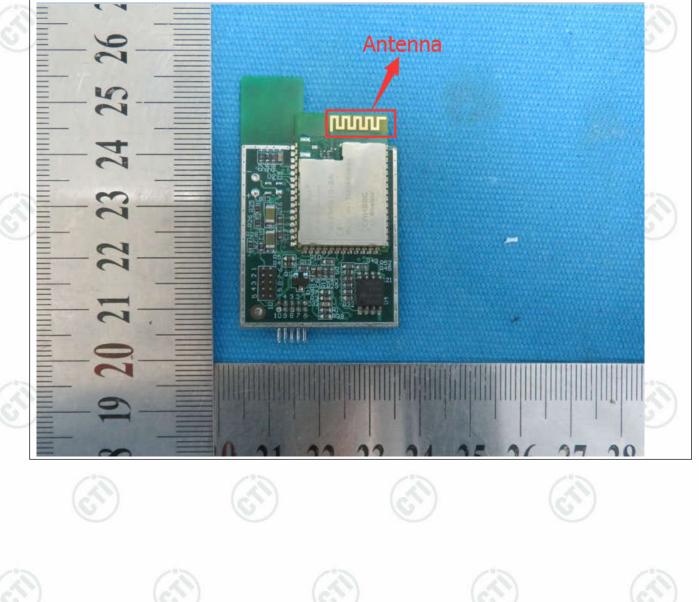


Appendix F): Antenna Requirement

15.203 requirement:

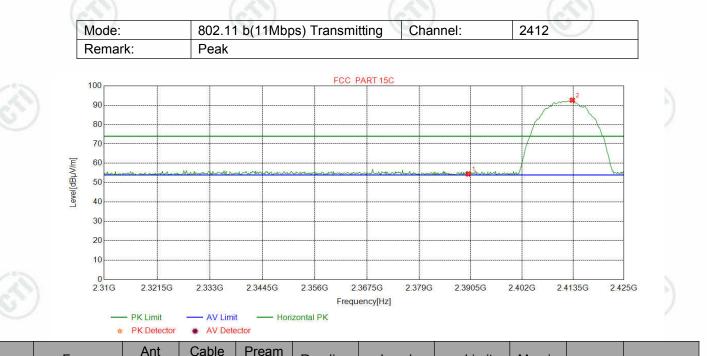

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

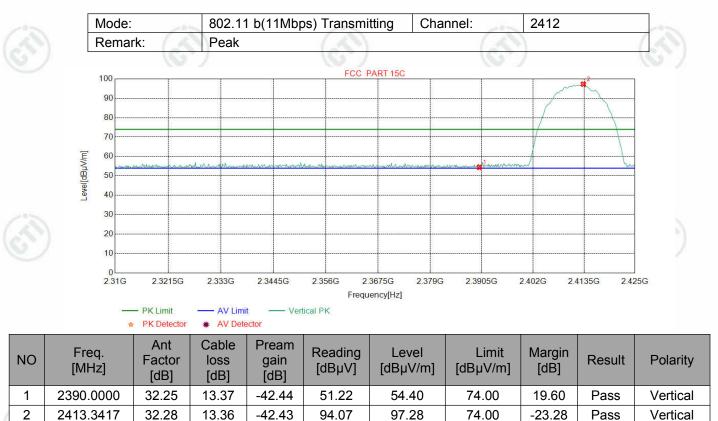
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1dBi.

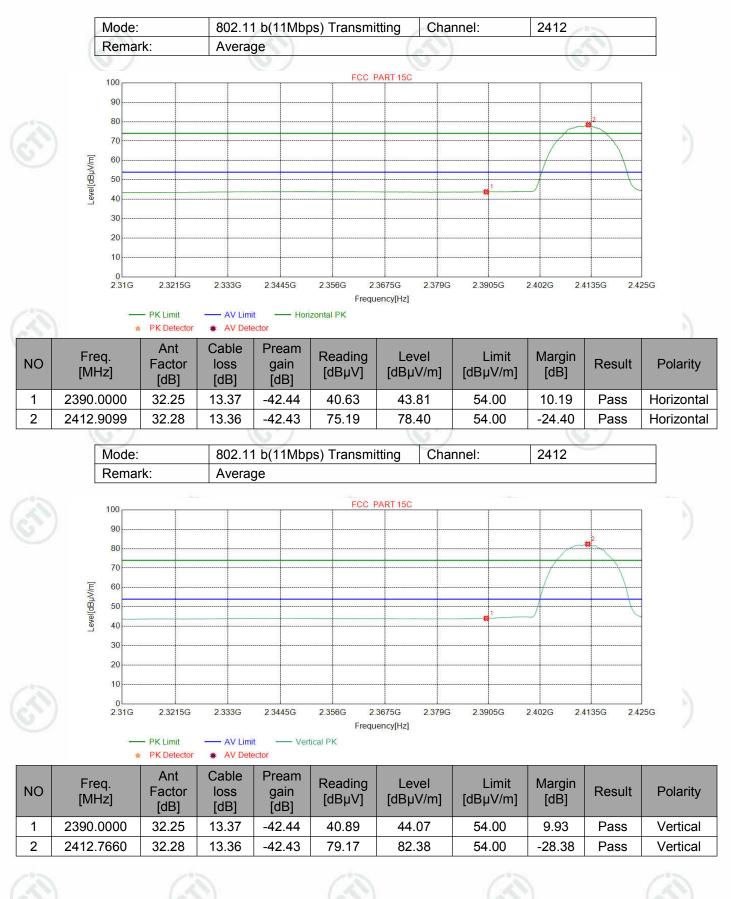


Appendix G): Restricted bands around fundamental frequency (Radiated)

