

FCC Part 15E

Measurement and Test Report

For

FURIOUS FPV Co., Ltd

**25-27 Bau Cat 8 st Ward 14, Tan Binh District, Hochiminh City,
Vietnam**

FCC ID: 2ARL3-VTX5G8

FCC Rule(s):	<u>FCC Part 15E</u>
Product Description:	<u>5.8G Transmitter</u>
Tested Model:	<u>FuriousFPV_Stealth_Mini_VTX_5G8</u>
Report No.:	<u>STR18078339I</u>
Sample Receipt Date:	<u>2018-07-27</u>
Tested Date:	<u>2018-07-27 to 2018-10-24</u>
Issued Date:	<u>2018-10-24</u>
Tested By:	<u>Mike Shi / Engineer</u>
Reviewed By:	<u>Silin Chen / EMC Manager</u>
Approved & Authorized By:	<u>Jandy So / PSQ Manager</u>
Prepared By:	

Shenzhen SEM Test Technology Co., Ltd.

1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road,
Bao'an District, Shenzhen, P.R.C. (518101)

Tel.: +86-755-33663308 Fax.: +86-755-33663309 Website: www.semtest.com.cn

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permission by Shenzhen SEM Test Technology Co., Ltd.

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....	3
1.2 TEST STANDARDS.....	4
1.3 TEST METHODOLOGY	4
1.4 TABLE FOR PARAMETERS OF TEST SOFTWARE SETTING	4
1.5 EUT OPERATING DURING TEST	5
1.6 TEST FACILITY	5
1.7 EUT SETUP AND TEST MODE.....	5
1.8 MEASUREMENT UNCERTAINTY	6
1.9 TEST EQUIPMENT LIST AND DETAILS	6
2. SUMMARY OF TEST RESULTS	8
3. RF EXPOSURE	9
3.1 STANDARD APPLICABLE.....	9
3.2 TEST RESULT.....	9
4. ANTENNA REQUIREMENT	10
4.1 STANDARD APPLICABLE.....	10
4.2 EVALUATION INFORMATION.....	10
5. POWER SPECTRAL DENSITY	11
5.1 STANDARD APPLICABLE.....	11
5.2 TEST PROCEDURE.....	11
5.3 SUMMARY OF TEST RESULTS/PLOTS	12
6. EMISSION BANDWIDTH AND OCCUPIED BANDWIDTH.....	13
6.1 STANDARD APPLICABLE.....	13
6.2 TEST PROCEDURE.....	13
6.3 SUMMARY OF TEST RESULTS/PLOTS	15
7. MAXIMUM CONDUCTED OUTPUT POWER.....	16
7.1 STANDARD APPLICABLE.....	16
7.2 TEST PROCEDURE.....	16
7.3 SUMMARY OF TEST RESULTS/PLOTS	17
8. RADIATED SPURIOUS EMISSIONS.....	18
8.1 STANDARD APPLICABLE.....	18
8.2 TEST PROCEDURE.....	18
8.3 TEST RECEIVER SETUP	19
8.4 CORRECTED AMPLITUDE & MARGIN CALCULATION.....	19
8.5 SUMMARY OF TEST RESULTS/PLOTS	20
9. CONDUCTED EMISSIONS	27
9.1 TEST PROCEDURE.....	27
9.2 BASIC TEST SETUP BLOCK DIAGRAM.....	27
9.3 TEST RECEIVER SETUP	28
9.4 CONDUCTED EMISSIONS TEST DATA.....	28
10. FREQUENCY STABILITY	31
10.1 STANDARD APPLICABLE.....	31
10.2 TEST PROCEDURE.....	31
10.3 SUMMARY OF TEST RESULTS/PLOTS	31

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant:	FURIOS FPV Co., Ltd
Address of applicant:	25-27 Bau Cat 8 st Ward 14, Tan Binh District, Hochiminh City, Vietnam
Manufacturer:	FURIOS FPV Co., Ltd
Address of manufacturer:	25-27 Bau Cat 8 st Ward 14, Tan Binh District, Hochiminh City, Vietnam

General Description of EUT	
Product Name:	5.8G Transmitter
Trade Name:	
Model No.:	FuriousFPV_Stealth_Mini_VTX_5G8
Adding Model(s):	FuriousFPV_Stealth_Race_VTX_5G8, FuriousFPV_Stealth_Long_Range_VTX_5G8, FuriousFPV_Stealth_Micro_VTX_5G8, FuriousFPV_Stealth_CAR_VTX_5G8, FuriousFPV_Stealth_WING_VTX_5G8, FuriousFPV_Stealth_PLANE_VTX_5G8, FuriousFPV_Mnova, FuriousFPV_Innova, FuriousFPV_Stealth_Nano_VTX_5G8, FuriousFPV_Stealth_Nano_Race_VTX_5G8, FuriousFPV_Nano_Race_VTX_5G8, FuriousFPV_Stealth_NoLimit_VTX_5G8
Rated Voltage:	DC5V
Power Adapter Model:	/
<i>Note: The test data is gathered from a production sample provided by the manufacturer. The appearance of others models listed in the report is different from main-test model FuriousFPV_Stealth_Mini_VTX_5G8, but the circuit and the electronic construction do not change, declared by the manufacturer.</i>	

Technical Characteristics of EUT	
SRD	
Frequency Range:	5805MHz
RF Output Power:	18.75dBm (Conducted)
Type of Modulation:	QPSK
Type of Antenna:	External Antenna
Antenna Gain:	5dBi

1.2 Test Standards

FCC Rules Part 15.407: General technical requirements.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

KDB789033 D02 v02r01:GUIDELINES FOR COMPLIANCE TESTING OF UNLICENSED NATIONAL INFORMATION INFRASTRUCTURE (U-NII) DEVICES PART 15, SUBPART E

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, KDB789033 D02 v02r01. The equipment under test (EUT) was configured to measure its highest possible emission level. The test modes were adapted accordingly in reference to the Operating Instructions.

1.4 Table for parameters of Test Software setting

The test utility software used during testing was “5823VTX-V1.0”. During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

1.5 EUT Operating during test

EUT was programmed to be in continuously transmitting mode.

1.6 Test Facility

FCC – Registration No.: 125990

Shenzhen SEM Test Technology Co., Ltd. Laboratory has been recognized to perform compliance testing on equipment subject to the Commissions Declaration Of Conformity (DOC). The Designation Number is CN5010, and Test Firm Registration Number is 125990.

Industry Canada (IC) Registration No.: 11464A

The 3m Semi-anechoic chamber of Shenzhen SEM Test Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 11464A.

