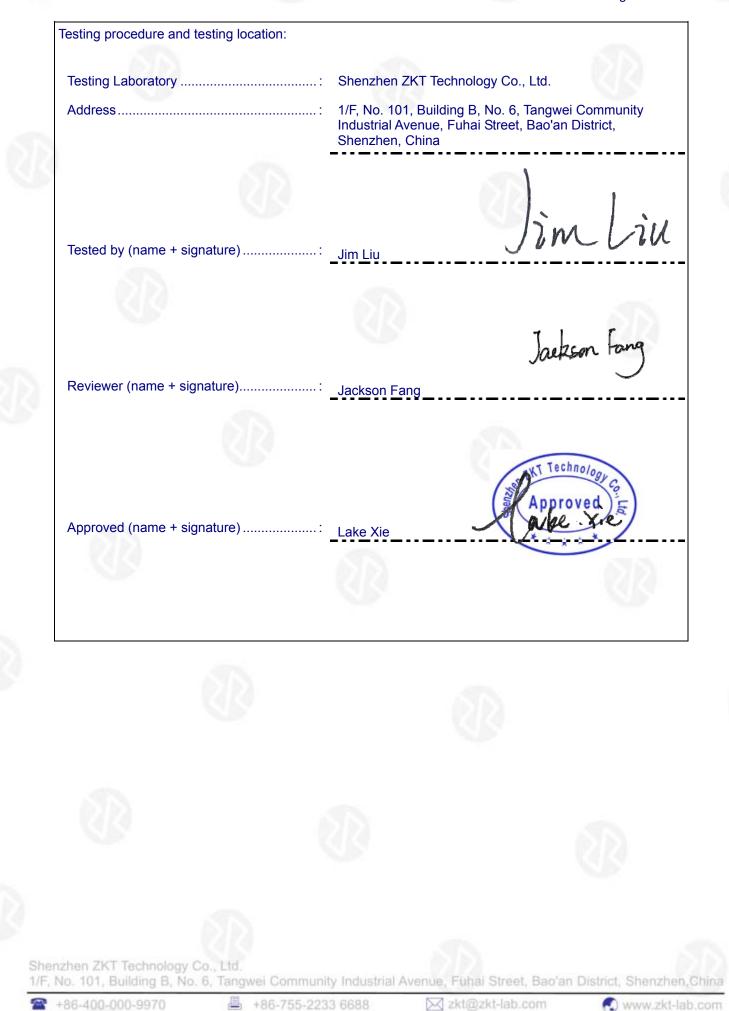


Project No.: ZKT-230621L4678E-2 Page 1 of 42


FCC TEST REPORT FCC ID: 2ARMW-BA503

Report Number	:: ZKT-230621L4678E-2	
Date of Test	June 12, 2023 to June 25, 2023	
Date of issue	: June 26, 2023	
Total number of pages		
Test Result	:: PASS	
Testing Laboratory	:: Shenzhen ZKT Technology Co., Ltd.	
Address	1/F, No. 101, Building B, No. 6, Tangwei Community Ind Avenue, Fuhai Street, Bao'an District, Shenzhen, China	lustrial
Applicant's name	:: Shenzhen Hongjiayi Electronics Co., Ltd.	212
Address		rict,
Manufacturer's name	: Shenzhen Hongjiayi Electronics Co., Ltd.	
Address		rict,
Test specification:		
Standard	FCC CFR Title 47 Part 15 Subpart C Section 15.247 ANSI C63.10:2013	
Test procedure	::/	
Non-standard test method .	: N/A	
Test Report Form No		
Test Report Form(s) Origin		
Master TRF		
This device described above test (EUT) is in compliance v identified in the report. This report shall not be repro	has been tested by ZKT, and the test results show that the equip with the FCC requirements. And it is applicable only to the tested s oduced except in full, without the written approval of ZKT, this doc , personal only, and shall be noted in the revision of the documen	sample ument may
Product name	:: Bluetooth USB Adapter	
Trademark	: N/A	
Model/Type reference	BA503, BA501, BA502, BA601, BA602, BA603, BT501, BT503, BT504	BT502,
Ratings		

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwel Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

7	Project No.: ZKT-230621 Pag	1L4678E-2 le 3 of 42
	Table of Contents	Page
	1.VERSION	5
	2. SUMMARY OF TEST RESULTS	6
	2.1 TEST FACILITY	7
	2.2 MEASUREMENT UNCERTAINTY	7
	3. GENERAL INFORMATION	8
	3.1 GENERAL DESCRIPTION OF EUT	8
	3.2 DESCRIPTION OF TEST MODES	10
	3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10
	3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	10
	3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	11
	4. EMC EMISSION TEST	13
	4.1 CONDUCTED EMISSION MEASUREMENT	13
	4.1.1 POWER LINE CONDUCTED EMISSION LIMITS	13
	4.1.2 TEST PROCEDURE	13
	4.1.3 DEVIATION FROM TEST STANDARD 4.1.4 TEST SETUP	13 14
	4.1.5 EUT OPERATING CONDITIONS	14
	4.2.1 RADIATED EMISSION LIMITS	17
	4.2.2 TEST PROCEDURE 4.2.3 DEVIATION FROM TEST STANDARD	18 18
	4.2.4 TEST SETUP	18
	4.2.5 EUT OPERATING CONDITIONS	19
	5.RADIATED BAND EMISSION MEASUREMENT	24
	5.1 TEST REQUIREMENT:	24
	5.2 TEST PROCEDURE 5.3 DEVIATION FROM TEST STANDARD	24 24
	5.4 TEST SETUP	25
	5.5 EUT OPERATING CONDITIONS	25
	5.6 TEST RESULT	26
	6.POWER SPECTRAL DENSITY TEST 6.1 APPLIED PROCEDURES / LIMIT	27 27
	6.2 TEST PROCEDURE	27
	6.3 DEVIATION FROM STANDARD	27
	6.4 TEST SETUP	27
	6.5 EUT OPERATION CONDITIONS 6.6 TEST RESULT	27 28