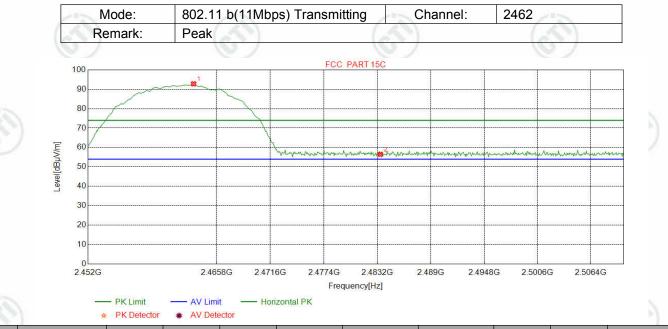

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	:
		Peak	1MHz	3MHz	Peak	10
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	Below 1GHz test proced	ure as below:				
	 a. The EUT was placed of at a 3 meter semi-ane determine the position b. The EUT was set 3 meter semi-ane determine the position b. The EUT was set 3 meter semi-ane determine the maximulation on the to the antenna height is determine the maximulations of the and d. For each suspected end the antenna was turned from 0 deg e. The test-receiver system Bandwidth with Maximum test antenna was turned to the test semi semi semi semi semi semi semi semi	on the top of a ro choic camber. T of the highest ra eters away from op of a variable-l varied from one im value of the fi tenna are set to mission, the EU ⁻ d to heights from prees to 360 deg em was set to Pe	he table wa adiation. the interfer neight anter meter to for eld strengtl make the r Γ was arran 1 meter to rees to find eak Detect	ence-recei nna tower. our meters n. Both hor neasureme ged to its 4 meters the maxin Function a	360 degrees i iving antenna above the gra- rizontal and v ent. worst case ar and the rotata num reading. ind Specified	to a, whi ound rerticand
	 f. Place a marker at the frequency to show cor bands. Save the spect for lowest and highest 	npliance. Also m rum analyzer ple	neasure any	emission:	s in the restrie	
	frequency to show cor bands. Save the spect	npliance. Also m rum analyzer plo channel ure as below: ve is the test site nber change form 1 meter and tak west channel , t ements are perfo d found the X as	e, change fi m table 0.8 ble is 1.5 m he Highest prmed in X, xis position	v emissions for each po rom Semi- meter to 1 eter). channel Y, Z axis p ing which i	s in the restric ower and mod Anechoic Ch .5 meter(Abd positioning for t is worse cas	dulati namb ove r
Limit:	frequency to show cor bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Chan 18GHz the distance is h. Test the EUT in the lo i. The radiation measure Transmitting mode, an	npliance. Also m rum analyzer plo channel ure as below: ve is the test site nber change form 1 meter and tak west channel , t ements are perfo d found the X as	e, change fi m table 0.8 ble is 1.5 m he Highest prmed in X, xis positioni	v emissions for each po rom Semi- meter to 1 eter). channel Y, Z axis p ing which i easured wa	s in the restric ower and mod Anechoic Ch .5 meter(Abd positioning for t is worse cas	dulati namb ove r
Limit:	frequency to show cor bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Chan 18GHz the distance is h. Test the EUT in the lo i. The radiation measure Transmitting mode, an j. Repeat above procedu	npliance. Also m rum analyzer plu channel ure as below: ve is the test site nber change form 1 meter and tak owest channel , t ements are perfor of found the X as ures until all freq	e, change fi m table 0.8 ble is 1.5 m he Highest brmed in X, xis positioni uencies me	rom Semi- meter to 1 eter). channel Y, Z axis p ing which i easured wa	s in the restrictower and mode Anechoic Ch .5 meter(Abd positioning for t is worse cas as complete.	dulati namb ove r
Limit:	frequency to show corr bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Chan 18GHz the distance is h. Test the EUT in the lo i. The radiation measure Transmitting mode, an j. Repeat above procedu	npliance. Also m rrum analyzer plo- channel ure as below: ve is the test site nber change for 1 meter and tab owest channel , t ements are perfo- ind found the X as ures until all freq Limit (dBµV	e, change fi m table 0.8 ble is 1.5 m he Highest prmed in X, xis position uencies me /m @3m)	rom Semi- meter to 1 eter). channel Y, Z axis p ing which i easured wa Rei Quasi-pe	Anechoic Ch Anechoic Ch .5 meter(Abd positioning for it is worse cas as complete.	dulati namb ove r
Limit:	frequency to show cor bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Chan 18GHz the distance is h. Test the EUT in the lo i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz	npliance. Also m rrum analyzer plu- channel ure as below: ve is the test site nber change form 1 meter and tak owest channel , t ements are perfor d found the X as ures until all freq Limit (dBµV 40.	e, change fi m table 0.8 ble is 1.5 m he Highest prmed in X, kis positioni uencies me (/m @3m) 0	rom Semi- meter to 1 eter). channel Y, Z axis p ing which i easured wa Rei Quasi-pe	s in the restriction of the sector of the se	dulati namb ove r
Limit:	frequency to show corr bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Chan 18GHz the distance is h. Test the EUT in the lo i. The radiation measure Transmitting mode, ar j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz	npliance. Also m rum analyzer plu channel ure as below: ve is the test site nber change form 1 meter and tab owest channel , t ements are perfor ad found the X as ures until all freq Limit (dBµV 40. 43.	e, change fi m table 0.8 ble is 1.5 m he Highest brmed in X, kis positioni uencies me /m @3m) 0 5 0	v emissions for each por meter to 1 eter). channel Y, Z axis p ing which i easured wa Rei Quasi-po Quasi-po	s in the restriction of the section	dulati namb ove r
Limit:	frequency to show corr bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Chan 18GHz the distance is h. Test the EUT in the lo i. The radiation measure Transmitting mode, ar j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	npliance. Also m rrum analyzer ple channel ure as below: ve is the test site nber change for 1 meter and tak owest channel , t ements are perfo ad found the X as ures until all freq Limit (dBµV 40. 43. 46.	e, change fi m table 0.8 ble is 1.5 m he Highest prmed in X, xis positioni uencies me /m @3m) 0 5 0 0	v emissions for each po rom Semi- meter to 1 eter). channel Y, Z axis p ing which i easured wa Rei Quasi-po Quasi-po Quasi-po	s in the restriction of the second se	dulati namb ove r