1.7 EUT Setup and Test Mode

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, and to measure its highest possible emissions level, more detailed description as follows:

Test Mode List		
Test Mode	Description	Remark
TM1	Transmitting	5805MHz

Test Conditions	
Temperature:	22~25 °C
Relative humidity	50~55 %.
ATM Pressure:	1019 mbar

EUT Cable List and Details			
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite

Special Cable List and Details			
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite
DC CABLE	1.0	Unshielded	Without Core

Auxiliary Equipment List and Details			
Description	Manufacturer	Model	Serial Number
ADAPTER	/	SR-D509	/

1.8 Measurement Uncertainty

Measurement uncertainty		
Parameter	Conditions	Uncertainty
RF Output Power	Conducted	±0.42dB
Occupied Bandwidth	Conducted	±1.5%
Power Spectral Density	Conducted	±1.8dB
Conducted Spurious Emission	Conducted	±2.17dB
Conducted Emissions	Conducted	9-150kHz ±3.74dB
		0.15-30MHz ±3.34dB
Transmitter Spurious Emissions	Radiated	30-200MHz ±4.52dB
		0.2-1GHz ±5.56dB
		1-6GHz ±3.84dB
		6-18GHz ±3.92dB

1.9 Test Equipment List and Details

No.	Description	Manufacturer	Model	Serial No.	Cal Date	Due Date
SEMT-1072	Spectrum Analyzer	Agilent	E4407B	MY41440400	2018-05-22	2019-05-21
SEMT-1031	Spectrum Analyzer	Rohde & Schwarz	FSP30	836079/035	2018-05-22	2019-05-21
SEMT-1007	EMI Test Receiver	Rohde & Schwarz	ESVB	825471/005	2018-05-22	2019-05-21
SEMT-1008	Amplifier	Agilent	8447F	3113A06717	2018-05-22	2019-05-21
SEMT-1043	Amplifier	C&D	PAP-1G18	2002	2018-05-22	2019-05-21
SEMT-1011	Broadband Antenna	Schwarz beck	VULB9163	9163-333	2017-06-08	2020-06-07
SEMT-1042	Horn Antenna	ETS	3117	00086197	2017-06-08	2020-06-07
SEMT-1121	Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170582	2017-06-08	2020-06-07
SEMT-1069	Loop Antenna	Schwarz beck	FMZB 1516	9773	2017-06-08	2020-06-07
SEMT-1001	EMI Test Receiver	Rohde & Schwarz	ESPI	101611	2018-05-22	2019-05-21
SEMT-1003	L.I.S.N	Schwarz beck	NSLK8126	8126-224	2018-05-22	2019-05-21
SEMT-1002	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100911	2018-05-22	2019-05-21
SEMT-1168	Pre-amplifier	Direction Systems Inc.	PAP-0126	14141-12838	2017-08-15	2018-08-14
SEMT-1169	Pre-amplifier	Direction Systems Inc.	PAP-2640	14145-14153	2018-05-22	2019-05-21
SEMT-1163	Spectrum Analyzer	Rohde & Schwarz	FSP40	100612	2018-05-22	2019-05-21
SEMT-1170	DRG Horn Antenna	A.H. SYSTEMS	SAS-574	571	2018-05-22	2019-05-21

SEMT-1166	Power Limiter	Agilent	N9356B	MY45450376	2018-05-22	2019-05-21
SEMT-1048	RF Limiter	ATTEN	AT-BSF-2400~2500	/	2018-05-22	2019-05-21
SEMT-1076	RF Switcher	Top Precision	RCS03-A2	/	2018-05-22	2019-05-21
SEMT-C001	Cable	Zheng DI	LL142-07-07-10M(A)	/	2018-03-19	2019-03-18
SEMT-C002	Cable	Zheng DI	ZT40-2.92J-2.92J-6M	/	2018-03-19	2019-03-18
SEMT-C003	Cable	Zheng DI	ZT40-2.92J-2.92J-2.5M	/	2018-03-19	2019-03-18
SEMT-C004	Cable	Zheng DI	2M0RFC	/	2018-03-19	2019-03-18
SEMT-C005	Cable	Zheng DI	1M0RFC	/	2018-03-19	2019-03-18
SEMT-C006	Cable	Zheng DI	1M0RFC	/	2018-03-19	2019-03-18

2. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test Item	Result
§ 15.203; § 15.405	Antenna Requirement	Compliant
§ 15.207; § 15.407(b)(6)	Conducted Emission	Compliant
§ 15.407(a)(1),(2)	Power Spectral Density	Compliant
§ 15.407(e)	Emission Bandwidth and Occupied Bandwidth	Compliant
§ 15.407(a)(1),(2)	Maximum Conducted Output Power	Compliant
§ 15.407(b)(1),(2),(3),(4)	Undesirable emission	Compliant
§ 15.205; § 15.407(b)(1),(2),(3)	Radiated Emission	Compliant
§ 15.407(g)	Frequency Stability	Compliant
§ 15.407(h)	Dynamic Frequency Selection (DFS)	N/A

N/A: not applicable

3. RF Exposure

3.1 Standard Applicable

According to § 1.1307 and § 2.1093, the portable transmitter must comply the RF exposure requirements.

3.2 Test Result

This product complied with the requirement of the RF exposure, please see the RF Exposure Report.

4. Antenna Requirement

4.1 Standard Applicable

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

4.2 Evaluation Information

This product has an external antenna, fulfill the requirement of this section. The Antenna connect to the EUT T is an un-standard antenna jack

5. Power Spectral Density

5.1 Standard Applicable

Section 15.407(a) Power limits:

(1) For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

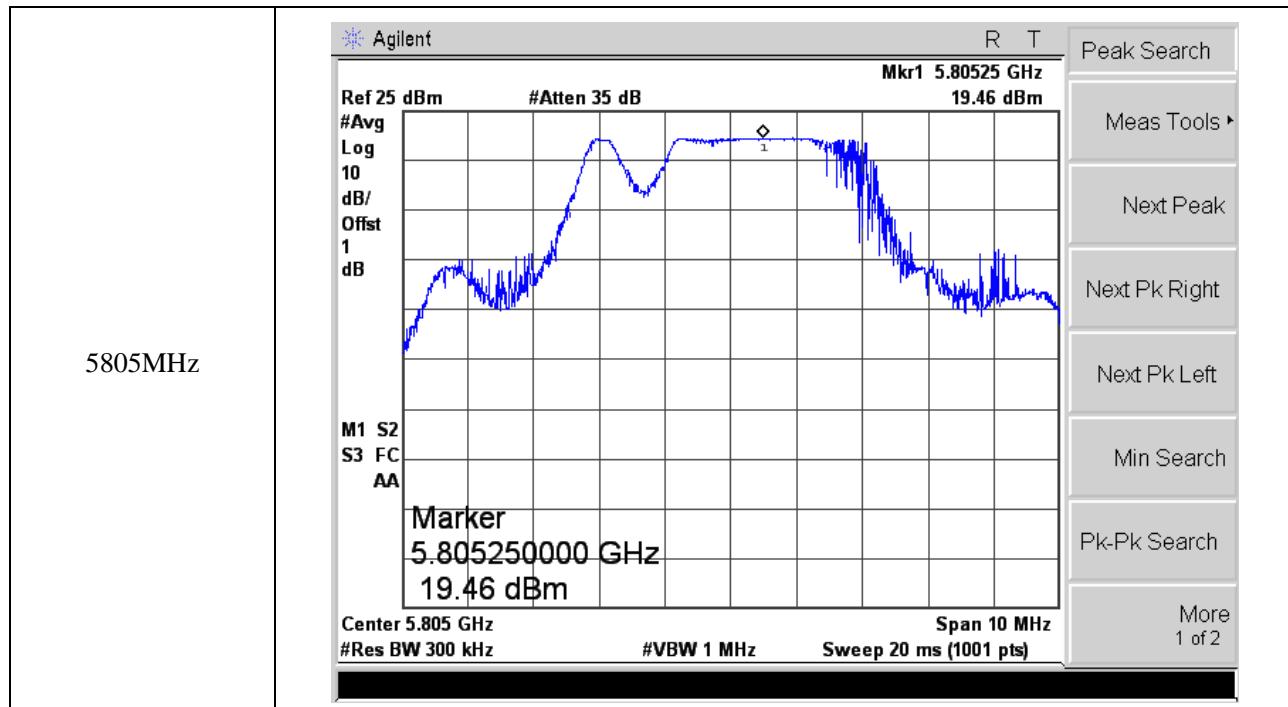
(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or $11 \text{ dBm} + 10 \log B$, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

5.2 Test Procedure

According to 789033 D02 v02r01 section F, the following is the measurement procedure.