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

🕄 www.zkt-lab.com

Project No.: ZKT-230621L4678E-2 Page 4 of 42

2	-	
1		
		J

Table of Contents	Page
7. CHANNEL BANDWIDTH 7.1 APPLIED PROCEDURES / LIMIT 7.2 TEST PROCEDURE	30 30 30
7.3 DEVIATION FROM STANDARD	30
7.4 TEST SETUP 7.5 EUT OPERATION CONDITIONS 7.6 TEST RESULT	30 30 31
8.PEAK OUTPUT POWER TEST 8.1 APPLIED PROCEDURES / LIMIT 8.2 TEST PROCEDURE 8.3 DEVIATION FROM STANDARD 8.4 TEST SETUP 8.5 EUT OPERATION CONDITIONS	35 35 35 35 35 35 35
8.6 TEST RESULT	36
9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION 9.1 APPLICABLE STANDARD 9.2 TEST PROCEDURE 9.3 DEVIATION FROM STANDARD 9.4 TEST SETUP 9.5 EUT OPERATION CONDITIONS	38 38 38 38 38 38 38
10.ANTENNA REQUIREMENT	41
11. TEST SETUP PHOTO	42
12. EUT CONSTRUCTIONAL DETAILS	42

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

www.zkt-lab.com

1.VERSION

Report No.	Version	Description	Approved
ZKT-230621L4678E-2	Rev.01	Initial issue of report	June 26, 2023

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

	FCC Part15 (15.247), Subpart C		
Standard Section	Test Item	Judgment	Remark
FCC part 15.203/15.247 (c)	Antenna requirement	PASS	
FCC part 15.207	AC Power Line Conducted Emission	PASS	
FCC part 15.247 (b)(3)	Conducted Peak Output Power	PASS	
FCC part 15.247 (a)(2)	Channel Bandwidth& 99% OCB	PASS	
FCC part 15.247 (e)	Power Spectral Density	PASS	
FCC part 15.247(d)	Band Edge	PASS	
FCC part 15.205/15.209	Spurious Emission	PASS	

NOTE:

(1)"N/A" denotes test is not applicable in this Test Report

2.1 TEST FACILITY

Shenzhen ZKT Technology Co., Ltd. Add. : 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

FCC Test Firm Registration Number: 692225 Designation Number: CN1299 IC Registered No.: 27033

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U \cdot where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2 · providing a level of confidence of approximately 95$

No.	Item	Uncertainty
1	3m camber Radiated spurious emission(9KHz-30MHz)	U=4.5dB
2	3m camber Radiated spurious emission(30MHz-1GHz)	U=4.8dB
3	3m chamber Radiated spurious emission(1GHz-6GHz)	U=4.9dB
4	3m chamber Radiated spurious emission(6GHz-40GHz)	U=5.0dB
5	Conducted disturbance	U=3.2dB
6	RF Band Edge	U=1.68dB
7	RF power conducted	U=1.86dB
8	RF conducted Spurious Emission	U=2.2dB
9	RF Occupied Bandwidth	U=1.8dB
10	RF Power Spectral Density	U=1.75dB
11	humidity uncertainty	U=5.3%
12	Temperature uncertainty	U=0.59°C

🔊 www.zkt-lab.com

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Product Name:	Bluetooth USB Adapter
Model No.:	BA503, BA501, BA502, BA601, BA602, BA603, BT501, BT502,
	BT503, BT504
Model Different.:	The color of appearance and model name of series models listed are different from the main model, but the circuit and the electronic construction are the same, declared by the manufacturer.
Serial No.:	N/A
Hardware Version:	V1.0
Software Version:	V1.0
Sample(s) Status:	Engineer sample
Operation Frequency:	2402MHz~2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	PCB ANT
Antenna gain:	0dBi
Power supply:	DC 5V by USB
SWITCHING POWER	N/A
ADAPTER:	N/A

Operatio	n Frequency	each of ch	annel				
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz

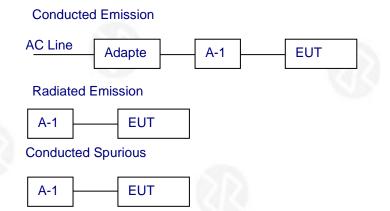
Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwel Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Project No.: ZKT-230621L4678E-2 Page 9 of 42

the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz



3.2 DESCRIPTION OF TEST MODES

Transmitting mode	e Keep the EUT in continuously transmitting mode
Charging mode	Keep the EUT in Charging mode.
•	he test, the test voltage was tuned from 85% to 115% of the nominal rated supply of that the worst case was under the nominal rated supply condition. So the report just tion's data.
Test Software	RTLBTAPP

3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	Bluetooth USB Adapter	N/A	BA503	N/A	EUT
A-1	Note Book	Lenovo	ThlnkPad E15 Gen 2	N/A	Auxiliary

Item	Shielded Type	Ferrite Core	Length	Note
)		

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[$ Length $\]$ column.

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Project No.: ZKT-230621L4678E-2 Page 11 of 42

Radiation Test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	KEYSIGHT	9020A	MY55370835	Oct. 28, 2022	Oct. 27, 2023
2	Spectrum Analyzer (10kHz-39.9GHz)	R&S	FSQ	100363	Oct. 28, 2022	Oct. 27, 2023
3	EMI Test Receiver (9kHz-7GHz)	R&S	ESCI7	101169	Oct. 28, 2022	Oct. 27, 2023
4	Bilog Antenna (30MHz-1500MHz)	Schwarzbeck	VULB9168	N/A	Nov. 02, 2022	Nov. 01, 2023
5	Horn Antenna (1GHz-18GHz)	Agilent	AH-118	071145	Nov. 01, 2022	Oct. 31, 2023
6	Horn Antenna (15GHz-40GHz)	A.H.System	SAS-574	588	Oct. 28, 2022	Oct. 27, 2023
7	Loop Antenna	TESEQ	HLA6121	58357	Nov. 01, 2022	Oct. 31, 2023
8	Amplifier (30-1000MHz)	EM Electronics	EM330 Amplifier	060747	Nov. 15, 2022	Nov. 14, 2023
9	Amplifier (1GHz-26.5GHz)	Agilent	8449B	3008A00315	Oct. 28, 2022	Oct. 27, 2023
10	Amplifier (500MHz-40GHz)	QUANJUDA	DLE-161	097	Oct. 28, 2022	Oct. 27, 2023
11	Test Cable	N/A	R-01	N/A	Oct. 28, 2022	Oct. 27, 2023
12	Test Cable	N/A	R-02	N/A	Oct. 28, 2022	Oct. 27, 2023
13	Test Cable	N/A	R-03	N/A	Oct. 28, 2022	Oct. 27, 2023
14	Test Cable	N/A	RF-01	N/A	Oct. 28, 2022	Oct. 27, 2023
15	Test Cable	N/A	RF-02	N/A	Oct. 28, 2022	Oct. 27, 2023
16	Test Cable	N/A	RF-03	N/A	Oct. 28, 2022	Oct. 27, 2023
17	ESG Signal Generator	Agilent	E4421B	N/A	Oct. 21, 2022	Oct. 20, 2023
18	Signal Generator	Agilent	N5182A	N/A	Oct. 21, 2022	Oct. 20, 2023
19	Magnetic Field Probe Tester	Narda	ELT-400	0-0344	Nov. 15, 2022	Nov. 14, 2023
20	Wideband Radio Communication Test	R&S	CMW500	106504	Oct. 28, 2022	Oct. 27, 2023
21	MW RF Power Meter Test system	MW	MW100-RPCB	N/A	Oct. 21, 2022	Oct. 20, 2023
22	D.C. Power Supply	LongWei	TPR-6405D	N/A	Oct. 21, 2022	Oct. 20, 2023
23	EMC Software	Frad	EZ-EMC	Ver.EMC-CON 3A1.1	\	١
24	RF Software	MW	MTS8310	V2.0.0.0	١	١
25	Turntable	MF	MF-7802BS	N/A		\
26	Antenna tower	MF	MF-7802BS	N/A	Λ < _ <	١

