FCC Part 15, Subpart B, Class B					
	TEST REPORT				
Shenzh	en Jiayz photo industrial., Ltd				
2.4	4G wireless microphone				
Test I	Model: BY-WM4 PRO RXU				
Additional Model N	o.: BY-WM4 PRO-K5, BY-WM4 PRO-K6				
Prepared for : Address :	Shenzhen Jiayz photo industrial., Ltd A16 Builing, Intelligent Terminal Industrial Park of Sililcon Valley Power, Guanla, Longhua District, Shenzhen, China				
	Shenzhen LCS Compliance Testing Laboratory Ltd. 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Shajing Street, Baoan District, Shenzhen, China (+86)755-82591330 (+86)755-82591332 www.LCS-cert.com webmaster@LCS-cert.com				
Date of receipt of test sampleNumber of tested samplesSerial numberDate of TestDate of Report	April 02, 2020 1 Prototype April 02, 2020 ~ April 07, 2020 April 14, 2020				

FCC TEST REPORT FCC Part 15, Subpart B, Class B

Report Reference No	: LCS200301011AEA					
Date Of Issue	Date Of Issue [:] April 14, 2020					
	: Shenzhen LCS Compliance Testi	u				
	: 101, 201 Bldg A & 301 Bldg C, Juji Street, Baoan District, Shenzhen, C	China				
Testing Location/ Procedure	: Full application of Harmonised star Partial application of Harmonised s Other standard testing method	ndards ■ tandards □				
Applicant's Name	[:] Shenzhen Jiayz photo industrial.	, Ltd				
Address	[:] A16 Builing, Intelligent Terminal Ind Valley Power, Guanla, Longhua Dis					
Test Specification						
Standard	[:] FCC Part 15, Subpart B, Class B, A	ANSI C63.4 -2014				
Test Report Form No	LCSEMC-1.0					
TRF Originator	: Shenzhen LCS Compliance Testing Laboratory Ltd.					
Master TRF	: Dated 2011-03					
SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. is acknowledged as copyright owner and source of the material. SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.						
Test Item Description	: 2.4G wireless microphone					
Trade Mark	: BOYA					
Test Model	Test Model : BY-WM4 PRO RXU					
Ratings	Ratings : Input: DC 5V, 0.5W					
Result : Positive						
Compiled by:	Supervised by:	Approved by:				
Ray Young	Jin Wang	Grino Ling				
Ray Yang / File administrators	Jin Wang / Technique principal					

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 2 of 18 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ARN3BYWM4PRORXU Report No.: LCS200301011AEA

FCC -- TEST REPORT

Test Report No. :	LCS200301011AEA	

April 14, 2020 Date of issue

Test Model	: BY-WM4 PRO RXU
EUT	: 2.4G wireless microphone
	: Shenzhen Jiayz photo industrial., Ltd
	: A16 Builing, Intelligent Terminal Industrial Park of Sililcon Valley Power, Guanla, Longhua District, Shenzhen, China
Telephone	
Fax	:/
Manufacturer	: Shenzhen Jiayz photo industrial., Ltd
Address	: A16 Builing, Intelligent Terminal Industrial Park of Sililcon Valley Power, Guanla, Longhua District, Shenzhen, China
Telephone	
Fax	:/
Factory	:/
Address	:/
Telephone	
Fax	:/

Test Result according to the standards on page 6: Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
000	April 14, 2020	Initial Issue	Gavin Liang

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 4 of 18

TABLE OF CONTENTS

Test Report Description	Page
1. SUMMARY OF STANDARDS AND RESULTS	6
1.1. Description of Standards and Results	6
2. GENERAL INFORMATION	7
2.1. Description of Device (EUT)	7
2.2. Support Equipment List	7
2.3. Description of Test Facility	7
2.4. Statement of the Measurement Uncertainty	
2.5. Measurement Uncertainty	
3. TEST RESULTS	9
3.1. POWER LINE CONDUCTED EMISSION MEASUREMENT	9
3.2. Radiated emission Measurement	
4. TEST SETUP PHOTOGRAPHS OF EUT	
5. EXTERIOR PHOTOGRAPHS OF THE EUT	
6. INTERIOR PHOTOGRAPHS OF THE EUT	

1. SUMMARY OF STANDARDS AND RESULTS

1.1. Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below.