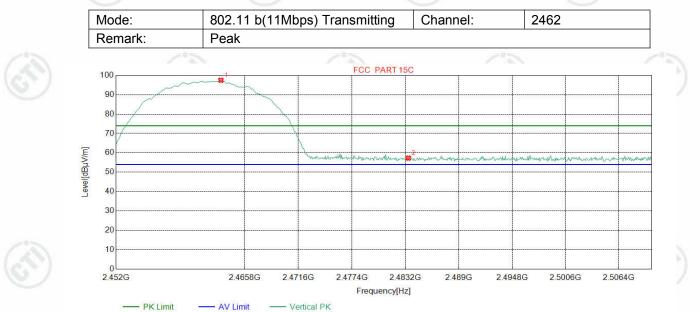
Test plot as follows:

М	10	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-42.44	51.33	54.51	74.00	19.49	Pass	Horizontal
	2	2413.3417	32.28	13.36	-42.43	89.41	92.62	74.00	-18.62	Pass	Horizontal



Page 37 of 69





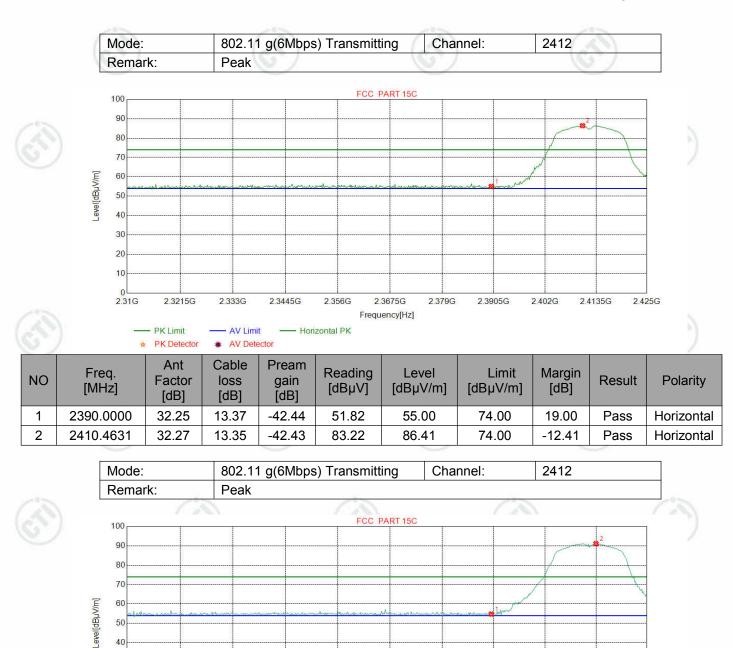
Page 38 of 69

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2463.3242	32.35	13.47	-42.41	89.43	92.84	74.00	-18.84	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	53.07	56.43	74.00	17.57	Pass	Horizontal

AV Detector

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2463.2516	32.35	13.47	-42.41	94.07	97.48	74.00	-23.48	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	53.94	57.30	74.00	16.70	Pass	Vertical

Page 39 of 69



2 3445G

2 356G

2 333G

NO	Freq. [MHz]	Factor [dB]	loss [dB]	gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	51.58	54.76	74.00	19.24	Pass	Vertical
2	2413.4856	32.28	13.36	-42.43	87.88	91.09	74.00	-17.09	Pass	Vertical
100 million (100 million)		100					-0-			-0-

2.3675G

Frequency[Hz]