昌

Conduction Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	LISN	R&S	ENV216	101471	Oct. 21, 2022	Oct. 20, 2023
2	LISN	CYBERTEK	EM5040A	E185040014 9	Oct. 21, 2022	Oct. 20, 2023
3	Test Cable	N/A	C-01	N/A	Oct. 21, 2022	Oct. 20, 2023
4	Test Cable	N/A	C-02	N/A	Oct. 21, 2022	Oct. 20, 2023
5	Test Cable	N/A	C-03	N/A	Oct. 21, 2022	Oct. 20, 2023
6	EMI Test Receiver	R&S	ESCI3	101393	Oct. 28, 2022	Oct. 27, 2023
7	EMC Software	Frad	EZ-EMC	Ver.EMC-CO N 3A1.1	/	١

4.1 CONDUCTED EMISSION MEASUREMENT

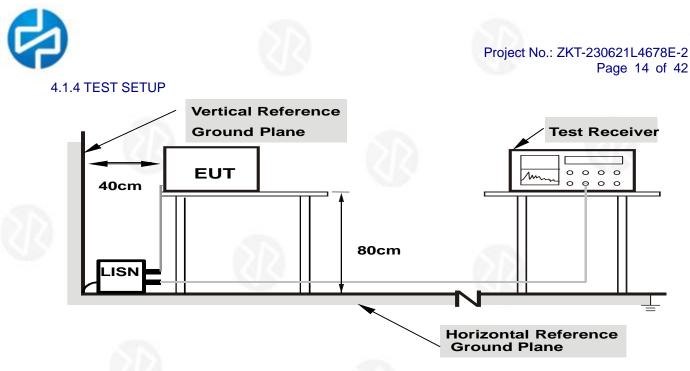
	Test Requirement:	FCC Part15 C Section 15.207
5	Test Method:	ANSI C63.10:2013
	Test Frequency Range:	150KHz to 30MHz
	Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto

4.1.1 POWER LINE CONDUCTED EMISSION Limits

	Limit (d	Standard	
FREQUENCY (MHz)	Quas -peak	Average	Stanuaru
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

(1) *Decreases with the logarithm of the frequency.


4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD

No deviation

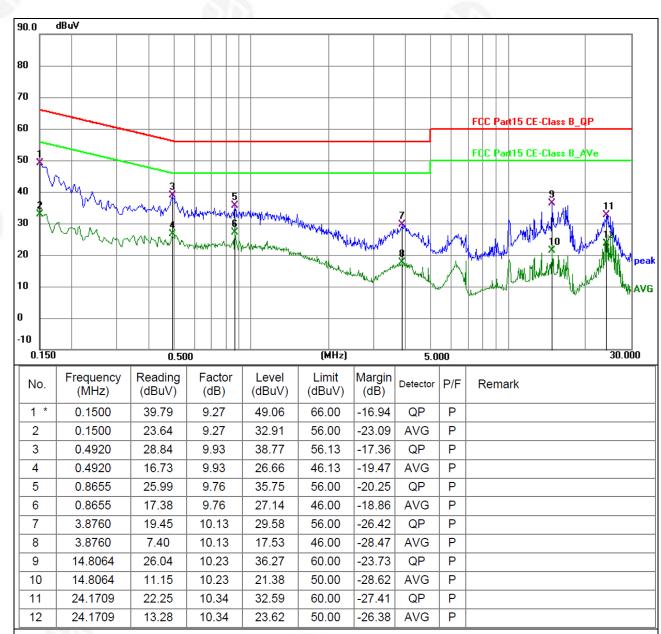
Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to Charging during test. This operating condition was tested and used to collect the included data.

The test mode is the Bluetooth operating mode in the charging state, and the worst data of GFSK 2402MHz was reported.

We pretest AC 120V and AC 230V, the worst voltage was AC 120V and the data recording in the report.



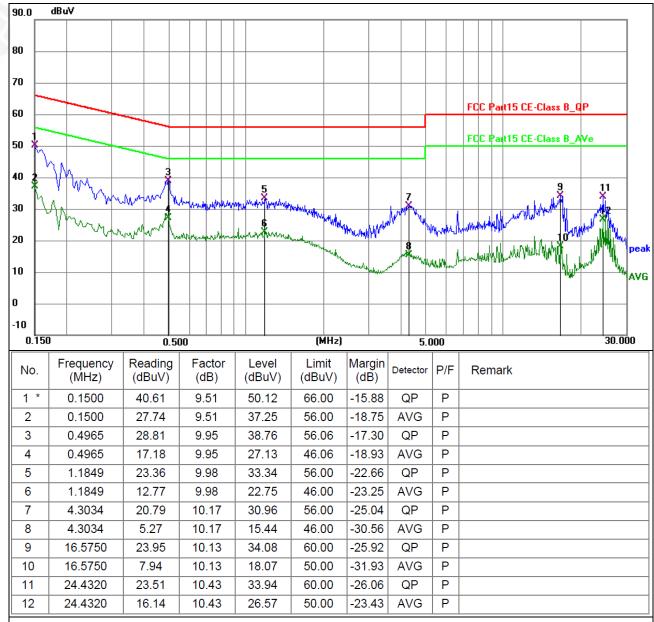
4.1.6 Test Result

Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101kPa	Phase:	L
Test Voltage :	AC 120V/60Hz		

Notes:

An initial pre-scan was performed on the line and neutral lines with peak detector.
Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
Mesurement Level = Reading level + Correct Factor, Margin = Mesurement Level – Limit.