For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, “provided that the measured power is integrated over the full reference bandwidth” to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 kHz bandwidth, the following adjustments to the procedures apply:


- a) Set RBW $\geq 1/T$, where T is defined in section II.B.1.a).
- b) Set VBW ≥ 3 RBW.
- c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add $10\log(500\text{kHz}/\text{RBW})$ to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
- d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add $10\log(1\text{MHz}/\text{RBW})$ to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
- e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 KHz for the sections 5.c) and 5.d) above, since RBW=100 KHz is available on nearly all spectrum analyzers.

5.3 Summary of Test Results/Plots

Test Channel MHz	Power Spectral Density dBm/300kHz	Factor	Power Spectral Density* dBm/500kHz	Limit dBm/500kHz
5805	19.46	2.22	21.68	30

*Note: Maximum PSD=PSD(dBm/300kHz)+10log(500kHz/300kHz)=2.22

6. Emission Bandwidth and Occupied Bandwidth

6.1 Standard Applicable

According to 15.407 (a) and (e)

(1) For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or $11 \text{ dBm} + 10 \log B$, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(e) Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

6.2 Test Procedure

According to 789033 D02 v02r01 section C&D, the following is the measurement procedure.

1. Emission Bandwidth (EBW)

- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.

e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

2. Minimum Emission Bandwidth for the band 5.725-5.85 GHz

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.715-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

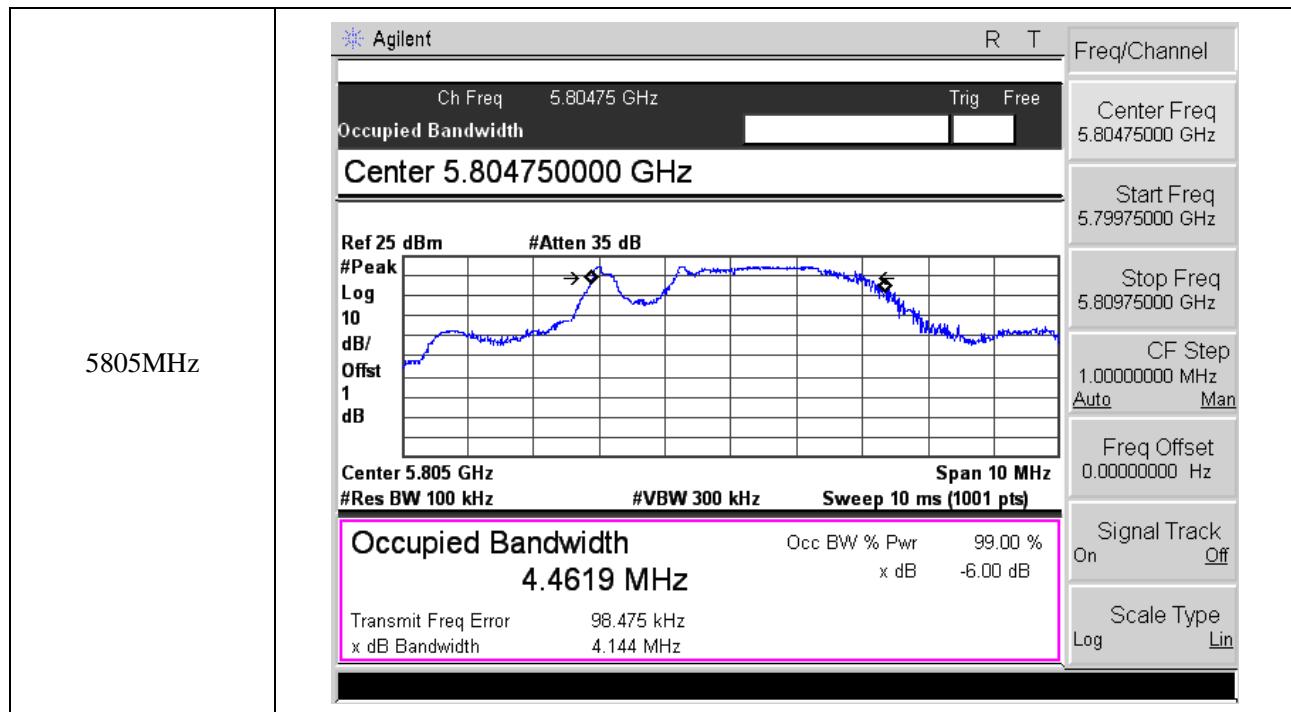
- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) $\geq 3 \times$ RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described above.

D. 99 Percent Occupied Bandwidth

The 99-percent occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5 % of the total mean power of the given emission.


Measurement of the 99-percent occupied bandwidth is required only as a condition for using the optional band-edge measurement techniques described in section II.G.3.d). Measurements of 99-percent occupied bandwidth may also optionally be used in lieu of the EBW to 789033 D02 v02r01 General UNII Test Procedures New Rules v01 define the minimum frequency range over which the spectrum is integrated when measuring maximum conducted output power as described in section II.E. However, the EBW must be measured to determine bandwidth dependent limits on maximum conducted output power in accordance with 15.407(a).

The following procedure shall be used for measuring (99 %) power bandwidth:

1. Set center frequency to the nominal EUT channel center frequency.
2. Set span = 1.5 times to 5.0 times the OBW.
3. Set RBW = 1 % to 5 % of the OBW
4. Set VBW $\geq 3 \cdot$ RBW
5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
6. Use the 99 % power bandwidth function of the instrument (if available).
7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

6.3 Summary of Test Results/Plots

Test Channel MHz	6 dB Bandwidth MHz	99% Bandwidth MHz	Limit kHz
5805	4.144	4.4619	≥500

7. Maximum Conducted Output Power

7.1 Standard Applicable

According to 15.407(a) Power limits:

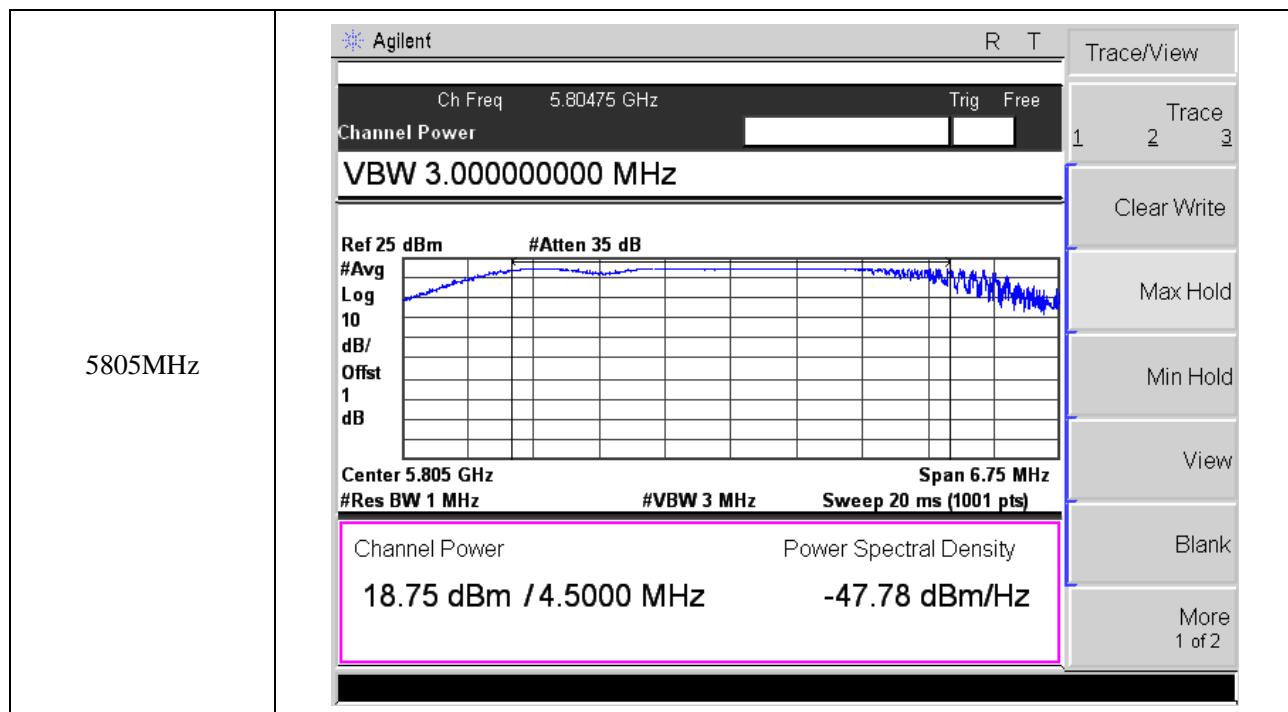
(1) For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or $11 \text{ dBm} + 10 \log B$, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

7.2 Test Procedure


According to KDB789033 D02 v02r01 section E, the following is the measurement procedure.

- (i) Set span to encompass the entire emission bandwidth (EBW) (or, alternatively, the entire 99% occupied bandwidth) of the signal.
- (ii) Set RBW = 1 MHz.
- (iii) Set VBW ≥ 3 MHz.
- (iv) Number of points in sweep ≥ 2 Span / RBW. (This ensures that bin-to-bin spacing is \leq RBW/2, so that narrowband signals are not lost between frequency bins.)

- (v) Sweep time = auto.
- (vi) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- (vii) If transmit duty cycle < 98 percent, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \geq 98 percent, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to “free run”.
- (viii) Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- (ix) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument’s band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at 1 MHz intervals extending across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the spectrum.

7.3 Summary of Test Results/Plots

Frequency MHz	Output Power dBm	Output Power mW	Limit mW
5805	18.75	74.99	1000

8. Radiated Spurious Emissions

8.1 Standard Applicable

According to §15.407(b), Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band:
 - (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

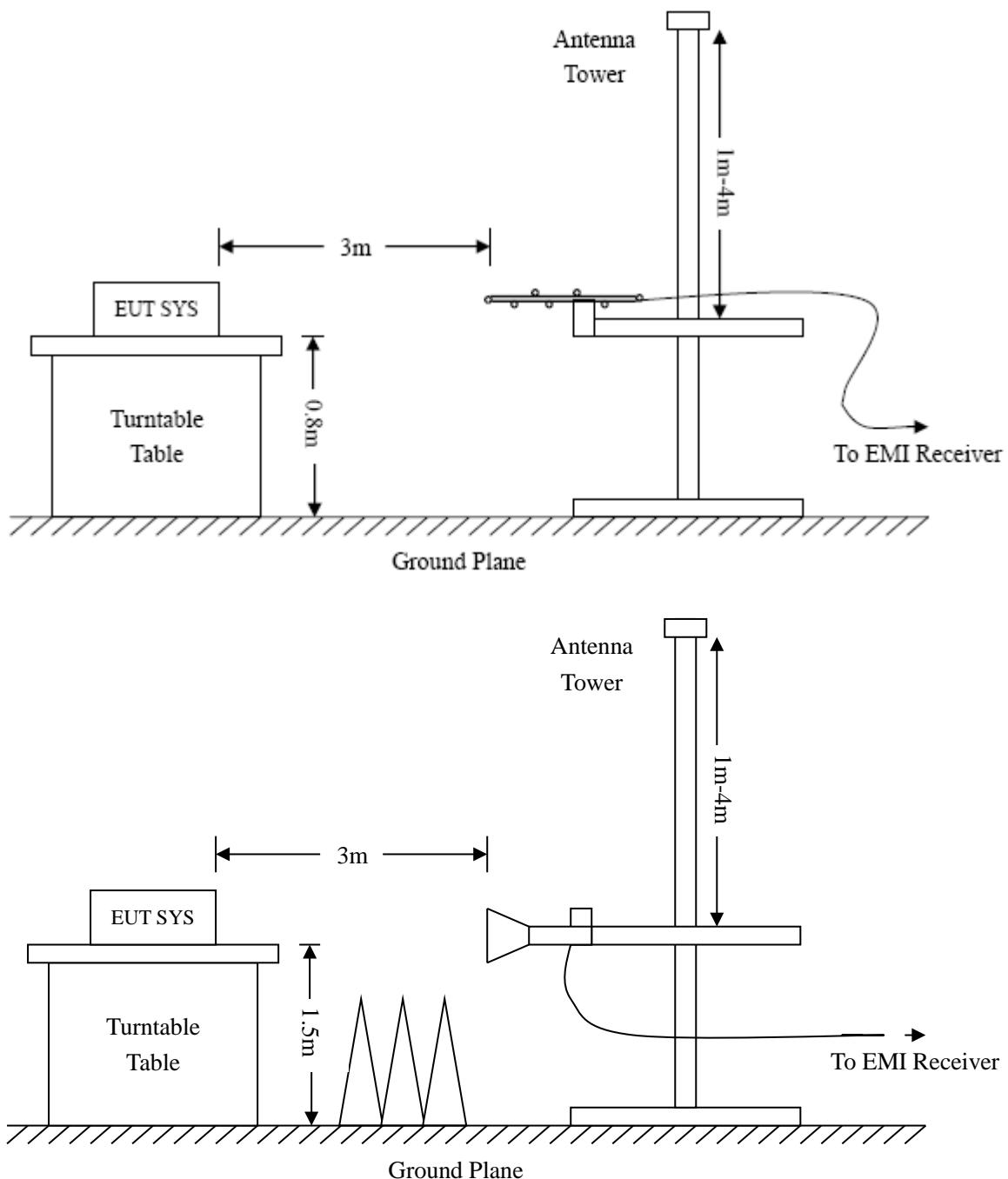
According to §15.407(b)(6), Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.

According to §15.407(b)(7), The provisions of §15.205 apply to intentional radiators operating under this section.
789033 D02 v02r01 General UNII Test Procedures New Rules v01

If radiated measurements are performed, field strength is then converted to EIRP as follows:

$$\text{EIRP} = ((E^*d)^2) / 30$$

where:


- E is the field strength in V/m;
- d is the measurement distance in meters;
- EIRP is the equivalent isotropically radiated power in watts.

8.2 Test Procedure

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.205 15.407(b)(6) and FCC Part 15.209 Limit..