2.379G

2 3905G

2.3215G

2.4135G

2 425G

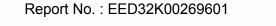
2 402G

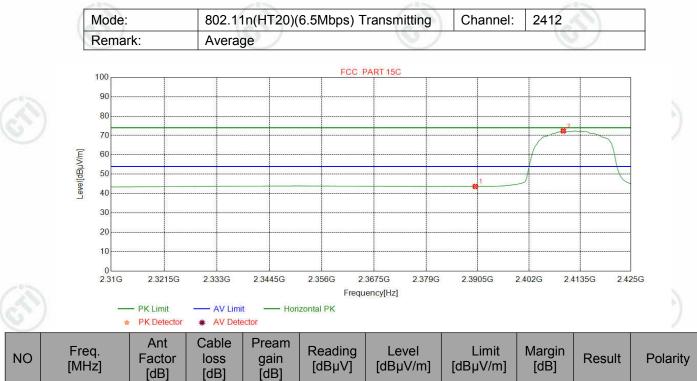
Page 41 of 69

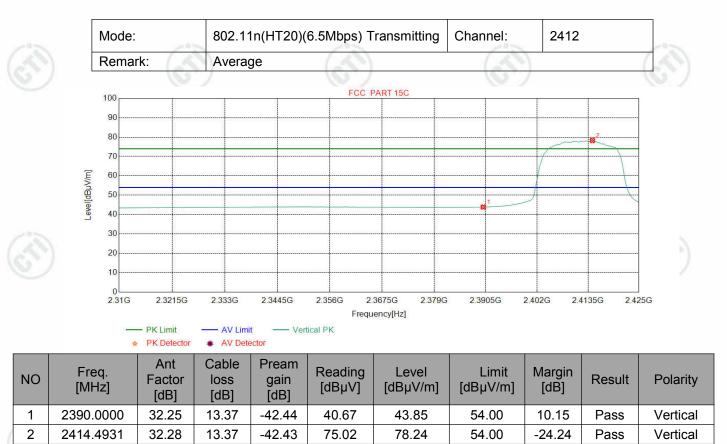
Page 42 of 69

Page 43 of 69

Page 44 of 69

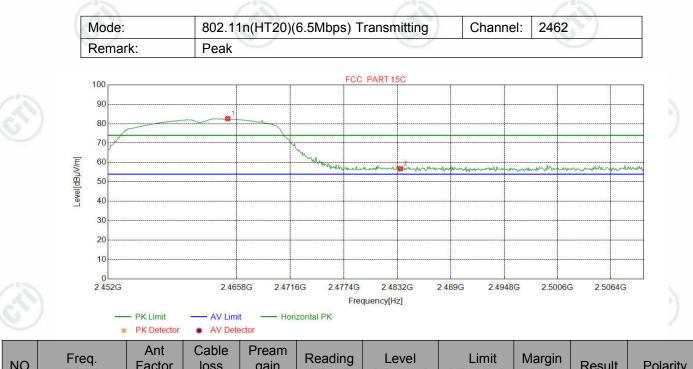


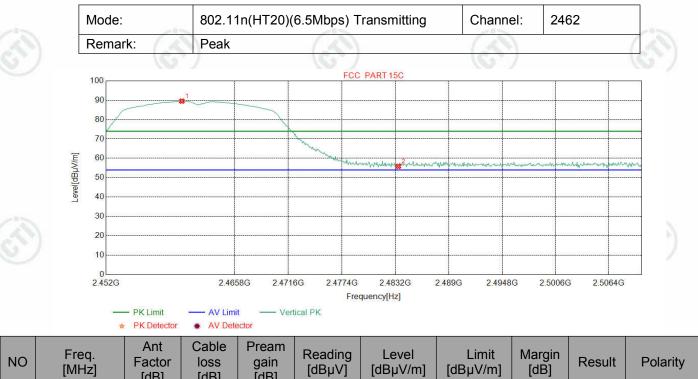




Page 45 of 69

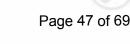
		[dB]	[dB]	[dB]				[aD]		
1	2390.0000	32.25	13.37	-42.44	40.46	43.64	54.00	10.36	Pass	Horizontal
2	2409.7434	32.27	13.34	-42.42	69.13	72.32	54.00	-18.32	Pass	Horizontal
				1000 C						1





Page 46 of 69

NO	[MHz]	Factor [dB]	loss [dB]	gain [dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polarity
1	2464.8486	32.35	13.46	-42.40	79.21	82.62	74.00	-8.62	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	53.42	56.78	74.00	17.22	Pass	Horizontal




NO	Freq. [MHz]	Ant Factor [dB]	loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2460.1302	32.34	13.48	-42.40	86.13	89.55	74.00	-15.55	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	52.50	55.86	74.00	18.14	Pass	Vertical
0).	G	9		G		6			(C)

Note:

1

2

2460.4931

2483.5000

Through transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20).
 The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic

77.93

44.08

54.00

54.00

-23.93

9.92

Pass

Pass

Vertical

Vertical

equation with a sample calculation is as follows:

32.34

32.38

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

13.48

13.38

-42.40

-42.40

74.51

40.72

Page 48 of 69

Appendix H): Radiated Spurious Emissions

ceiver Setup:	_ 6		DDM	1/014/	
	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
(B)	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
(25)		Peak	1MHz	3MHz	Peak
I A A A A A A A A A A A A A A A A A A A	Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Lim

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)	
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300	
0.490MHz-1.705MHz	24000/F(kHz)	-		30	
1.705MHz-30MHz	30	-	6	30	
30MHz-88MHz	100	40.0	Quasi-peak	3	
88MHz-216MHz	150	43.5	Quasi-peak	3	
216MHz-960MHz	200	46.0	Quasi-peak	3	
960MHz-1GHz	500	54.0	Quasi-peak	3	
Above 1GHz	500	54.0	Average	3	
	maximum permitte	ed average	e emission limi	o frequency emiss it applicable to the eak emission level	Э

radiated by the device.