Shenzhen ZKT Technology Co., Ltd.


1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

www.zkt-lab.com

Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101kPa	Phase :	Ν
Test Voltage :	AC 120V/60Hz		

Notes:

1.An initial pre-scan was performed on the line and neutral lines with peak detector.

2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.3.Mesurement Level = Reading level + Correct Factor, Margin = Mesurement Level – Limit.

4.2 RADIATED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.209					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	9kHz to 25GHz					
Test site:	Measurement Distance: 3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Value	
	9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak	
	150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak	
	Above 1GHz	Peak	1MHz	3MHz	Peak	
		Peak	1MHz	10Hz	Average	

4.2.1 RADIATED EMISSION LIMITS

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT

	Limit (dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	
N. 1 2			

Notes:

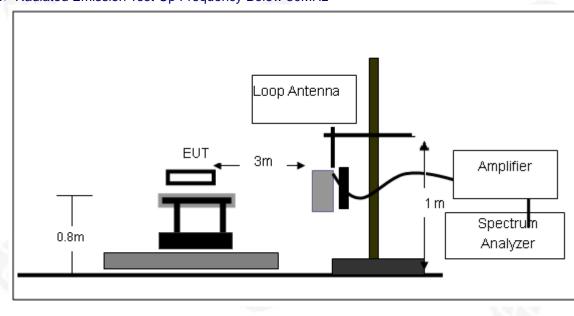
- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

4.2.2 TEST PROCEDURE

N www.zkt-lab.com

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 25GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-chamber test. The table was rotated 360 degrees to determine the position of the highest radiation
- c. The height of the equipment or of the substitution antenna shall be 0.8m; above 1GHz, the height was 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.
- g. For the radiated emission test above 1GHz:
- Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.

The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

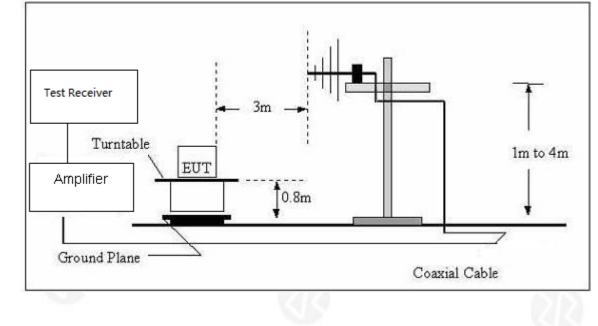

Note:

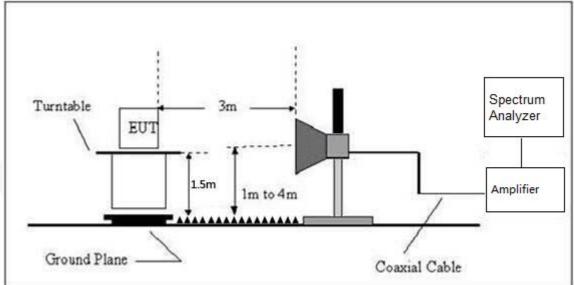
Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

4.2.3 DEVIATION FROM TEST STANDARD No deviation

4.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz





Project No.: ZKT-230621L4678E-2 Page 19 of 42

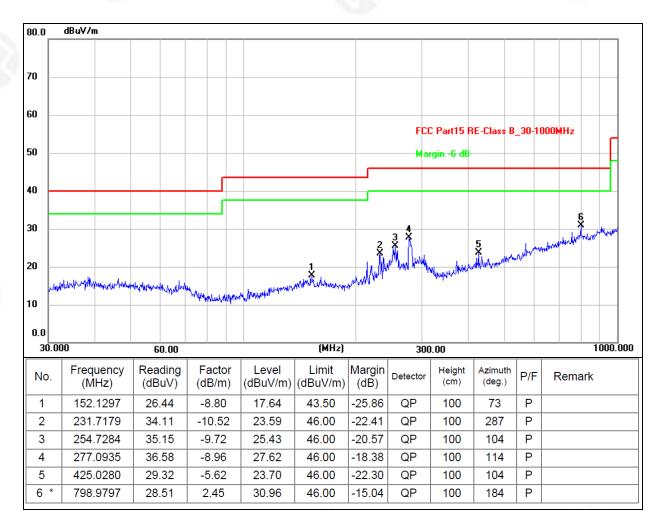
(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.2.5 EUT OPERATING CONDITIONS

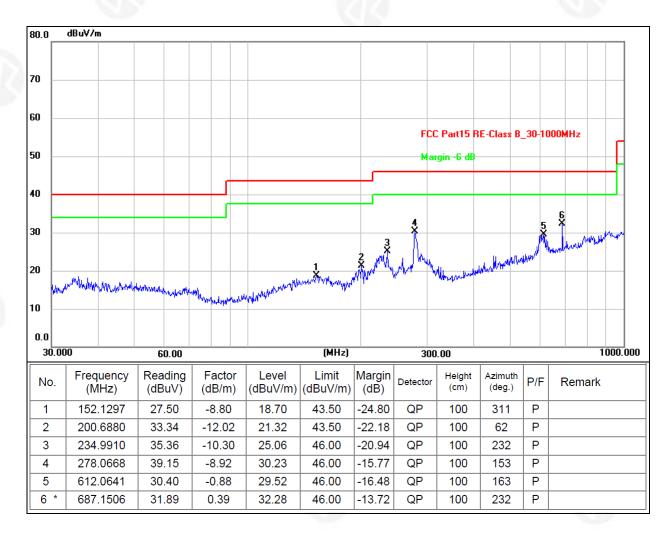
The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

4.2.6 TEST RESULTS (Between 9KHz - 30 MHz)


The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

Between 30MHz - 1GHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101 kPa	Polarization:	Horizontal
Test Voltage:	DC 5V		


Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwel Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Www.zkt-lab.com

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Polarization:	Vertical
Test Voltage:	DC 5V		2.2

Remarks:

1.Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor, Margin = Final Level – Limit.

2. The emission levels of other frequencies are very lower than the limit and not show in test report. 3. The test data shows only the worst case GFSK mode and worst channel 2402MHz.