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

8.3 Test Receiver Setup

During the radiated emission test for above 1GHz, the test receiver was set with the following configurations:

For peak detector:

RBW = 1000kHz, VBW = 3000kHz, Sweep Time = Auto

For average detector:

RBW = 1000kHz, VBW = 10Hz, Sweep Time = Auto

8.4 Corrected Amplitude & Margin Calculation

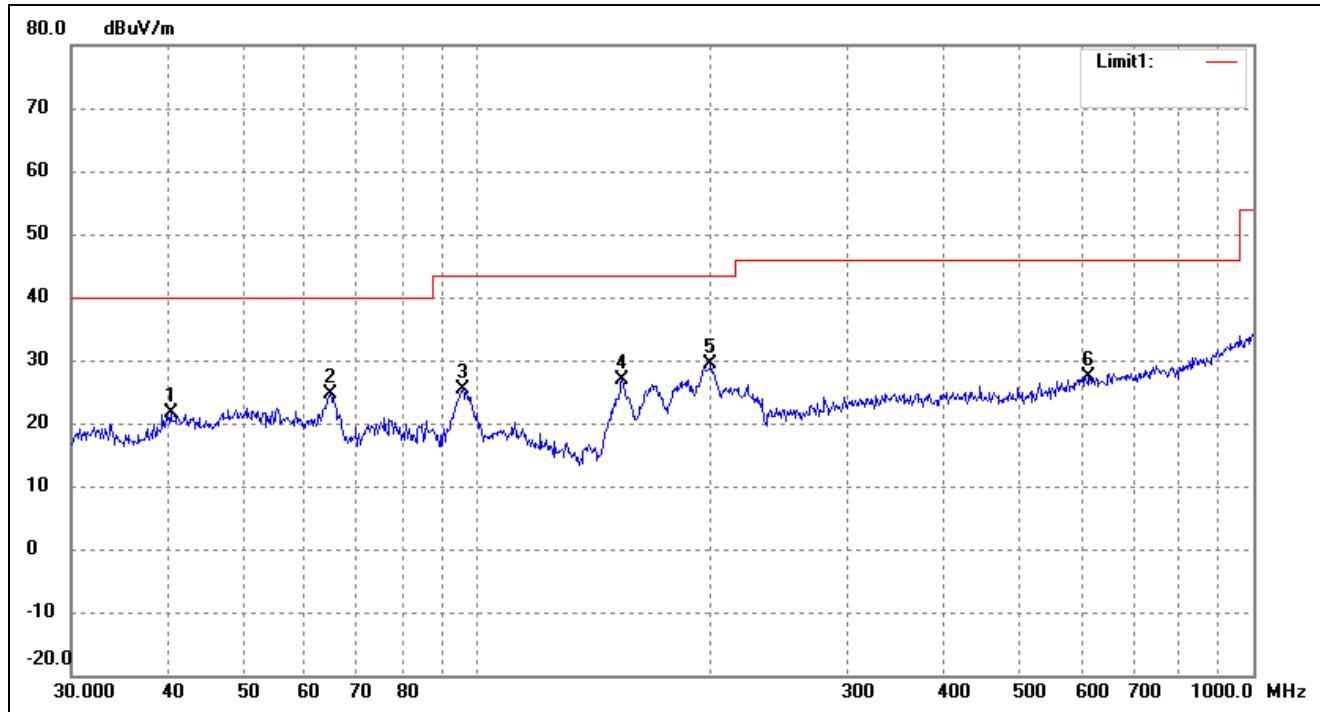
The Corrected Amplitude is calculated adding the Antenna Factor and the Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

$$\text{Corr. Ampl.} = \text{Indicated Reading} + \text{Ant. Factor} + \text{Cable Loss} - \text{Ampl. Gain}$$

The “Margin” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -6dB μ V means the emission is 6dB μ V below the maximum limit. The equation for margin calculation is as follows:

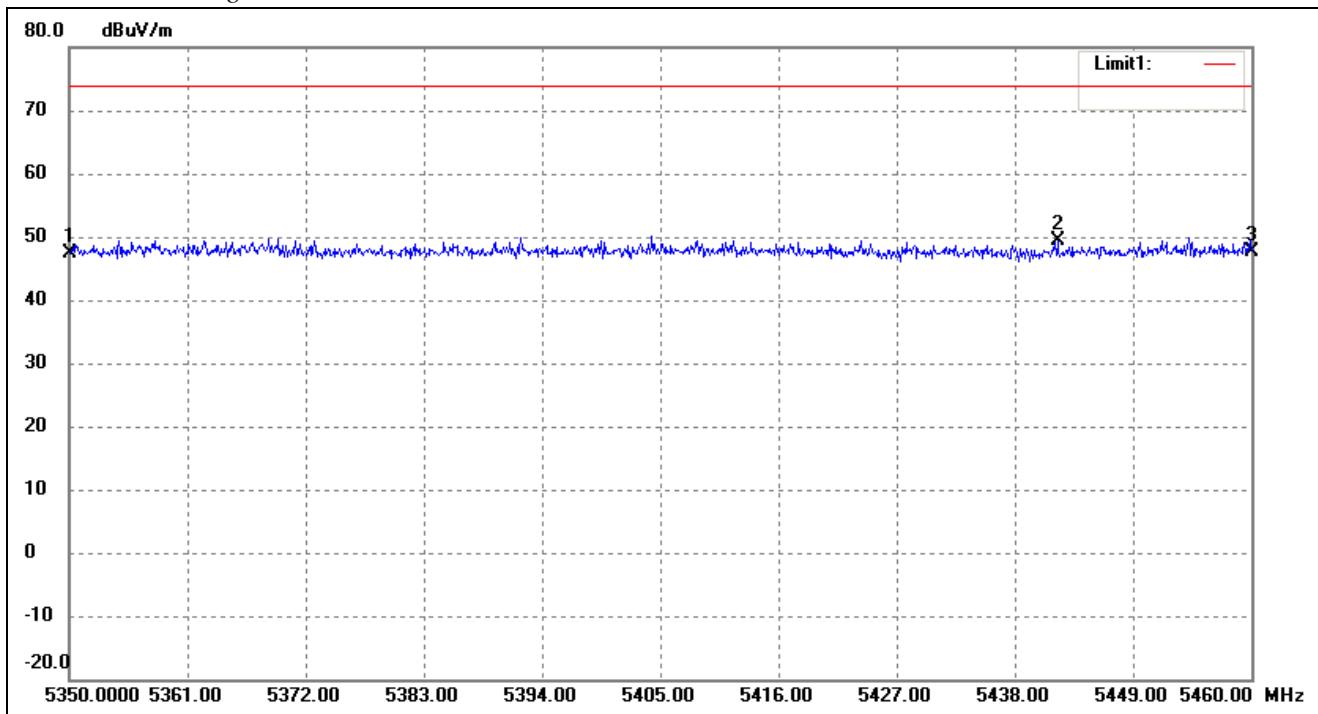
$$\text{Margin} = \text{Corr. Ampl.} - \text{FCC Part 15 Limit}$$