EMISSION				
Description of Test Item	Standard	Limits	Results	
	FCC Part 15, Subpart B, Class B, ANSI C63.4 -2014			
Radiated disturbance	FCC Part 15, Subpart B, Class B, ANSI C63.4 -2014	Class B	PASS	
N/A is an abbreviation for Not Applicable.				

There was 2 test Modes. TM1 to TM2 were shown below:

TM1 : Operate in 2.4G Receive mode;

TM2 : Idle mode

***Note:

1. All test modes were tested, but we only recorded the worst case in this report.

2. GENERAL INFORMATION

2.1. Description of Device (EUT)

EUT	: 2.4G wireless microphone
Trade Mark	: BY
List Model No.	BY-WM4 PRO-K5, BY-WM4 PRO-K6
Model Declaration	PCB board, structure and internal of these model(s) are the same, So no additional models were tested.
Test Model	: BY-WM4 PRO RXU
Power Supply	: Input: DC 5V, 0.5W

Highest internal frequency (Fx)	Highest measured frequency			
Fx ≤ 108 MHz	1 GHz			
108 MHz < Fx ≤ 500 MHz	2 GHz			
500 MHz < Fx ≤ 1 GHz	5 GHz			
Fx > 1 GHz	5 × Fx up to a maximum of 6 GHz			
NOTE 1 For FM and TV broadcast receivers, Fx is determined from the highest				
frequency generated or used excluding the local oscillator and tuned				
frequencies.				
Where Fx is unknown, the radiated emission measurements shall be performed				
up to 6 GHz.				

2.2. Support Equipment List

Name	Manufacturers	M/N	S/N

2.3. Description of Test Facility

Site Description EMC Lab.

: FCC Registration Number is 254912.

Industry Canada Registration Number is 9642A.

ESMD Registration Number is ARCB0108.

UL Registration Number is 100571-492.

TUV SUD Registration Number is SCN1081.

TUV RH Registration Number is UA 50296516-001.

NVLAP Registration Code is 600167-0.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 7 of 18

2.4. Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

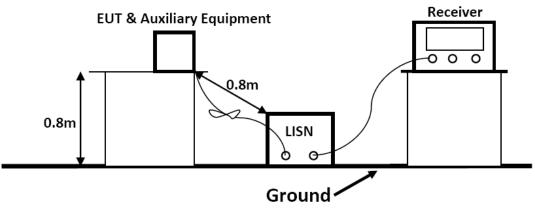
Test	Parameters	Expanded Uncertainty (Ulab)	Expanded Uncertainty (Ucispr)
Conducted Emission	Level accuracy (9kHz to 150kHz) (150kHz to 30MHz)	± 2.63 dB ± 2.35 dB	± 3.8 dB ± 3.4 dB
Radiated Emission	Level accuracy (30MHz to 1000MHz)	\pm 3.48 dB	\pm 5.3 dB
Radiated Emission	Level accuracy (above 1000MHz)	\pm 3.90 dB	\pm 5.2 dB

2.5. Measurement Uncertainty

(1) Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus.

(2) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor of k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

3. TEST RESULTS


3.1. POWER LINE CONDUCTED EMISSION MEASUREMENT

3.1.1. Test Equipment

The following test equipments are used during the power line conducted measurement:

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	EMI Test Software	EZ	EZ-EMC	/	N/A
2	EMI Test Receiver	R&S	ESPI	101840	2019-06-11
3	Artificial Mains	R&S	ENV216	101288	2019-06-12
4	10dB Attenuator	SCHWARZBECK	MTS-IMP-136	261115-001 -0032	2019-06-11

3.1.2.Block Diagram of Test Setup

3.1.3.Test Standard

Power Line Conducted Emission Limits (Class B)

F	requenc	;y	Limit (dBµV)					
	(MHz)		Quasi-peak Level	Average Level				
0.15	~	0.50	66.0 ~ 56.0 *	56.0 ~ 46.0 *				
0.50	1	5.00	56.0	46.0				
5.00	~	30.00	60.0	50.0				
NOTE1-The lower limit shall apply at the transition frequencies.								