1GHz~25GHz

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
				Low Cha	nnel:2402N	/Hz			
V	4804.00	59.23	30.55	5.77	24.66	59.11	74.00	-14.89	Pk
V	4804.00	43.24	30.55	5.77	24.66	43.12	54.00	-10.88	AV
V	7206.00	58.69	30.33	6.32	24.55	59.23	74.00	-14.77	Pk
V	7206.00	44.03	30.33	6.32	24.55	44.57	54.00	-9.43	AV
V	9608.00	53.86	30.85	7.45	24.69	55.15	74.00	-18.85	Pk
V	9608.00	43.53	30.85	7.45	24.69	44.82	54.00	-9.18	AV
V	12010.00	47.56	31.02	8.99	25.57	51.10	74.00	-22.90	Pk
V	12010.00	40.38	31.02	8.99	25.57	43.92	54.00	-10.08	AV
Н	4804.00	57.59	30.55	5.77	24.66	57.47	74.00	-16.53	Pk
Н	4804.00	44.27	30.55	5.77	24.66	44.15	54.00	-9.85	AV
Н	7206.00	55.73	30.33	6.32	24.55	56.27	74.00	-17.73	Pk
Н	7206.00	44.06	30.33	6.32	24.55	44.60	54.00	-9.40	AV
Н	9608.00	56.97	30.85	7.45	24.69	58.26	74.00	-15.74	Pk
Н	9608.00	41.52	30.85	7.45	24.69	42.81	54.00	-11.19	AV
Н	12010.00	50.39	31.02	8.99	25.57	53.93	74.00	-20.07	Pk
Н	12010.00	38.27	31.02	8.99	25.57	41.81	54.00	-12.19	AV
								•	
	Frequency	Frequency Reading	•	Cable	Antenna	Emission	Limits	Margin	
Polar	rrequency	Reading	fier	Loss	Factor	Level	Linits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
			N	liddle Ch	annel:2440	MHz			
V	4880.00	60.75	30.55	5.77	24.66	60.63	74.00	-13.37	Pk
V	4880.00	46.82	30.55	5.77	24.66	46.70	54.00	-7.30	AV
V	7320.00	56.28	30.33	6.32	24.55	56.82	74.00	-17.18	Pk
V	7320.00	45.80	30.33	6.32	24.55	46.34	54.00	-7.66	AV
V	9760.00	58.02	30.85	7.45	24.69	59.31	74.00	-14.69	Pk
V	9760.00	42.07	30.85	7.45	24.69	43.36	54.00	-10.64	AV
V	12200.00	50.37	31.02	8.99	25.57	53.91	74.00	-20.09	Pk
V	12200.00	38.06	31.02	8.99	25.57	41.60	54.00	-12.40	AV
H	4880.00	57.65	30.55	5.77	24.66	57.53	74.00	-16.47	Pk
H	4880.00	43.17	30.55	5.77	24.66	43.05	54.00	-10.95	AV
H	7320.00	54.62	30.33	6.32	24.55	55.16	74.00	-18.84	Pk
H	7320.00	44.93	30.33	6.32	24.55	45.47	54.00	-8.53	AV
н	9760.00	56.12	30.85	7.45	24.69	57.41	74.00	-16.59	Pk
н	9760.00	42.86	30.85	7.45	24.69	44.15	54.00	-9.85	AV
H H	12200.00 12200.00	49.68 39.15	31.02 31.02	8.99 8.99	25.57 25.57	53.22 42.69	74.00 54.00	-20.78 -11.31	Pk AV

Project No.: ZKT-230621L4678E-2 Page 23 of 42

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
			ŀ	ligh Cha	nnel:2480M	1Hz		0	
V	4960.00	60.62	30.55	5.77	24.66	60.50	74.00	-13.50	Pk
V	4960.00	47.04	30.55	5.77	24.66	46.92	54.00	-7.08	AV
V	7440.00	54.50	30.33	6.32	24.55	55.04	74.00	-18.96	Pk
V	7440.00	43.11	30.33	6.32	24.55	43.65	54.00	-10.35	AV
V	9920.00	58.15	30.85	7.45	24.69	59.44	74.00	-14.56	Pk
V	9920.00	42.50	30.85	7.45	24.69	43.79	54.00	-10.21	AV
V	12400.00	48.69	31.02	8.99	25.57	52.23	74.00	-21.77	Pk
V	12400.00	39.70	31.02	8.99	25.57	43.24	54.00	-10.76	AV
Н	4960.00	57.24	30.55	5.77	24.66	57.12	74.00	-16.88	Pk
Н	4960.00	44.06	30.55	5.77	24.66	43.94	54.00	-10.06	AV
Н	7440.00	55.33	30.33	6.32	24.55	55.87	74.00	-18.13	Pk
Н	7440.00	42.89	30.33	6.32	24.55	43.43	54.00	-10.57	AV
Н	9920.00	57.15	30.85	7.45	24.69	58.44	74.00	-15.56	Pk
Н	9920.00	43.59	30.85	7.45	24.69	44.88	54.00	-9.12	AV
Н	12400.00	49.57	31.02	8.99	25.57	53.11	74.00	-20.89	Pk
Н	12400.00	41.69	31.02	8.99	25.57	45.23	54.00	-8.77	AV

Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier, Margin= Emission Level - Limit

2. If peak below the average limit, the average emission was no test.

3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

5.1 TEST REQUIREMENT:

Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10:	ANSI C63.10: 2013					
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.						
Test site:	Measurement Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Value		
	Above	Peak	1MHz	3MHz	Peak		
	1GHz	Average	1MHz	3MHz	Average		

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	Limit (dBuV/m) (at 3M)			
FREQUENCY (MHz)	PEAK	AVERAGE		
Above 1000	74	54		

Notes:

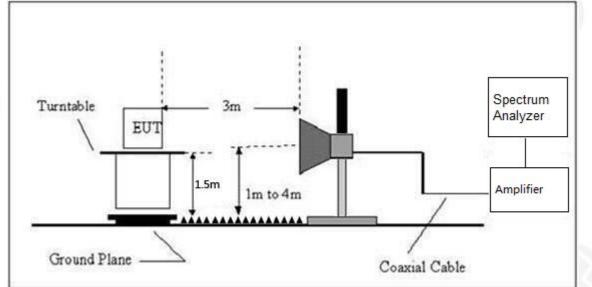
- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

5.2 TEST PROCEDURE

Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel,the Highest channel Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported


5.3 DEVIATION FROM TEST STANDARD No deviation

5.4 TEST SETUP

5.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULT

	Polar (H/V)	Frequenc y (MHz)	Meter Reading (dBuV)	Pre- amplifier (dB)	Cable Loss (dB)	Antenna Factor (dB/m)	Emission level (dBuV/m)	Limit (dBuV /m)	Margin (dB)	Detec tor Type	Result
					Low Ch	annel: 240	2MHz				
	Н	2390.00	56.68	30.22	4.85	23.98	55.29	74.00	-18.71	PK	PASS
1000	Н	2390.00	43.49	30.22	4.85	23.98	42.10	54.00	-11.90	AV	PASS
100	V	2390.00	56.64	30.22	4.85	23.98	55.25	74.00	-18.75	PK	PASS
100	V	2390.00	47.32	30.22	4.85	23.98	45.93	54.00	-8.07	AV	PASS
	High Channel: 2480MHz										
GFSK	Н	2483.50	57.29	30.22	4.85	23.98	55.90	74.00	-18.10	PK	PASS
GFSK	Н	2483.50	44.86	30.22	4.85	23.98	43.47	54.00	-10.53	AV	PASS
	Н	2500.00	55.78	30.22	4.85	23.98	54.39	74.00	-19.61	PK	PASS
	Н	2500.00	45.02	30.22	4.85	23.98	43.63	54.00	-10.37	AV	PASS
	V	2483.50	55.28	30.22	4.85	23.98	53.89	74.00	-20.11	PK	PASS
	V	2483.50	46.74	30.22	4.85	23.98	45.35	54.00	-8.65	AV	PASS
	V	2500.00	56.07	30.22	4.85	23.98	54.68	74.00	-19.32	PK	PASS
	V	2500.00	47.24	30.22	4.85	23.98	45.85	54.00	-8.15	AV	PASS
Remark:											

Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss - Pre-amplifier, Margin= Emission Level - Limit

6.POWER SPECTRAL DENSITY TEST

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

6.1 APPLIED PROCEDURES / LIMIT

	FCC Part15 (15.	247) , Subpart C		
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247	Power Spectral Density	8dBm/3kHz	2400-2483.5	PASS

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 DEVIATION FROM STANDARD

No deviation.

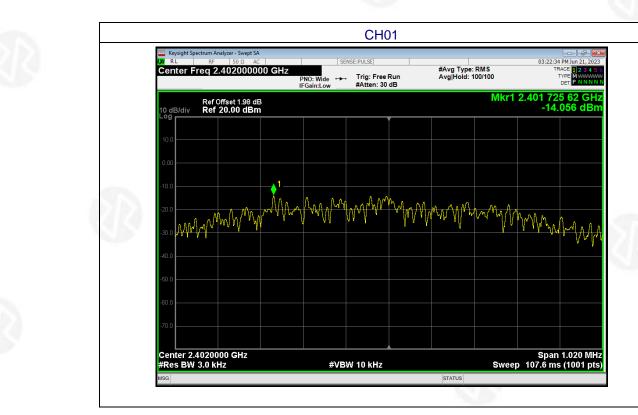
6.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

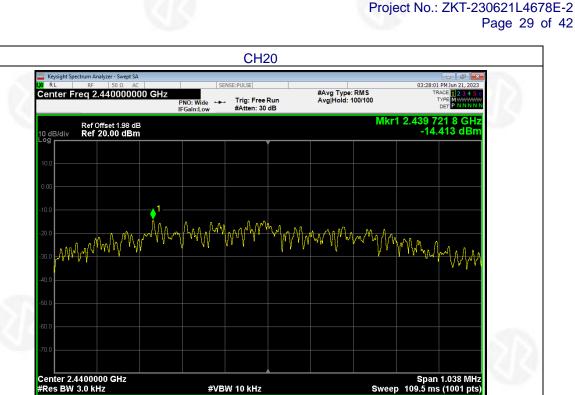
6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

1/F, No. 101, Building B, No. 6, Tangwel Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China



6.6 TEST RESULT


Temperature :	26 ℃	Relative Humidity :	54%
Test Mode :	GFSK	Test Voltage :	DC 5V

	Frequency	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
	2402 MHz	-14.06	8	PASS
	2440 MHz	-14.41	8	PASS
3	2480 MHz	-14.61	8	PASS

CH40

7. CHANNEL BANDWIDTH

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

7.1 APPLIED PROCEDURES / LIMIT

	F	CC Part15 (15.247) , Su	bpart C	
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS

7.2 TEST PROCEDURE

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3 DEVIATION FROM STANDARD

No deviation.

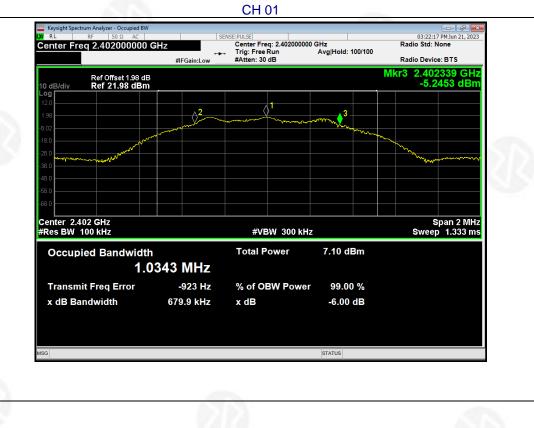
7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

F

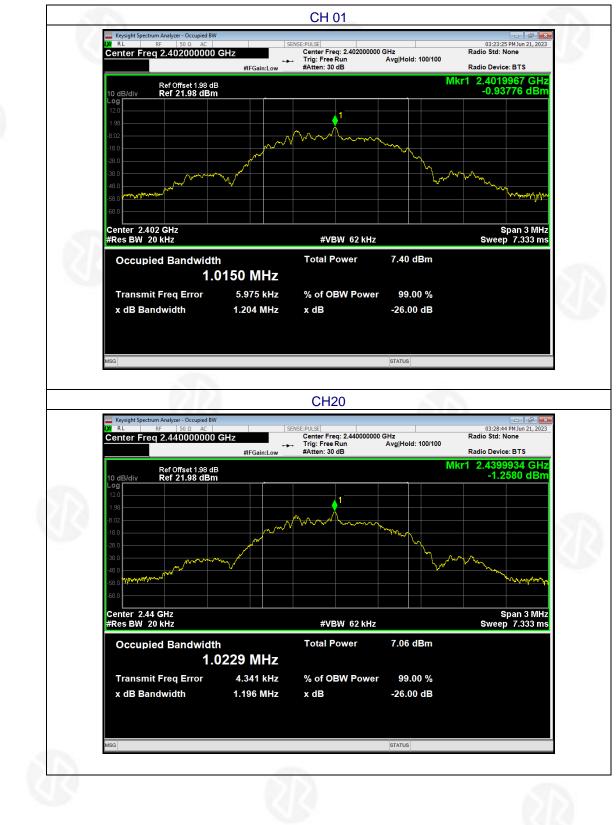
www.zkt-lab.com


7.6 TEST RESULT

Temperature :	26 ℃	Relative Humidity :	54%
Test Mode :	GFSK	Test Voltage :	DC 5V

Test channel	-6dB Emission Channel Bandwidth (MHz)	Limit(KHz)	Result
Lowest	0.6799		
Middle	0.6918	>500	Pass
Highest	0.6963		