8.5 Summary of Test Results/Plots

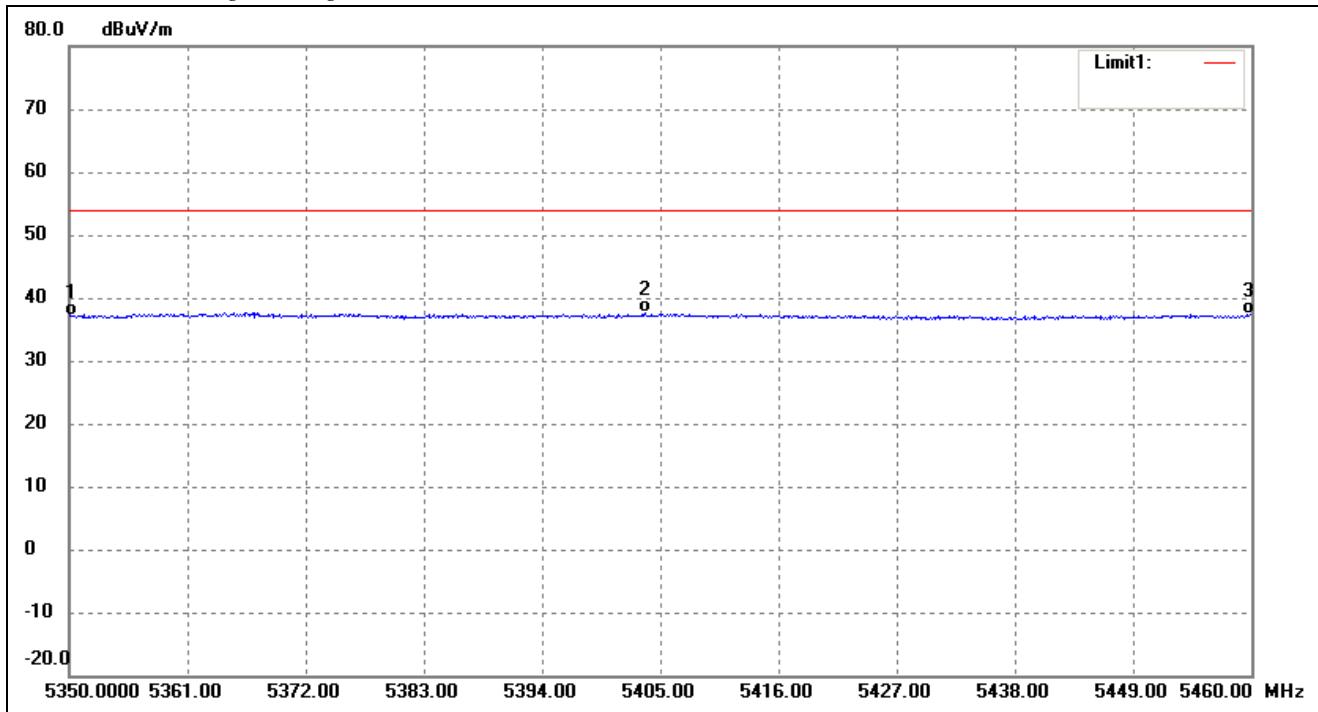

Note: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Test Channel	5805MHz	Polarity:	Horizontal
--------------	---------	-----------	------------

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	47.4918	34.95	-12.81	22.14	40.00	-17.86	53	100	peak
2	99.8777	35.78	-14.48	21.30	43.50	-22.20	99	100	peak
3	169.0054	38.08	-15.40	22.68	43.50	-20.82	148	100	peak
4	197.8928	39.14	-12.35	26.79	43.50	-16.71	140	100	peak
5	268.4853	38.26	-8.86	29.40	46.00	-16.60	68	100	peak
6	734.4913	31.23	-1.93	29.30	46.00	-16.70	341	100	peak


Test Channel	5805MHz	Polarity:	Vertical
--------------	---------	-----------	----------

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	()	(cm)	
1	40.2757	35.46	-13.92	21.54	40.00	-18.46	342	100	peak
2	64.6594	39.89	-15.18	24.71	40.00	-15.29	195	100	peak
3	95.7622	40.36	-15.09	25.27	43.50	-18.23	60	100	peak
4	153.7385	43.36	-16.51	26.85	43.50	-16.65	98	100	peak
5	199.9856	41.39	-12.10	29.29	43.50	-14.21	280	100	peak
6	614.2142	31.29	-3.86	27.43	46.00	-18.57	333	100	peak


For the frequency band 5350-5460GHz

Restricted Bandedge Peak

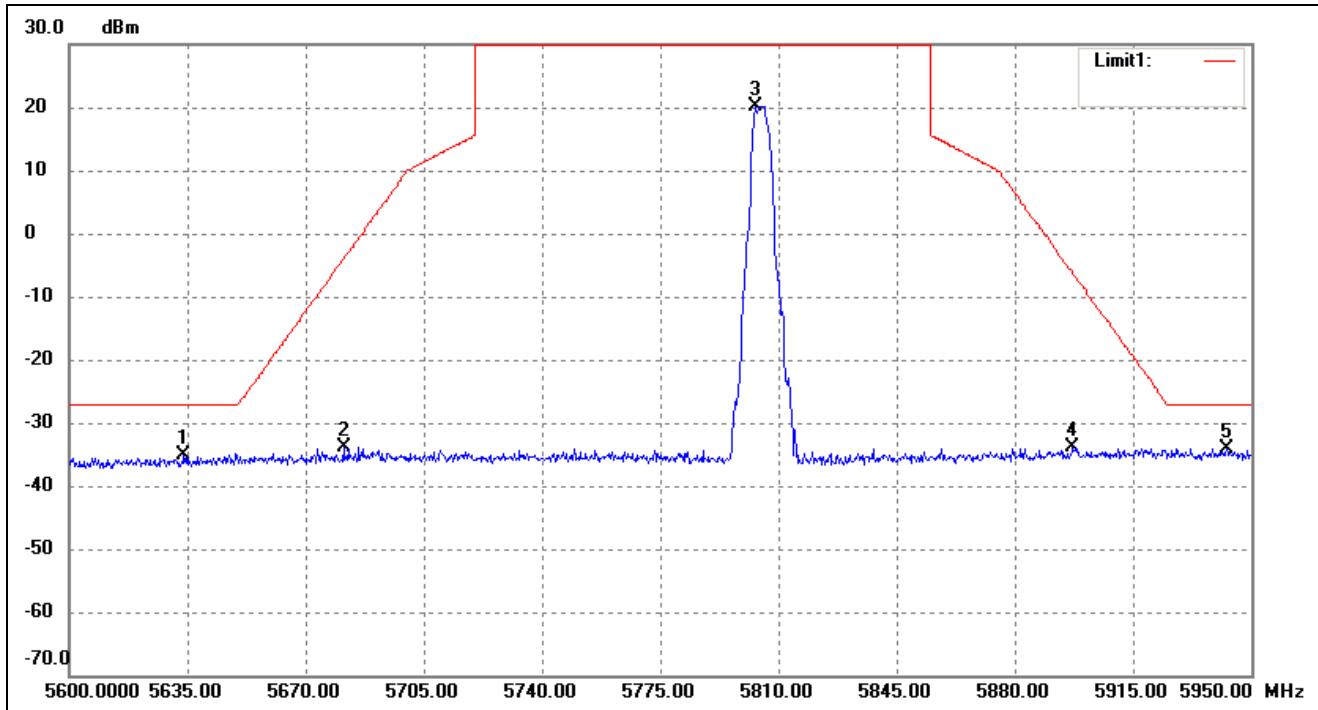
No.	Frequency (MHz)	Reading (dBuV/m)	Correct dB/m	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Degree ()	Height (cm)	Remark
1	5350.000	49.84	-2.49	47.35	74.00	-26.65	192	100	peak
2	5441.960	51.68	-2.25	49.43	74.00	-24.57	115	100	peak
3	5460.000	49.86	-2.21	47.65	74.00	-26.35	130	100	peak

Restricted Bandedge Average

No.	Frequency (MHz)	Reading (dBuV/m)	Correct dB/m	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Degree ()	Height (cm)	Remark
1	5350.000	39.60	-2.49	37.11	54.00	-16.89	86	100	Ave
2	5403.570	39.91	-2.36	37.55	54.00	-16.45	150	100	Ave
3	5460.000	39.51	-2.21	37.30	54.00	-16.70	104	100	Ave

Note: this EUT was tested in the low, high channel and the worst case position data was reported.