NOTE2-The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

3.1.4.EUT Configuration on Test

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 9 of 18 3.1.5. Operating Condition of EUT

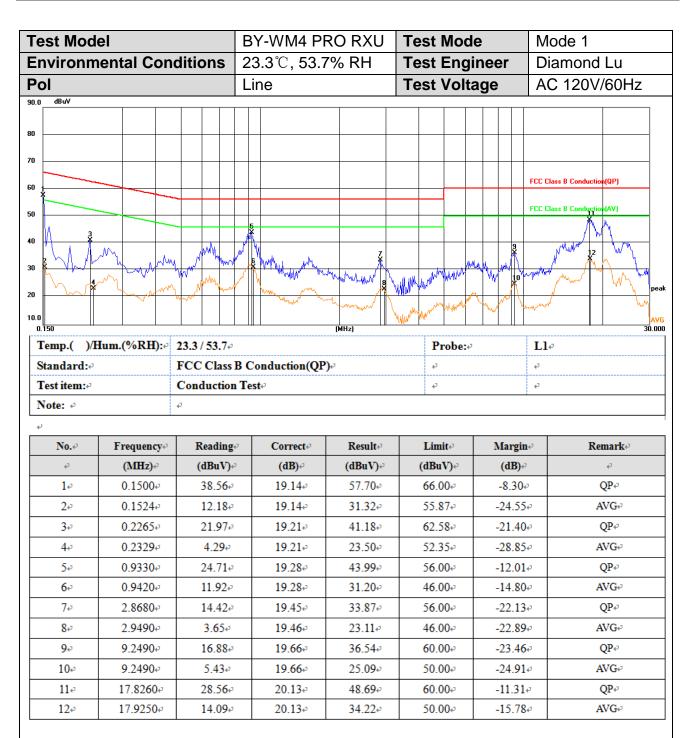
3.1.5.1.Setup the EUT as shown on Section 3.1.2

3.1.5.2. Turn on the power of all equipments.

3.1.5.3.Let the EUT work in measuring Mode 1 and measure it.

3.1.6.Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC/ANSI C63.4-2014 on Conducted Emission Measurement.


The bandwidth of the test receiver is set at 9kHz.

The frequency range from 150kHz to 30MHz is investigated

3.1.7.Test Results

PASS.

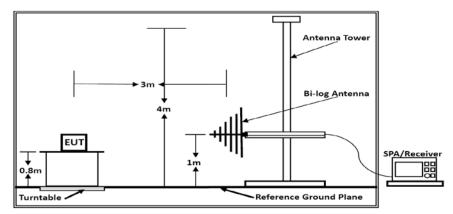
The test result please refer to the next page.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 11 of 18