Test channel	99% Bandwidth (MHz)	Result
Lowest	1.0150	
Middle	1.0229	Pass
Highest	1.0242	



99% OBW:

8.PEAK OUTPUT POWER TEST

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

8.1 APPLIED PROCEDURES / LIMIT

	FC	C Part15 (15.247) , Subp	oart C	
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS

8.2 TEST PROCEDURE

a. 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

Set the spectrum analyzer: RBW = 2MHz. VBW =6MHz. Sweep = auto; Detector Function = Peak.
Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

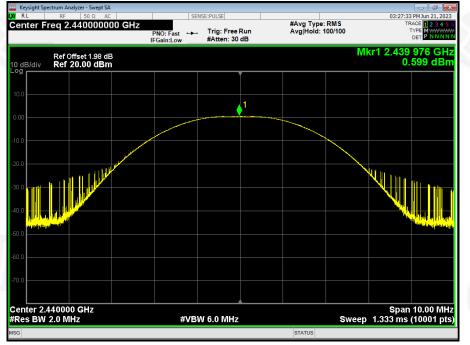
8.6 TEST RESULT

Temperature :	26 ℃	Relative Humidity :	54%
Test Mode :	GFSK	Test Voltage :	DC 5V

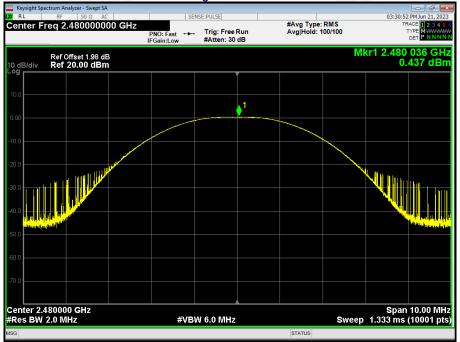
Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	0.93		
Middle	0.6	30.00	Pass
Highest	0.44		

	ectrum Analyzer - Swept SA							
XI RL Center F	RF 50 Ω AC	00 GHz	PNO: Fast ↔ FGain:Low	ENSE:PULSE Trig: Free Rur #Atten: 30 dB	#Avg Typ Avg Hold	: 100/100	TF	PM Jun 21, ACE 1 2 3 TYPE M DET P N N
I0 dB/div	Ref Offset 1.98 dE Ref 20.00 dBm					M	kr1 2.401 0.	845 G 929 d
10.0				ļĬ				
0.00								
10.0								
20.0		Mar and a start of the start of					NI I III	l that
30.0 								
1							1. 	
50.0								
70.0								
	402000 GHz 2.0 MHz		#VE	W 6.0 MHz		Sweep	Span 1.333 ms	10.00 I (10001
ISG					STATUS			

Test plots Low Channel


Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen,China

+86-755-2233 6688



Middle Channel

High Channel

9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

9.1 APPLICABLE STANDARD

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

9.2 TEST PROCEDURE

Using the following spectrum analyzer setting:

A) Set the RBW = 100KHz.

B) Set the VBW = 300KHz.

- C) Sweep time = auto couple.
- D) Detector function = peak.
- E) Trace mode = max hold.
- F) Allow trace to fully stabilize.

9.3 DEVIATION FROM STANDARD

No deviation.

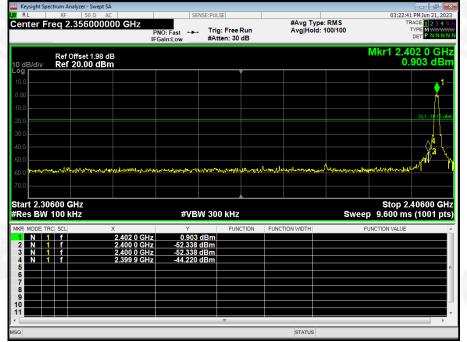
9.4 TEST SETUP

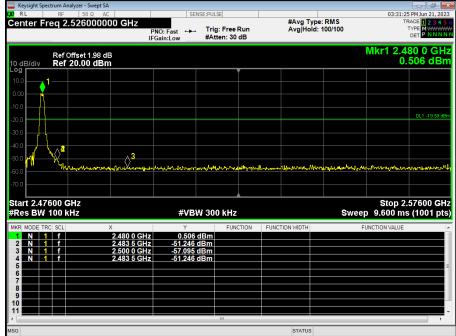
EUT	SPECTRUM
	ANALYZER

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

9.6 TEST RESULTS





GFSK: Band Edge, Left Side

GFSK: Band Edge, Right Side

Project No.: ZKT-230621L4678E-2


Page 40 of 42

Lowest channel

			Trig: Free Run Atten: 20 dB	#Avg Typ Avg Hold	: 10/10	TYPE MWW DET PNN
Ref Offset dB/div Ref 11.9	1.98 dB 18 dBm					Mkr1 2.401 7 G -0.075 di
g1						
10						
0	0 ³					
o		۸5				
0		Ŷ				and the second se
a lange and a lange			the state of the state	and the second	State of the local division of the local div	
and the state of the	and the second designed and th	the second design in such	Concession in the local division in the loca			
and the state of the						
art 30 MHz		#VBW 3	300 kHz		Sw	Stop 26.50 G reep 2.530 s (30001
art 30 MHz es BW 100 kHz	×	Y	FUNCTION	FUNCTION WIDTH	Sw	Stop 26.50 G reep 2.530 s (30001 FUNCTION VALUE
art 30 MHz es BW 100 kHz	2.401 7 GHz 4.803 4 GHz	-0.075 dBr -34.117 dBr	FUNCTION	FUNCTION WIDTH	Sw	reep 2.530 s (30001
art 30 MHz es BW 100 kHz	2.401 7 GHz 4.803 4 GHz 4.803 4 GHz 7.206 0 GHz	Y -0.075 dBr -34.117 dBr -34.117 dBr -62.562 dBr	FUNCTION m m m	FUNCTION WIDTH	Sw	reep 2.530 s (30001
art 30 MHz les BW 100 kHz R MODE TRC SCL	2.401 7 GHz 4.803 4 GHz 4.803 4 GHz	Y -0.075 dBr -34.117 dBr -34.117 dBr -62.562 dBr	FUNCTION m m m	FUNCTION WIDTH	Sw	reep 2.530 s (30001
art 30 MHz ess BW 100 kHz R MODE TRC SCL N 1 f N 1 f N 1 f N 1 f	2.401 7 GHz 4.803 4 GHz 4.803 4 GHz 7.206 0 GHz	Y -0.075 dBr -34.117 dBr -34.117 dBr -62.562 dBr	FUNCTION m m m	FUNCTION WIDTH	Sw	reep 2.530 s (30001
art 30 MHz es BW 100 kHz MODE TRC SCL N 1 f N 1 f N 1 f	2.401 7 GHz 4.803 4 GHz 4.803 4 GHz 7.206 0 GHz	Y -0.075 dBr -34.117 dBr -34.117 dBr -62.562 dBr	FUNCTION m m m	FUNCTION WIDTH	Sw	reep 2.530 s (30001

