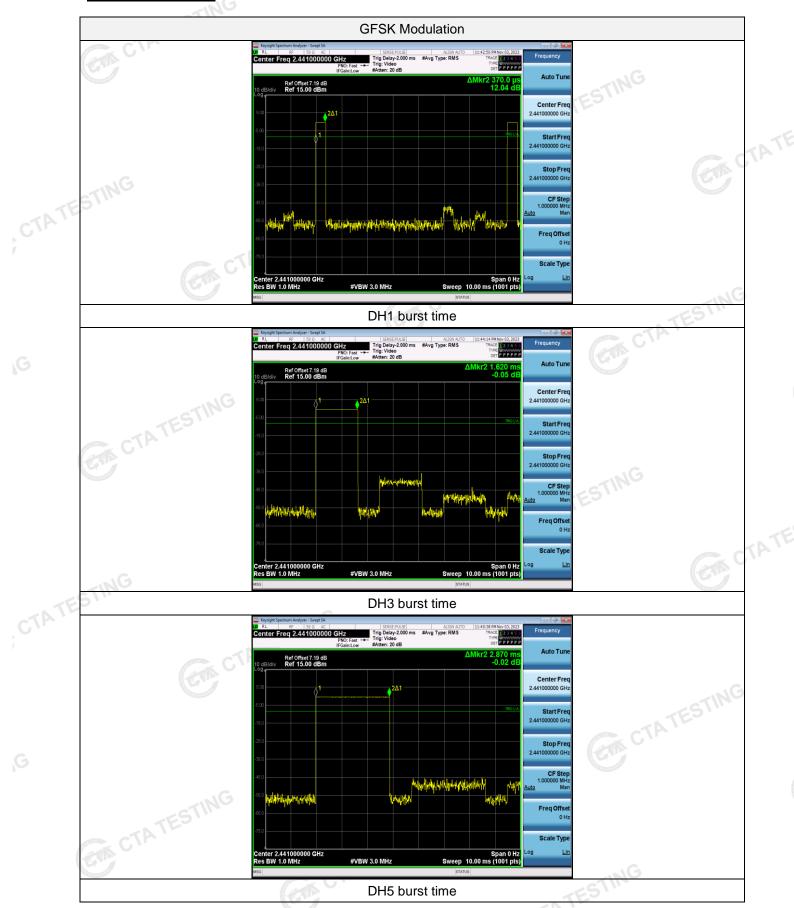
Test Configuration

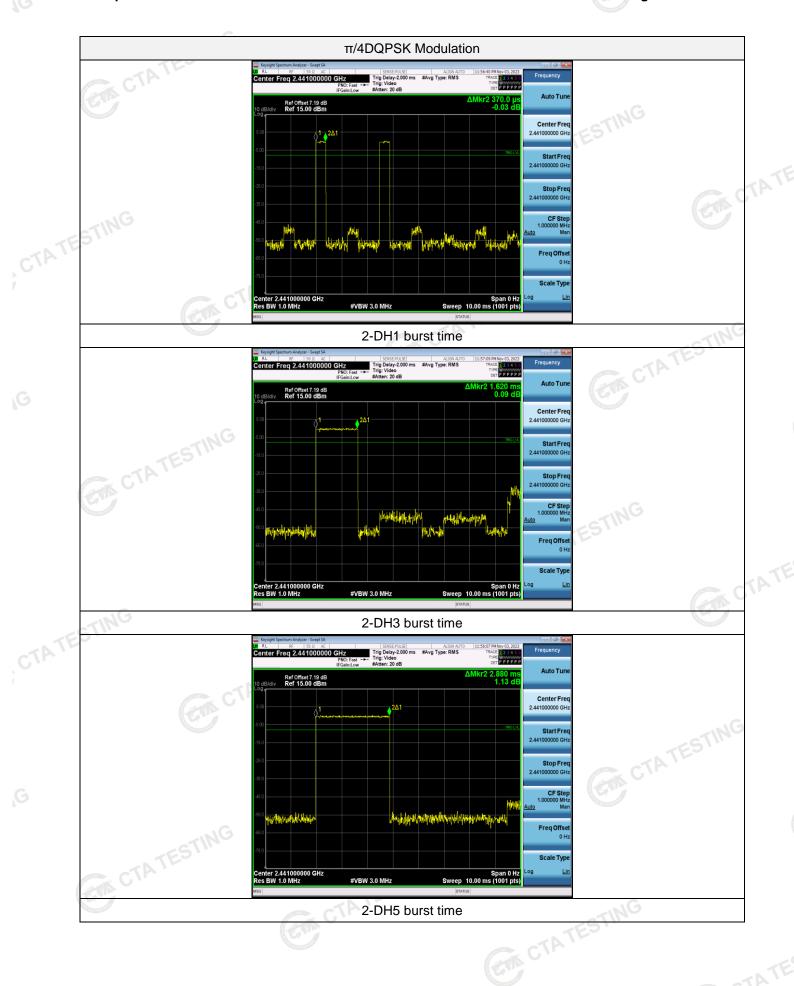
Test Results

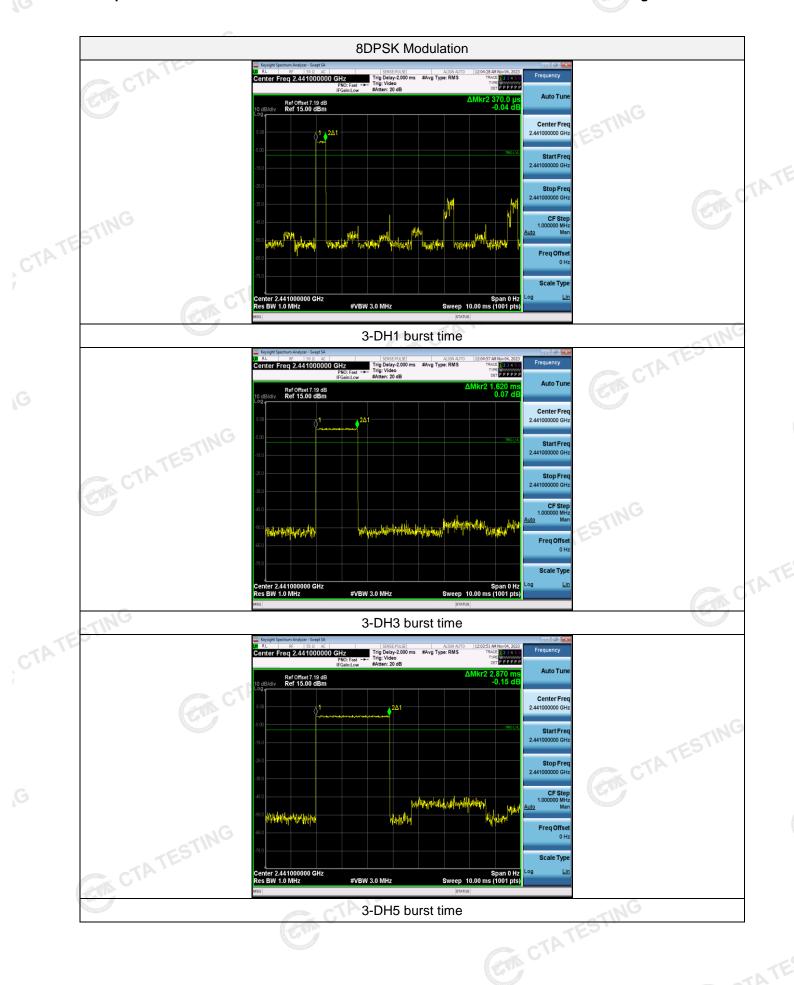

Test Results		(en	CTATES		TESTING
Modulation	Packet	Burst time (ms)	Dwell time (s)	Limit (s)	Result
	DH1	0.37	0.118	7511111	
GFSK	DH3	1.62	0.259	0.40	Pass
TES	DH5	2.87	0.306		
CIL	2-DH1	0.37	0.118		
π/4DQPSK	2-DH3	1.62	0.259	0.40	Pass
	2-DH5	2.88	0.307	TESTIN	
	3-DH1	0.37	0.118	CTA	
8DPSK	3-DH3	1.62	0.259	0.40	Pass
	3-DH5	2.87	0.306		C

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) \times (1600 \div 2 \div 79) \times 31.6 Second for DH1, 2-DH1, 3-DH1


Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3


Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5

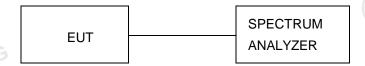


Page 30 of 51 Report No.: CTA23102700401

Test plot as follows:

Report No.: CTA23102700401 Page 33 of 51

Out-of-band Emissions 4.8

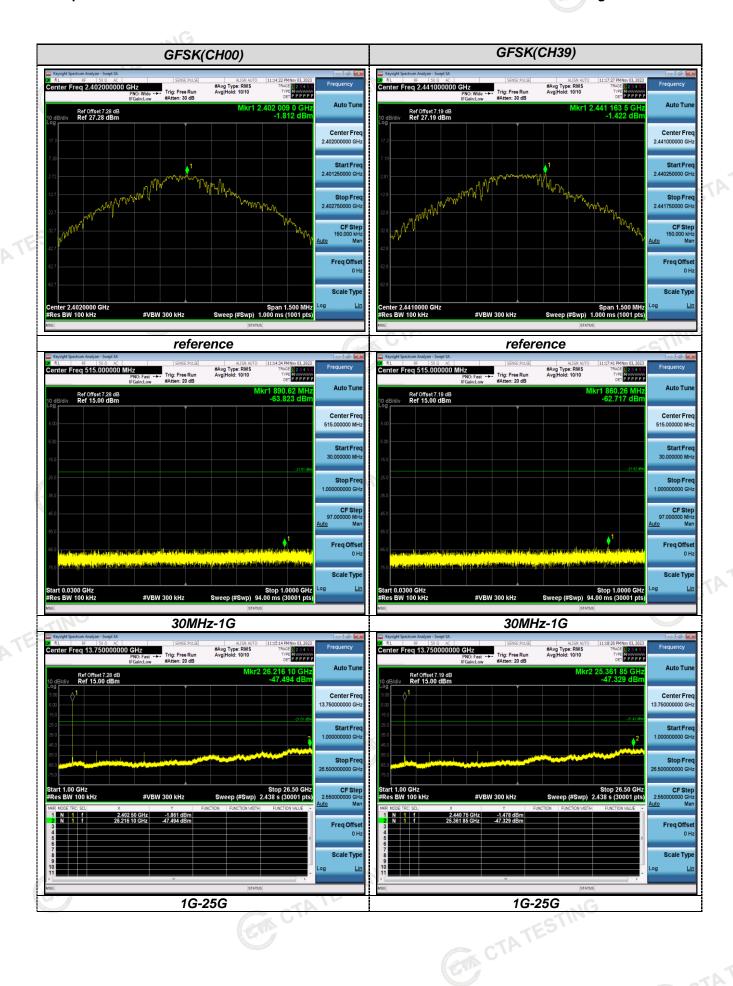

Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

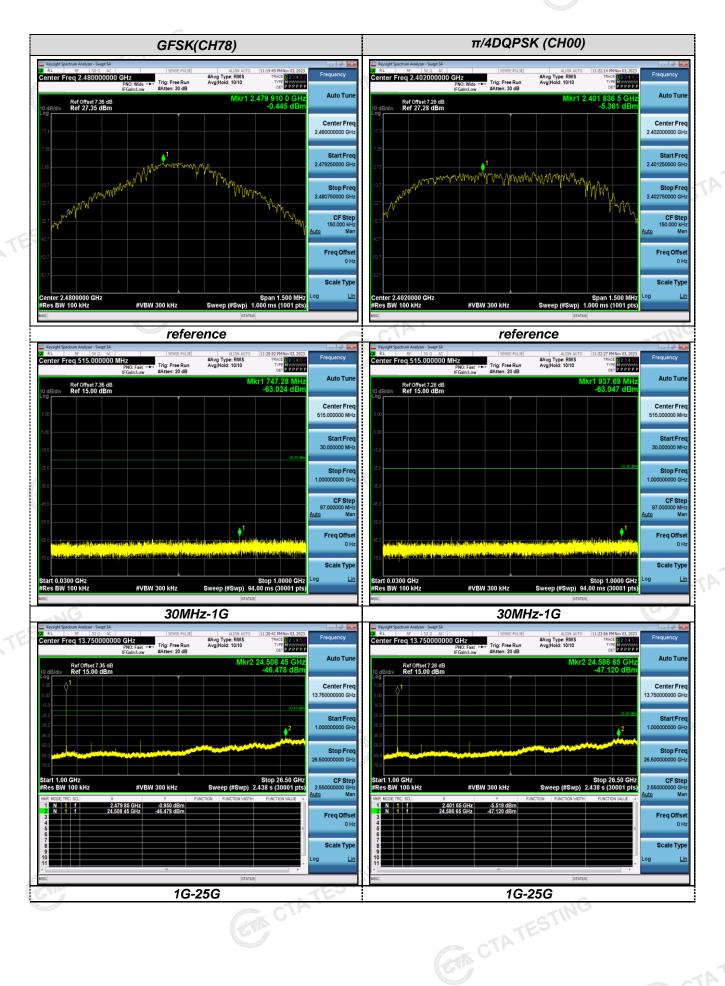
Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTA TESTING made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration



Test Results


Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5

Test plot as follows:

Page 35 of 51 Report No.: CTA23102700401