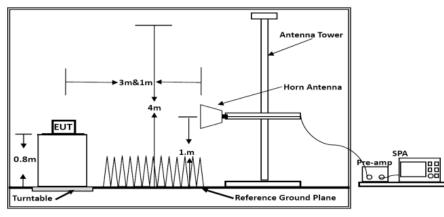
st Moc	lel		BY-WM4 P	RO RXU	Test Mod	le	Mode 1		
vironn	nental Cor	ditions	23.3℃, 53 .	7% RH	Test Eng	ineer	Diamond Lu		
			Neutral		Test Volt	age	AC 120V/60Hz		
dBu¥							·		
							FCC Class B Conduction(QP)		
							FCC Class B Conduction(AV)		
٨		3	X			9	<u>ANN</u>		
"ha a	Δ.		1 & how had have the	Z		mmini	my mum 12 M		
	- may may			www.www.	WILLING MANNA		- March		
* how	-my-my		- Marries and L		1940 - Andrew	AM }			
					WHANNA MARY				
50 emn ()/	Hum (%RH):@	23 3 / 53 74		(MHz)	Prohe		No		
e mp.() /.	Hum.(%RH):↩		Conduction(OF		Probe:	þ	No o		
	· · · · · · · · · · · · · · · · · · ·		Conduction(QF Cest?			ρ			
emp.()// andard:~	· · · · · · · · · · · · · · · · · · ·	FCC Class B			ø	p	ę		
emp.()/ andard:به est item:به	· · · · · · · · · · · · · · · · · · ·	FCC Class B Conduction			ø	ρ	ę		
emp.()/ andard:به est item:به	· · · · · · · · · · · · · · · · · · ·	FCC Class B Conduction			ø	e Margin	دم د		
emp.()/. andard:२ est item:२ ote: २		FCC Class B Conduction 7	Cest+2) _v	نې نې		دم د		
emp.()/. andard:، est item:، ote: ، No.،	Frequency	FCC Class B Conduction 7	Cest? Correct?	')↓ Result↓	् २ Limit	Margin	e Remarke		
emp.()/ andard: م est item: م ote: م No. م م	Frequency.	FCC Class B Conduction 7 ح Reading (dBuV)	Ceste Correcte (dB)e). Result (dBuV).	ې ب Limit (dBuV)	Margin (dB)+3	ο ο Remark ο ο QPο ο		
emp.()/. andard:« est item:» ote: « No.« v 1.«	Frequency (MHz) 0.1500	FCC Class B Conduction T ح Reading (dBuV) 41.56	Correct (dB) 19.14 19.14 19.23	•),₀ Result₀ (dBuV)₀ ² 60.70₀	ب ب Limit (dBuV) ف 66.00	Margin (dB)+ ³ -5.30+ ³ -19.65+ -16.87+	ο Remarkο ο Remarkο ο QPο ο AVGο ο QPο		
emp.()/. andard:* est item:* ote: * No.* * 1* 2*	Frequency. (MHz). 0.1500. 0.1500. 0.6540. 0.6543.	FCC Class B Conduction T ↓ ↓ Reading↓ (dBuV)↓ 41.56↓ 17.21↓ 19.90↓ 4.95↓	Correct*2 (dB)*2 19.14*2 19.23*2 19.23*2	P)e ³ Resulte ³ (dBuV)e ³ 60.70e ³ 36.35e ³ 39.13e ³ 24.18e ³	ب ² ب ² Limit ² (dBuV) ² 66.00 ² 56.00 ²	Margin (dB)+ ³ -5.30+ ³ -19.65+ -16.87+ -21.82+	φ φ <		
emp.()/. andard: est item: ote: No 2. 1. 2. 3. 4. 5.	Frequency (MHz) 0.1500 0.1500 0.6540 0.6543 0.9330	FCC Class B Conduction T φ Reading (dBuV) 41.56φ 17.21φ 19.90φ 4.95φ 24.71φ	Correct (dB) 19.14 19.23 19.23 19.28	P)↓ Result↓ (dBuV)↓ 60.70↓ 36.35↓ 39.13↓ 24.18↓ 43.99↓	€ ² € ² (dBuV)€ ² 66.00€ ² 56.00€ ²	Margin (dB)+ ³ -5.30+ ³ -19.65+ -16.87+ -21.82+ -12.01+	φ Remarkφ φ Remarkφ φ QPφ φ AVGφ φ QPφ φ AVGφ φ AVGφ φ QPφ φ QPφ φ QPφ φ QPφ φ QPφ		