Radiated Spurious Emissions test Data:

Radiated Emission below 1GHz

	Mode:		802.11 b	(11Mbps) ⁻	Transmitti	ng					
2	Remark	(:	(QP)	S	_	12		13			
\$	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
	1	32.9103	10.62	0.64	-32.12	36.29	15.43	40.00	24.57	Pass	Horizontal
	2	96.8397	10.49	1.14	-32.07	39.36	18.92	43.50	24.58	Pass	Horizontal
	3	199.6700	10.87	1.67	-31.94	50.68	31.28	43.50	12.22	Pass	Horizontal
	4	399.1219	15.38	2.38	-31.77	42.57	28.56	46.00	17.44	Pass	Horizontal
	5	599.4469	18.99	2.96	-31.99	44.21	34.17	46.00	11.83	Pass	Horizontal
	6	915.5046	22.19	3.63	-31.44	36.37	30.75	46.00	15.25	Pass	Horizontal
	and the second se					and shift from		and \$10 merces			Sec. 10, 100-

Freq.	(QP) Ant	0.11							100		
Freg.	Ant	• • • •									
[MHz]	Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity		
54.9315	12.41	0.84	-32.08	40.42	21.59	40.00	18.41	Pass	Vertical		
199.8640	10.89	1.67	-31.94	50.63	31.25	43.50	12.25	Pass	Vertical		
289.9860	13.00	2.03	-31.88	41.35	24.50	46.00	21.50	Pass	Vertical		
399.8010	15.40	2.38	-31.77	40.08	26.09	46.00	19.91	Pass	Vertical		
599.7380	18.99	2.96	-31.99	46.55	36.51	46.00	9.49	Pass	Vertical		
843.9114	21.43	3.50	-31.83	34.68	27.78	46.00	18.22	Pass	Vertical		
	54.9315 199.8640 289.9860 399.8010 599.7380	[MHz] [dB] 54.9315 12.41 199.8640 10.89 289.9860 13.00 399.8010 15.40 599.7380 18.99	[MHz][dB][dB]54.931512.410.84199.864010.891.67289.986013.002.03399.801015.402.38599.738018.992.96	[MHz][dB][dB][dB]54.931512.410.84-32.08199.864010.891.67-31.94289.986013.002.03-31.88399.801015.402.38-31.77599.738018.992.96-31.99	[MHz][dB][dB][dB][dB][dB][dB][dB]54.931512.410.84-32.0840.42199.864010.891.67-31.9450.63289.986013.002.03-31.8841.35399.801015.402.38-31.7740.08599.738018.992.96-31.9946.55	[MHz][dB][dB][dB][dB][dB][dB][dBµV][dBµV/m]54.931512.410.84-32.0840.4221.59199.864010.891.67-31.9450.6331.25289.986013.002.03-31.8841.3524.50399.801015.402.38-31.7740.0826.09599.738018.992.96-31.9946.5536.51	[MHz][dB][dB][dB][dB][dBµV][dBµV/m][dBµV/m]54.931512.410.84-32.0840.4221.5940.00199.864010.891.67-31.9450.6331.2543.50289.986013.002.03-31.8841.3524.5046.00399.801015.402.38-31.7740.0826.0946.00599.738018.992.96-31.9946.5536.5146.00	[MHz][dB][dB][dB][dB][dB][dBµV][dBµV/m][dBµV/m][dBµV/m][dBµV/m][dBµV/m]54.931512.410.84-32.0840.4221.5940.0018.41199.864010.891.67-31.9450.6331.2543.5012.25289.986013.002.03-31.8841.3524.5046.0021.50399.801015.402.38-31.7740.0826.0946.0019.91599.738018.992.96-31.9946.5536.5146.009.49	[MHz][dB][dB][dB][dB][dBµV][dBµV/m][dBµV/m][dBµV/m][dB]54.931512.410.84-32.0840.4221.5940.0018.41Pass199.864010.891.67-31.9450.6331.2543.5012.25Pass289.986013.002.03-31.8841.3524.5046.0021.50Pass399.801015.402.38-31.7740.0826.0946.0019.91Pass599.738018.992.96-31.9946.5536.5146.009.49Pass		

	Mode:		802.11 g	(6Mbps) Ti	ransmittin	g					
	Remark:		(QP)								
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
	1	96.8397	10.49	1.14	-32.07	37.14	16.70	43.50	26.80	Pass	Horizontal
	2	199.1849	10.82	1.67	-31.94	53.36	33.91	43.50	9.59	Pass	Horizontal
è	3	322.7753	13.70	2.13	-31.81	41.44	25.46	46.00	20.54	Pass	Horizontal
ł	4	399.5100	15.39	2.38	-31.76	41.80	27.81	46.00	18.19	Pass	Horizontal
	5	599.6410	18.99	2.96	-31.99	41.24	31.20	46.00	14.80	Pass	Horizontal
	6	799.0929	20.89	3.39	-32.03	36.03	28.28	46.00	17.72	Pass	Horizontal

Mode:	(1)	802.11 g	(6Mbps) T	ransmittin	g	(2)		18	0	
Remar	k: 🕥 🕖	(QP)	6	C) -		ST.		0	1	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	54.9315	12.41	0.84	-32.08	40.97	22.14	40.00	17.86	Pass	Vertical
2	199.2819	10.83	1.67	-31.94	46.48	27.04	43.50	16.46	Pass	Vertical
3	290.4710	13.01	2.03	-31.88	40.59	23.75	46.00	22.25	Pass	Vertical
4	399.5100	15.39	2.38	-31.76	38.53	24.54	46.00	21.46	Pass	Vertical
5	597.8948	18.96	2.95	-31.98	41.24	31.17	46.00	14.83	Pass	Vertical
6	796.5707	20.86	3.38	-32.01	37.32	29.55	46.00	16.45	Pass	Vertical
	1617		10.1	1 J	•	1537		164		