Middle channel

Keysight Spectrum Analyzer -						
	Ω AC	SENSE:PUL	SE	#Avg Typ		03:28:36 PM Jun 21, 20 TRACE
enter Freq 13.26	PN		g: Free Run ten: 20 dB	Avg Hold	e: RMS : 10/10	TYPE MWWW DET P NNN
Ref Offset	1.98 dB 8 dBm				N	lkr1 2.439 7 GF 0.418 dB
9						
0						DL1-(19.51 d
0						
0		<mark>5</mark>				
n	.4					And an other distants in the
					A CONTRACTOR OF THE	and the second
art 30 MHz						Stop 26.50 GF
art 30 MHz		#VBW 30	0 kHz		Sweep	Stop 26.50 GF 2.530 s (30001 pt
art 30 MHz les BW 100 kHz	×	Y	0 KHz	FUNCTION WIDTH		Stop 26.50 Gł 2.530 s (30001 pr ction value
art 30 MHz es BW 100 KHz MODE TRC SCL	2.439 7 GHz	۲ 0.418 dBm		FUNCTION WIDTH		Stop 26.50 GF 2.530 s (30001 pt ction value
art 30 MHz tes BW 100 KHz R MODE TRC SCL	2.439 7 GHz 4.879 3 GHz	√ 0.418 dBm -33,494 dBm		FUNCTION WIDTH		2.530 s (30001 pt
art 30 MHz tes BW 100 KHz R MODE TRC SCL	2.439 7 GHz 4.879 3 GHz 4.879 3 GHz	Y 0.418 dBm -33.494 dBm -33.494 dBm		FUNCTION WIDTH		2.530 s (30001 pt
art 30 MHz es BW 100 kHz MODE TRC SCLI N 1 f N 1 f N 1 f	2.439 7 GHz 4.879 3 GHz 4.879 3 GHz 7.319 8 GHz	√ 0.418 dBm -33,494 dBm		FUNCTION WIDTH		2.530 s (30001 pt
art 30 MHz tes BW 100 kHz R MOGE TRC SCL N 1 f N 1 f N 1 f	2.439 7 GHz 4.879 3 GHz 4.879 3 GHz	Y 0.418 dBm -33.494 dBm -33.494 dBm -64.731 dBm		FUNCTION WIDTH		2.530 s (30001 pt
art 30 MHz tes BW 100 KHz R MODE TRC SEL N 1 7 N 1 7 N 1 7 N 1 7	2.439 7 GHz 4.879 3 GHz 4.879 3 GHz 7.319 8 GHz	Y 0.418 dBm -33.494 dBm -33.494 dBm -64.731 dBm		FUNCTION WIDTH		2.530 s (30001 pt
art 30 MHz tes BW 100 kHz R MORE TRC SCL N 1 f N 1 f N 1 f	2.439 7 GHz 4.879 3 GHz 4.879 3 GHz 7.319 8 GHz	Y 0.418 dBm -33.494 dBm -33.494 dBm -64.731 dBm		FUNCTION WDTH		2.530 s (30001 pt
art 30 MHz tes BW 100 kHz N 00 kHz N 1 f N 1 f N 1 f N 1 f	2.439 7 GHz 4.879 3 GHz 4.879 3 GHz 7.319 8 GHz	Y 0.418 dBm -33.494 dBm -33.494 dBm -64.731 dBm		PURCTION WIDTH		2.530 s (30001 pt
art 30 MHz tes BW 100 kHz R MOGE TRC SCL N 1 f N 1 f N 1 f	2.439 7 GHz 4.879 3 GHz 4.879 3 GHz 7.319 8 GHz	Y 0.418 dBm -33.494 dBm -33.494 dBm -64.731 dBm		FUNCTION WIDTH		2.530 s (30001 pt

Highest channel

RL	RF	alyzer - Swept SA 50 Ω AC 3.26500000	P	NO: Fast ++ Gain:Low		E Free Run en: 20 dB		≝Avg Typ Avg Hold				0 PM Jun 21, 203 RACE 2 3 4 TYPE MUNN
dB/div		Offset 1.98 dB 11.98 dBm								N		80 2 GH 886 dBr
96	-	1										
3.0												
3.0 3.0		¢³										
3.0			A	05								
1.0		and the second second	X		-	-						
art 30 M Res BW		(Hz		#VE	W 300	kHz			s	weep		26.50 GH (30001 pt
R MODE TH		×		×		FUNCTION	FUNCTIO	NMDTH		_	CTION VALUE	1
N 1	f		2.480 2 GHz	-1.886		Tenetion	Tone no			1.010	CTION TALOL	
	_ f		4.959 6 GHz 4.959 6 GHz	-36.258	dBm							
i n	4		7.439 8 GHz	-64,677	dBm							
	1	<u> </u>	9.920 1 GHz	-51.949	dBm							
0												

10.ANTENNA REQUIREMENT

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is PCB ANT, the best case gain of the antennas is 0dBi, reference to the Internal Photos for details

Project No.: ZKT-230621L4678E-2 Page 42 of 42

11. TEST SETUP PHOTO

Reference to the appendix Test Setup Photos for details.

12. EUT CONSTRUCTIONAL DETAILS

Reference to the appendix External Photos and Internal Photos for details.

******** END OF REPORT *******