emp.()/. andard:* est item:* ote: * No.* * 1* 2* 3* 4* 5* 6*	Frequency (MHz) 0.1500 0.1500 0.6540 0.6543 0.9330 0.9420	FCC Class B Conduction T ↓ ↓ Reading↓ (dBuV)↓ 41.56↓ 17.21↓ 19.90↓ 4.95↓ 24.71↓ 11.92↓	Correct*2 (dB)*2 19.14*2 19.23*2 19.23*2 19.23*2 19.23*2 19.23*2 19.23*2 19.23*2 19.23*2 19.23*2 19.23*2 19.23*2	P)e ³ Resulte ³ (dBuV)e ³ 60.70e ³ 36.35e ³ 39.13e ³ 24.18e ³ 43.99e ³ 31.20e ³	φ ² φ ³ Limit e ³ (dBuV)e ³ 66.00e ³ 56.00e ³ 56.00e ³ 46.00e ³ 56.00e ³ 46.00e ³	Margin (dB)+ ³ -5.30+ ³ -19.65+ -16.87+ -21.82+ -12.01+ -14.80+	φ Remarkφ φ QPφ φ AVGφ		
emp.()/. andard: est item: ote: No 2. 1. 2. 3. 4. 5.	Frequency (MHz) 0.1500 0.1500 0.6540 0.6543 0.9330	FCC Class B Conduction T φ Reading (dBuV) 41.56φ 17.21φ 19.90φ 4.95φ 24.71φ	Correct (dB) 19.14 19.23 19.23 19.28	P)↓ Result↓ (dBuV)↓ 60.70↓ 36.35↓ 39.13↓ 24.18↓ 43.99↓		Margin (dB)+ ³ -5.30+ ³ -19.65+ -16.87+ -21.82+ -12.01+	φ Remarkφ φ Remarkφ φ QPφ φ QPφ φ AVGφ φ QPφ φ AVGφ φ AVGφ φ QPφ φ AVGφ φ QPφ φ QPφ φ QPφ φ QPφ φ QPφ φ QPφ		
emp.()/. andard:* est item:* ote: * No.* * 1* 2* 3* 4* 5* 6*	Frequency (MHz) 0.1500 0.1500 0.6540 0.6543 0.9330 0.9420 2.8680 2.9400	FCC Class B Conduction T ∅ Reading (dBuV) (dBuV) 17.21 19.90 4.95 11.92 15.42 4.46	Correct*2 (dB)*2 19.14*2 19.14*2 19.23*2 19.23*2 19.23*2 19.23*2 19.23*2 19.23*2 19.23*2 19.23*2 19.23*2 19.23*2 19.23*2 19.24*2 19.45*2 19.46*2	P)e ³ Resulte ³ (dBuV)e ³ 60.70e ³ 36.35e ³ 39.13e ³ 24.18e ³ 43.99e ³ 31.20e ³ 34.87e ³ 23.92e ³		Margin (dB)+ ³ -5.30+ ³ -19.65+ -16.87+ -21.82+ -12.01+ -14.80+ -21.13+ -22.08+	φ Remarkφ φ QPφ φ AVGφ		
emp.()/. andard:* est item:* ote: * No.* 2* 3* 4* 5* 6* 7* 8* 9*	Frequency (MHz) 0.1500 0.1500 0.6540 0.6543 0.9330 0.9420 2.8680 2.9400 9.2580	FCC Class B Conduction T e Readinge (dBuV)e 41.56e 17.21e 19.90e 4.95e 24.71e 11.92e 15.42e 4.46e 21.77e	Correct (dB) 19.14 19.23 19.23 19.28 19.45 19.45 19.45	Result∞ (dBuV)∞ 60.70∞ 36.35∞ 39.13∞ 24.18∞ 43.99∞ 31.20∞ 34.87∞ 23.92∞ 41.44∞	e ² e ³ e ³ Limit e ³ (dBuV)e ³ 66.00e ³ 56.00e ³ 66.00e ³ 66.00e ³ 66.00e ³ 66.00e ³	Margin (dB)+ ³ -5.30+ ³ -19.65+ -16.87+ -21.82+ -12.01+ -14.80+ -21.13+ -22.08+ -18.56+	φ Remarkφ φ Remarkφ φ QPφ φ QPφ φ AVGφ φ QPφ φ AVGφ φ AVGφ φ QPφ φ AVGφ φ AVGφ φ QPφ φ AVGφ φ QPφ φ QPφ		
emp.()/. andard:* est item:* ote: *	Frequency (MHz) 0.1500 0.1500 0.6540 0.6543 0.9330 0.9420 2.8680 2.9400	FCC Class B Conduction T ∅ Reading (dBuV) (dBuV) 17.21 19.90 4.95 11.92 15.42 4.46	Correct*2 (dB)*2 19.14*2 19.14*2 19.23*2 19.23*2 19.23*2 19.23*2 19.23*2 19.23*2 19.23*2 19.23*2 19.23*2 19.23*2 19.23*2 19.24*2 19.45*2 19.46*2	P)e ³ Resulte ³ (dBuV)e ³ 60.70e ³ 36.35e ³ 39.13e ³ 24.18e ³ 43.99e ³ 31.20e ³ 34.87e ³ 23.92e ³		Margin (dB)+ ³ -5.30+ ³ -19.65+ -16.87+ -21.82+ -12.01+ -14.80+ -21.13+ -22.08+	φ Remarkφ φ Remarkφ φ QPφ φ QPφ φ AVGφ φ QPφ φ AVGφ φ AVGφ φ QPφ φ AVGφ φ AVGφ φ QPφ φ AVGφ φ QPφ φ QPφ		