	Mode:		802.11n	(HT20)(6.5I	Mbps) Tra	nsmitting					
	Remark	K :	(QP)								
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
	1 59.9760 2 129 1430		11.60	0.90	-32.04	32.27	12.73	40.00	27.27	Pass	Horizontal
	2	129.1439	7.83	1.33	-32.03	40.73	17.86	43.50	25.64	Pass	Horizontal
Γ	3	199.6700	10.87	1.67	-31.94	46.30	26.90	43.50	16.60	Pass	Horizontal
	4	398.6369	15.37	2.38	-31.77	42.89	28.87	46.00	17.13	Pass	Horizontal
	5	623.9904	19.19	2.97	-31.98	42.35	32.53	46.00	13.47	Pass	Horizontal
	6	833.7254	21.30	3.48	-31.93	37.55	30.40	46.00	15.60	Pass	Horizontal

Mode:		802.11 n	(HT20)(6.5	5Mbps) Tra	ansmitting		100			10-
Remar	k:	(QP)								19
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	55.0285	12.40	0.84	-32.08	41.38	22.54	40.00	17.46	Pass	Vertical
2	129.0469	7.84	1.33	-32.02	38.28	15.43	43.50	28.07	Pass	Vertical
3	199.1849	10.82	1.67	-31.94	51.25	31.80	43.50	11.70	Pass	Vertical
4	398.7339	15.37	2.38	-31.77	37.34	23.32	46.00	22.68	Pass	Vertical
5	597.7978	18.96	2.94	-31.97	42.31	32.24	46.00	13.76	Pass	Vertical
6	945.4805	22.37	3.70	-31.19	33.82	28.70	46.00	17.30	Pass	Vertical
1			1			-			1	

Page 51 of 69

Transmitter Emission above 1GHz

Mode	:	802.11b(Transmit	• • •)	Channel:				2412		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1650.5301	29.39	3.14	-42.77	51.58	41.34	74.00	32.66	Pass	Н	Peak
2	3321.7822	33.33	4.55	-41.92	49.78	45.74	74.00	28.26	Pass	Н	Peak
3	4022.8773	33.83	4.33	-40.78	52.90	50.28	74.00	23.72	Pass	Н	Peak
4	4824.0000	34.50	4.61	-40.65	49.00	47.46	74.00	26.54	Pass	Н	Peak
5	7236.0000	36.34	5.79	-40.99	45.64	46.78	74.00	27.22	Pass	Н	Peak
6	9648.0000	37.66	6.72	-40.73	46.80	50.45	74.00	23.55	Pass	Н	Peak
7	1798.9598	30.37	3.32	-42.71	53.80	44.78	74.00	29.22	Pass	V	Peak
8	4015.0765	33.82	4.33	-40.78	52.28	49.65	74.00	24.35	Pass	V	Peak
9	4824.0000	34.50	4.61	-40.65	46.73	45.19	74.00	28.81	Pass	V	Peak
10	6432.3432	35.89	5.45	-41.18	49.73	49.89	74.00	24.11	Pass	V	Peak
11	7236.0000	36.34	5.79	-40.99	45.39	46.53	74.00	27.47	Pass	V	Peak
12	9648.0000	37.66	6.72	-40.73	45.11	48.76	74.00	25.24	Pass	V	Peak

Mode	:	802.11b(Transmit)	Channel:				2437		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1718.5437	29.84	3.21	-42.67	54.27	44.65	74.00	29.35	Pass	Н	Peak
2	3316.9067	33.33	4.56	-41.93	50.17	46.13	74.00	27.87	Pass	Н	Peak
3	4060.9061	33.89	4.33	-40.80	53.00	50.42	74.00	23.58	Pass	Н	Peak
4	4874.0000	34.50	4.78	-40.61	49.53	48.20	74.00	25.80	Pass	Н	Peak
5	7311.0000	36.41	5.85	-40.93	45.56	46.89	74.00	27.11	Pass	Н	Peak
6	9748.0000	37.70	6.77	-40.63	46.27	50.11	74.00	23.89	Pass	Н	Peak
7	1398.4797	28.30	2.90	-42.69	60.13	48.64	74.00	25.36	Pass	V	Peak
8	4058.9559	33.88	4.33	-40.79	51.98	49.40	74.00	24.60	Pass	V	Peak
9	4874.0000	34.50	4.78	-40.61	48.44	47.11	74.00	26.89	Pass	V	Peak
10	6498.6499	35.90	5.47	-41.19	50.04	50.22	74.00	23.78	Pass	V	Peak
11	7311.0000	36.41	5.85	-40.93	46.76	48.09	74.00	25.91	Pass	V	Peak
12	9748.0000	37.70	6.77	-40.63	45.66	49.50	74.00	24.50	Pass	V	Peak
	7		1.1.	•		1		1.1			1