For the frequency band 5.725-5.850GHz


➤ Hormonics And Spurious Emissions

Frequency MHz	Detector	Meter Reading dBuV	Direction Degree	Polar H / V	Antenna Loss dB	Cable loss dB	Amplifier dB	Correction Amplitude dBuV/m	Limit dBuV/m	Margin dB
High Channel (5805MHz)										
11610	PK	50.5	151	V	38.9	12.8	40.1	62.4	74	-11.6
11610	PK	50.7	151	H	38.9	12.8	40.1	61.9	74	-12.1
11610	AV	38.3	151	V	38.9	12.8	40.1	49.2	54	-4.8
11610	AV	37.6	151	H	38.9	12.8	40.1	48.3	54	-5.7

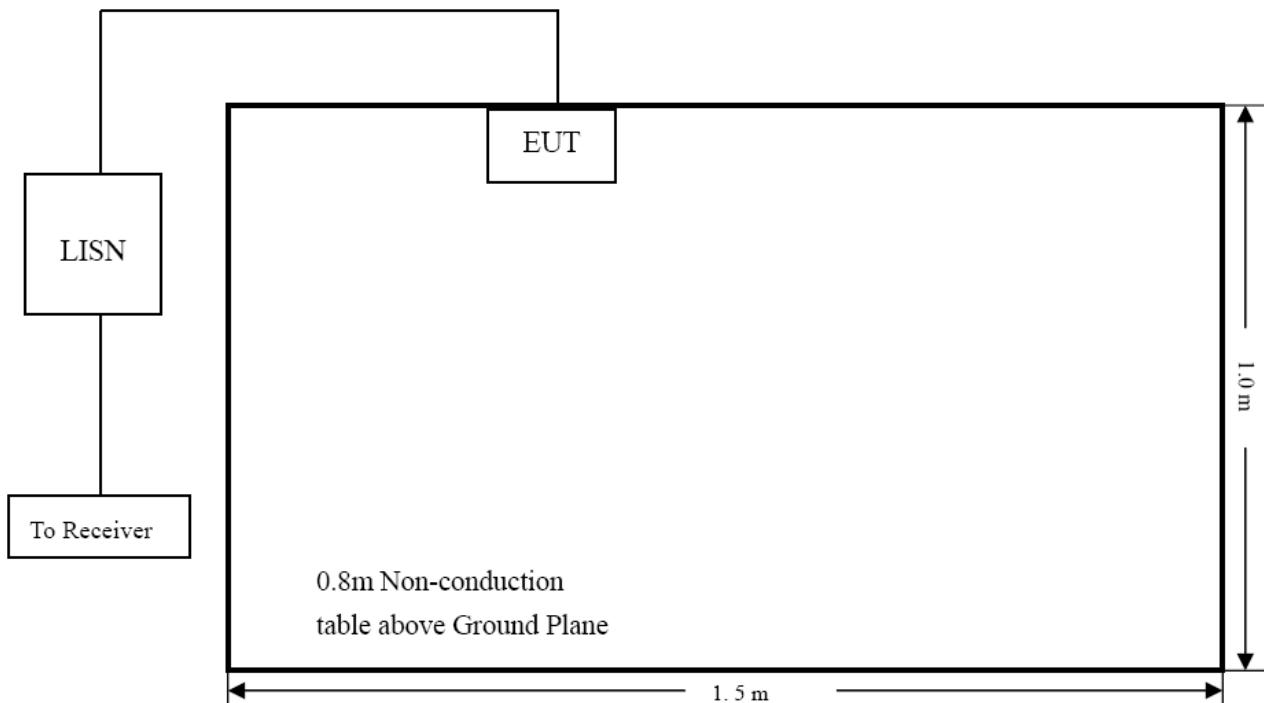
Note: Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Out of Band edge

Test Channel	5805MHz	Polarity:	Horizontal(worst case)
--------------	---------	-----------	------------------------

No.	Frequency (MHz)	Reading (dBuV/m)	Correct dB/m	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	5633.950	-45.25	10.04	-35.21	-27.00	-8.21	peak
2	5681.200	-43.94	10.16	-33.78	-3.91	-29.87	peak
3	5803.350	9.71	10.47	20.18	/	/	peak
4	5897.150	-44.67	10.72	-33.95	-6.39	-27.56	peak
5	5942.650	-44.84	10.83	-34.01	-27.00	-7.01	peak