Note: Pre-Scan all mode, Thus record worse case mode result in this report.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 12 of 18


3.2. Radiated emission Measurement

3.2.1. Test Equipment


The following test equipments are used during the radiated emission measurement:

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	
1	EMI Test Software	EZ	EZ-EMC	/	N/A	
2	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2019-06-12	
3	Positioning Controller	MF	MF-7082	/	2019-06-12	
4	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2019-07-25	
5	Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-192 5	2019-07-01	
6	EMI Test Receiver	R&S	ESR 7	101181	2019-06-12	
7	RS SPECTRUM ANALYZER	R&S	FSP40	100503	2019-11-14	
8	Broadband Preamplifier	/	BP-01M18G	P190501	2019-07-01	
9	RF Cable-R03m	Jye Bao	RG142	CB021	2019-06-12	
10	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2019-06-12	

3.2.2. Block Diagram of Test Setup

Below 1GHz

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 13 of 18 3.2.3. Radiated Emission Limit (Class B)

Limits for Radiated Disturbance Below TGHZ									
FREQUENCY	DISTANCE	FIELD STRE	NGTHS LIMIT						
MHz	Meters	μV/m	dB(µV)/m						
30 ~ 88	3	100	40						
88 ~ 216	3	150	43.5						
216 ~ 960	3	200	46						
960 ~ 1000	3	500	54						
Remark : (1) Emission I	evel (dB) μ V = 20 l	og Emission level	μV/m						
(2) The small	er limit shall apply	at the cross point	between two						
frequency	bands.								
(3) Distance i	s the distance in m	neters between th	e measuring						
instrument, a	antenna and the cl	osest point of any	/ part of the						
device or sy	stem.								
Limits	Limits for Radiated Emission Above 1GHz								
Frequency	Distance	Peak Limit	Average Limit						
(MHz)	(Meters)	(dBµV/m)	(dBµV/m)						
Above 1000	3	74	54						
***Note: The lower limit applies at the transition frequency.									

3.2.4. EUT Configuration on Measurement

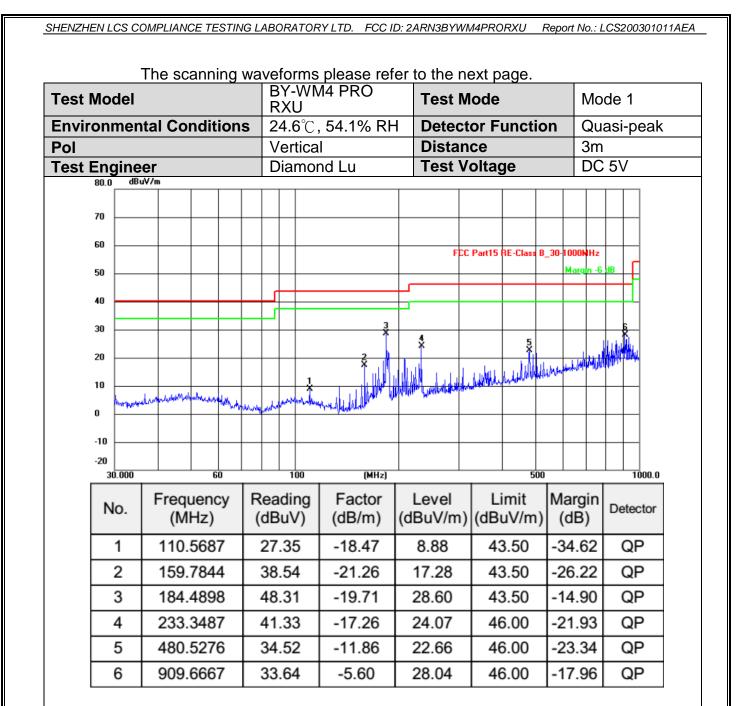
The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

3.2.5. Operating Condition of EUT

3.2.5.1.Setup the EUT as shown in Section 3.2.2.

3.2.5.2.Let the EUT work in test Mode 1 and measure it.

3.2.6. Test Procedure


EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on a antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated by-log antenna) is used as receiving antenna. Both horizontal and vertical polarization of the antenna is set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4-2014 on radiated emission measurement.