Page 52 of 69

Mode	:	802.11b Transmit	• •)	Channel:				2462		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1396.0792	28.30	2.89	-42.68	54.34	42.85	74.00	31.15	Pass	Н	Peak
2	4101.8602	33.94	4.33	-40.81	53.23	50.69	74.00	23.31	Pass	Н	Peak
3	4924.0000	34.50	4.85	-40.56	47.64	46.43	74.00	27.57	Pass	Н	Peak
4	6110.5611	35.82	5.26	-41.11	48.06	48.03	74.00	25.97	Pass	Н	Peak
5	7386.0000	36.49	5.85	-40.87	45.78	47.25	74.00	26.75	Pass	Н	Peak
6	9848.0000	37.74	6.83	-40.54	45.63	49.66	74.00	24.34	Pass	Н	Peak
7	1199.2398	28.10	2.66	-42.89	56.68	44.55	74.00	29.45	Pass	V	Peak
8	3282.7783	33.31	4.54	-41.95	53.50	49.40	74.00	24.60	Pass	V	Peak
9	4101.8602	33.94	4.33	-40.81	52.55	50.01	74.00	23.99	Pass	V	Peak
10	4924.0000	34.50	4.85	-40.56	47.97	46.76	74.00	27.24	Pass	V	Peak
11	7386.0000	36.49	5.85	-40.87	46.25	47.72	74.00	26.28	Pass	V	Peak
12	9848.0000	37.74	6.83	-40.54	46.47	50.50	74.00	23.50	Pass	V	Peak

Mode	:	802.11g(Transmit			Channel:				2412		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1397.2795	28.30	2.90	-42.69	54.25	42.76	74.00	31.24	Pass	Н	Peak
2	4021.9022	33.83	4.33	-40.79	51.34	48.71	74.00	25.29	Pass	Н	Peak
3	4824.0000	34.50	4.61	-40.65	48.39	46.85	74.00	27.15	Pass	Н	Peak
4	6432.3432	35.89	5.45	-41.18	48.42	48.58	74.00	25.42	Pass	Н	Peak
5	7236.0000	36.34	5.79	-40.99	45.24	46.38	74.00	27.62	Pass	Н	Peak
6	9648.0000	37.66	6.72	-40.73	45.21	48.86	74.00	25.14	Pass	Н	Peak
7	1398.0796	28.30	2.90	-42.69	61.07	49.58	74.00	24.42	Pass	V	Peak
8	4014.1014	33.82	4.33	-40.78	52.34	49.71	74.00	24.29	Pass	V	Peak
9	4824.0000	34.50	4.61	-40.65	47.31	45.77	74.00	28.23	Pass	V	Peak
10	6432.3432	35.89	5.45	-41.18	49.56	49.72	74.00	24.28	Pass	V	Peak
11	7236.0000	36.34	5.79	-40.99	46.46	47.60	74.00	26.40	Pass	V	Peak
12	9648.0000	37.66	6.72	-40.73	45.91	49.56	74.00	24.44	Pass	V	Peak

Page 53 of 69

Mode	:	802.11g(Transmit	• • •		Channel:				2437		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1394.4789	28.29	2.89	-42.68	53.35	41.85	74.00	32.15	Pass	Н	Peak
2	4059.9310	33.88	4.33	-40.79	50.22	47.64	74.00	26.36	Pass	Н	Peak
3	4874.0000	34.50	4.78	-40.61	48.51	47.18	74.00	26.82	Pass	Н	Peak
4	6429.4179	35.89	5.43	-41.18	48.22	48.36	74.00	25.64	Pass	н	Peak
5	7311.0000	36.41	5.85	-40.93	45.72	47.05	74.00	26.95	Pass	Н	Peak
6	9748.0000	37.70	6.77	-40.63	45.90	49.74	74.00	24.26	Pass	Н	Peak
7	1198.4397	28.10	2.66	-42.89	55.43	43.30	74.00	30.70	Pass	V	Peak
8	4067.7318	33.89	4.33	-40.80	53.19	50.61	74.00	23.39	Pass	V	Peak
9	4874.0000	34.50	4.78	-40.61	48.53	47.20	74.00	26.80	Pass	V	Peak
10	6498.6499	35.90	5.47	-41.19	49.02	49.20	74.00	24.80	Pass	V	Peak
11	7311.0000	36.41	5.85	-40.93	45.12	46.45	74.00	27.55	Pass	V	Peak
12	9748.0000	37.70	6.77	-40.63	45.55	49.39	74.00	24.61	Pass	V	Peak

Mode	:	802.11g(Transmit			Channel:				2462		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1598.1196	29.05	3.07	-42.90	52.11	41.33	74.00	32.67	Pass	Н	Peak
2	4105.7606	33.95	4.34	-40.81	50.30	47.78	74.00	26.22	Pass	Н	Peak
3	4924.0000	34.50	4.85	-40.56	48.21	47.00	74.00	27.00	Pass	Н	Peak
4	6572.7573	35.93	5.43	-41.19	47.96	48.13	74.00	25.87	Pass	Н	Peak
5	7386.0000	36.49	5.85	-40.87	45.54	47.01	74.00	26.99	Pass	Н	Peak
6	9848.0000	37.74	6.83	-40.54	45.11	49.14	74.00	24.86	Pass	Н	Peak
7	1393.2787	28.29	2.89	-42.68	58.78	47.28	74.00	26.72	Pass	V	Peak
8	4100.8851	33.94	4.32	-40.80	53.51	50.97	74.00	23.03	Pass	V	Peak
9	4924.0000	34.50	4.85	-40.56	48.15	46.94	74.00	27.06	Pass	V	Peak
10	6564.9565	35.93	5.40	-41.19	48.32	48.46	74.00	25.54	Pass	V	Peak
11	7386.0000	36.49	5.85	-40.87	45.17	46.64	74.00	27.36	Pass	V	Peak
12	9848.0000	37.74	6.83	-40.54	44.73	48.76	74.00	25.24	Pass	V	Peak
6	1	6	51				10	577	(67)		