9. Conducted Emissions

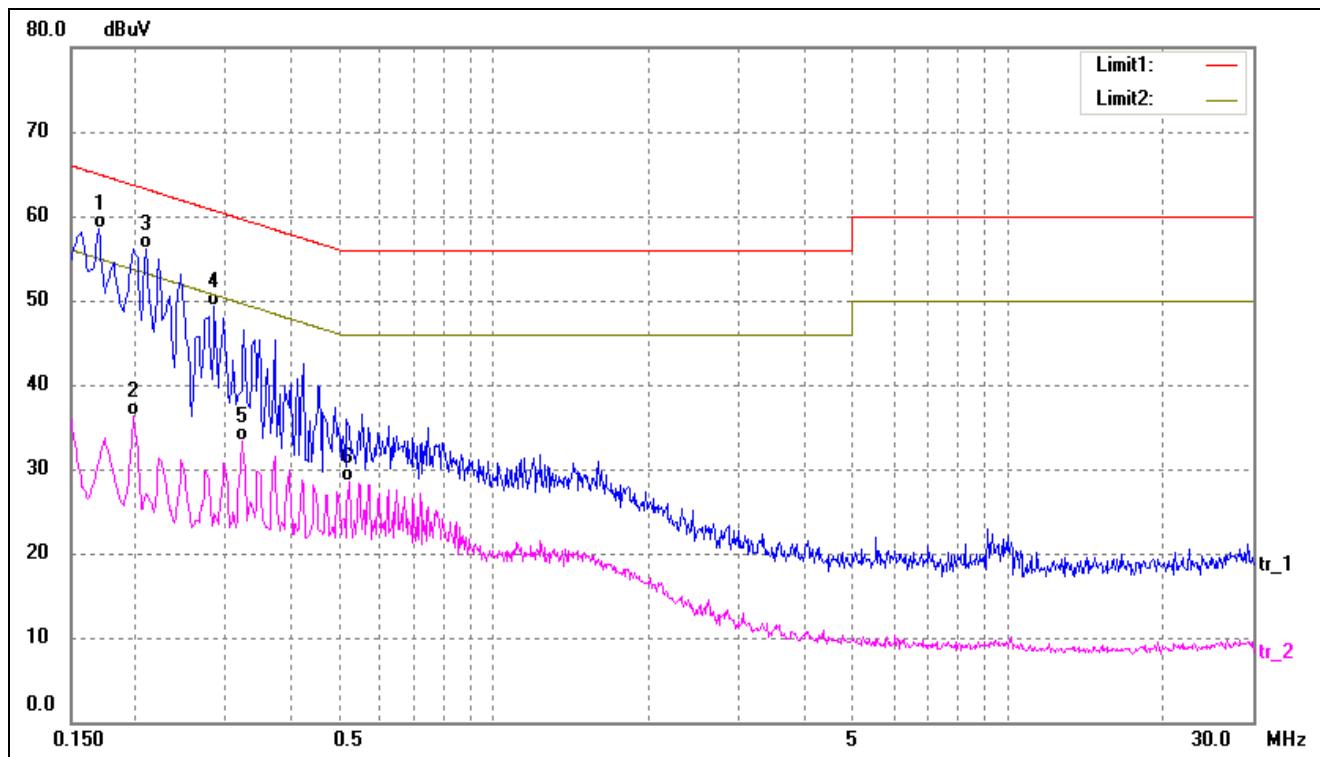

9.1 Test Procedure

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

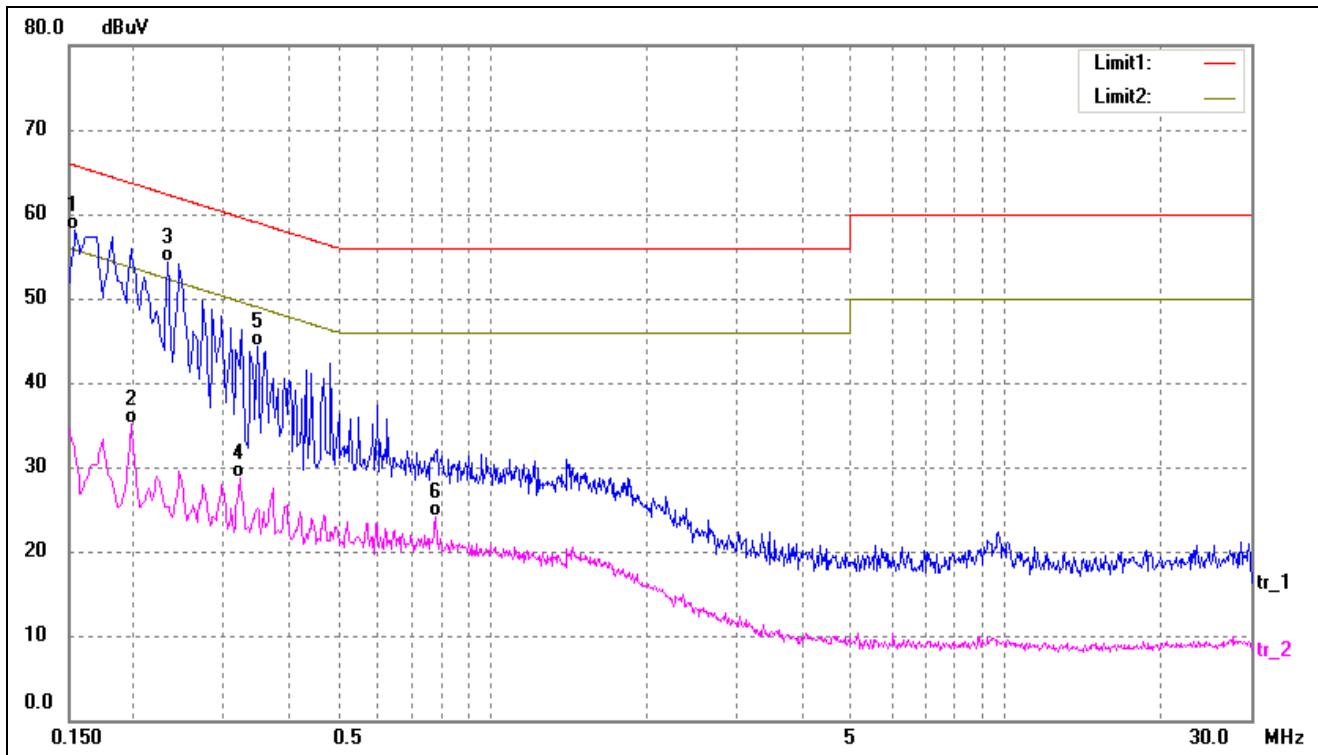
The spacing between the peripherals was 10 cm.

9.2 Basic Test Setup Block Diagram


9.3 Test Receiver Setup

During the conducted emission test, the test receiver was set with the following configurations:

Start Frequency	150 kHz
Stop Frequency	30 MHz
Sweep Speed	Auto
IF Bandwidth.....	10 kHz
Quasi-Peak Adapter Bandwidth	9 kHz
Quasi-Peak Adapter Mode	Normal


9.4 Conducted Emissions Test Data

Test Mode	Communication	AC120V 60Hz	Polarity:	Neutral
-----------	---------------	-------------	-----------	---------

No.	Frequency (MHz)	Reading (dBuV)	Correct (dB/m)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1*	0.1700	48.46	10.11	58.57	64.96	-6.39	QP
2	0.1980	26.18	10.12	36.30	53.69	-17.39	AVG
3	0.2100	45.99	10.13	56.12	63.21	-7.09	QP
4	0.2860	39.21	10.18	49.39	60.64	-11.25	QP
5	0.3220	23.14	10.20	33.34	49.66	-16.32	AVG
6	0.5220	18.24	10.30	28.54	46.00	-17.46	AVG

Test Mode	Communication	AC120V 60Hz	Polarity:	Line
-----------	---------------	-------------	-----------	------

No.	Frequency (MHz)	Reading (dBuV)	Correct (dB/m)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1*	0.1540	47.96	10.10	58.06	65.78	-7.72	QP
2	0.1980	25.07	10.12	35.19	53.69	-18.50	AVG
3	0.2340	44.26	10.14	54.40	62.31	-7.91	QP
4	0.3220	18.54	10.20	28.74	49.66	-20.92	AVG
5	0.3500	34.02	10.21	44.23	58.96	-14.73	QP
6	0.7780	13.74	10.42	24.16	46.00	-21.84	AVG

10. Frequency Stability

10.1 Standard Applicable

According to §15.407(g), Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

10.2 Test Procedure

According to §2.1055, the following test procedure was performed.

The Frequency Stability is measured directly with a Frequency Domain Analyzer. Frequency Deviation in ppm is calculated from the measured peak to peak value.

The Carrier Frequency Stability over Power Supply Voltage and over Temperature is measured with a Frequency Domain Analyzer in histogram mode

Temperature:	Supply Voltage
20°C	85-115% of declared nominal voltage
-30°C to +50°C	Normal

10.3 Summary of Test Results/Plots

5805MHz				
Voltage(%)	Power(VDC)	TEMP(°C)	Freq.Dev(Hz)	Deviation
100%	5.0	-30	78	0.0135
100%		-20	96	0.0165
100%		-10	101	0.0175
100%		0	82	0.0142
100%		+10	89	0.0153
100%		+20	86	0.0149
100%		+30	103	0.0178
100%		+40	107	0.0184
100%		+50	90	0.0156
Low Battery power	4.25	+20	147	0.0270
High Battery power	5.75	+20	107	0.0184

***** END OF REPORT *****