The bandwidth of the EMI test receiver is set at 120kHz, 300kHz. The frequency range from 30MHz to 1000MHz is checked. The bandwidth of the EMI test receiver is set at 1MHz, 3MHz. The frequency range from 1GHz to 13GHz is checked.

3.2.7. Radiated Emission Noise Measurement Result

PASS.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 14 of 18

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 15 of 18

IENZHEN	LCS C	OMPLIAN	ICE TE	STIN	VG L	AB	ORAT	ORY LTD. FCC I	D: 2.	ARN3BYV	VM4PR(DRXU	Repo	ort No.:	LCS2	0030101	
Test Model							BY-WM4 PRO				Test Mode				Mode 1		
Environmental Conditions						2	4.6	°C, 54.1% RF	1	Detector Function				Qı	Quasi-peak		
Pol						F	loriz	zontal		Dista				3n			
Test Engineer						D	Dian	nond Lu		Test \	Volta	ge		D	DC 5V		
80.0 dBuV/m																_	
70		_							_							_	
60																	
00										FI	C Part15	RE-Class I	B_30-	1000NH2	z	_	
50	-					-								<u>Margin</u> -	-6 dB	H	
40											4	5			6		
						_		X	۲	X X	Î	×					
30	-				+			1	+							Ť	
20											տեմ	M	Ψſ				
											Madic. and						
10	<u> </u>			A.,	hu	mellen maked her all all all all all all all all all al							-				
0	manna	which and a first		V# 147	Y	www.www.www.hand									++	_	
-10																	
									\square								
-20	30.000		6)			100	(MHz)				50	0			1000.0	
r	No.	Freq		ÿ			ding			evel		mit		argin	Dete	ector	
		(M	Hz)		(0	βB	uV)	(dB/m)	(dł	BuV/m) (dB		(dBuV/m)		dB)	20100101		
	1	159.	7844	4	4	14.	.51	-21.26	2	23.25	43	3.50	-2	0.25	Q	Р	
	2	184.	4898	В	5	53.	.09	-19.71	3	33.38	43	3.50	-1	0.12	Q	Р	
	3	233.	348	7	5	51.	.43	-17.26	3	34.17	46	6.00	-1	1.83	Q	Р	
	4	356.			-		.69	-14.28		38.41	-	6.00		7.59	Q		
	5	480.			┝──		.57	-11.86		36.71	-	6.00		9.29	Q		
	6	909.	6667	7	4	15.	.62	-5.60	4	10.02	46	6.00	-5	5.98	Q	Р	

Note: Pre-Scan all mode, Thus record worse case mode result in this report.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 16 of 18

Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.	
1697.60	49.51	33.16	35.15	3.96	51.48	74.00	-22.52	Peak	Horizontal	
1697.60	40.82	33.16	35.15	3.96	42.79	54.00	-11.21	Average	Horizontal	
2546.40	51.71	33.26	35.17	3.98	53.78	74.00	-20.22	Peak	Horizontal	
2546.40	42.61	33.26	35.17	3.98	44.68	54.00	-9.32	Average	Horizontal	
3424.80	50.94	33.16	35.15	3.96	52.91	74.00	-21.09	Peak	Horizontal	
3424.80	35.01	33.16	35.15	3.96	36.98	54.00	-17.02	Average	Horizontal	
Freq. MHz	Reading dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margir dB	Remark	Pol.	
1673.20	51.36	33.26	35.14	3.98	53.46	74.00	51.36	Peak	Vertical	
1673.20	39.62	33.26	35.14	3.98	41.72	54.00	39.62	Average	e Vertical	
3815.20	49.54	33.36	35.16	4.00	51.74	74.00	49.54	Peak	Vertical	
3815.20	39.05	33.36	35.16	4.00	41.25	54.00	39.05	Average	e Vertical	
5722.80	51.59	33.26	35.14	3.98	53.69	74.00	51.59	Peak	Vertical	
5722.80	37.58	33.26	35.14	3.98	39.68	54.00	37.58	Average	e Vertical	

Radiated Emission Above 1GHz

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 17 of 18

4. TEST SETUP PHOTOGRAPHS OF EUT

Please refer to separated files for Test Setup Photos of the EUT.

5. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

6. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.

-----THE END OF TEST REPORT-----

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 18 of 18