					-		A		1000		
Mode	:	802.11n	(HT20)(6	.5Mbps)	Channel:				2412		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1395.6791	28.30	2.89	-42.69	52.91	41.41	74.00	32.59	Pass	Н	Peak
2	4022.8773	33.83	4.33	-40.78	50.39	47.77	74.00	26.23	Pass	Н	Peak
3	4824.0000	34.50	4.61	-40.65	46.87	45.33	74.00	28.67	Pass	Н	Peak
4	6432.3432	35.89	5.45	-41.18	48.00	48.16	74.00	25.84	Pass	н	Peak
5	7236.0000	36.34	5.79	-40.99	45.01	46.15	74.00	27.85	Pass	Н	Peak
6	9648.0000	37.66	6.72	-40.73	46.45	50.10	74.00	23.90	Pass	Н	Peak
7	1397.6795	28.30	2.90	-42.69	59.56	48.07	74.00	25.93	Pass	V	Peak
8	4017.0267	33.82	4.33	-40.78	52.92	50.29	74.00	23.71	Pass	V	Peak
9	4824.0000	34.50	4.61	-40.65	46.63	45.09	74.00	28.91	Pass	V	Peak
10	6432.3432	35.89	5.45	-41.18	49.83	49.99	74.00	24.01	Pass	V	Peak
11	7236.0000	36.34	5.79	-40.99	45.55	46.69	74.00	27.31	Pass	V	Peak
12	9648.0000	37.66	6.72	-40.73	45.24	48.89	74.00	25.11	Pass	V	Peak

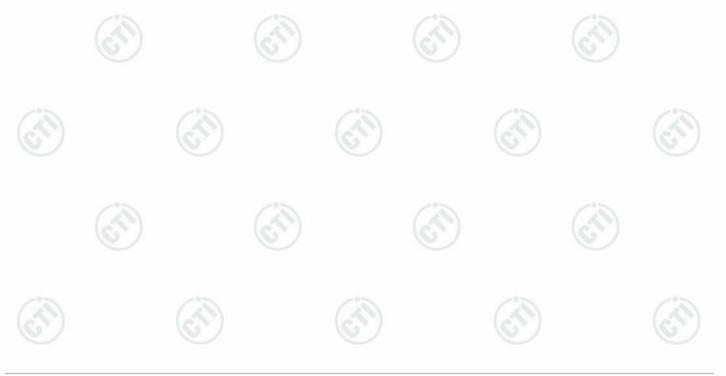
Mode	:	802.11n	(HT20)(6	.5Mbps)	Channel:				2437			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark	
1	1645.7291	29.36	3.13	-42.78	51.69	41.40	74.00	32.60	Pass	Н	Peak	
2	4058.9559	33.88	4.33	-40.79	49.98	47.40	74.00	26.60	Pass	Н	Peak	
3	4874.0000	34.50	4.78	-40.61	48.03	46.70	74.00	27.30	Pass	Н	Peak	
4	5947.7198	35.72	5.31	-41.05	47.81	47.79	74.00	26.21	Pass	Н	Peak	
5	7311.0000	36.41	5.85	-40.93	46.24	47.57	74.00	26.43	Pass	Н	Peak	
6	9748.0000	37.70	6.77	-40.63	45.52	49.36	74.00	24.64	Pass	Н	Peak	
7	1756.5513	30.09	3.24	-42.68	56.55	47.20	74.00	26.80	Pass	V	Peak	
8	4062.8563	33.89	4.33	-40.80	52.75	50.17	74.00	23.83	Pass	V	Peak	
9	4874.0000	34.50	4.78	-40.61	46.20	44.87	74.00	29.13	Pass	V	Peak	
10	6498.6499	35.90	5.47	-41.19	49.18	49.36	74.00	24.64	Pass	V	Peak	
11	7311.0000	36.41	5.85	-40.93	45.17	46.50	74.00	27.50	Pass	V	Peak	
12	9748.0000	37.70	6.77	-40.63	46.92	50.76	74.00	23.24	Pass	V	Peak	
6.		C	201					201	(0.3)			

a 55 of 69

Page 55 of 69

						2000			215		
Mode:		802.11n(HT20)(6.5Mbps)			Channel:				2462		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1399.6799	28.30	2.90	-42.68	53.07	41.59	74.00	32.41	Pass	Н	Peak
2	4101.8602	33.94	4.33	-40.81	49.38	46.84	74.00	27.16	Pass	Н	Peak
3	4924.0000	34.50	4.85	-40.56	48.38	47.17	74.00	26.83	Pass	Н	Peak
4	6471.3471	35.89	5.50	-41.18	48.37	48.58	74.00	25.42	Pass	Н	Peak
5	7386.0000	36.49	5.85	-40.87	46.63	48.10	74.00	25.90	Pass	Н	Peak
6	9848.0000	37.74	6.83	-40.54	44.83	48.86	74.00	25.14	Pass	Н	Peak
7	2079.4159	31.81	3.57	-42.57	53.58	46.39	74.00	27.61	Pass	V	Peak
8	4107.7108	33.95	4.35	-40.81	53.26	50.75	74.00	23.25	Pass	V	Peak
9	4924.0000	34.50	4.85	-40.56	46.84	45.63	74.00	28.37	Pass	V	Peak
10	5582.0582	35.13	5.12	-40.72	48.20	47.73	74.00	26.27	Pass	V	Peak
11	7386.0000	36.49	5.85	-40.87	44.79	46.26	74.00	27.74	Pass	V	Peak
12	9848.0000	37.74	6.83	-40.54	45.62	49.65	74.00	24.35	Pass	V	Peak

Note:


1) Through transmitting mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20).

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

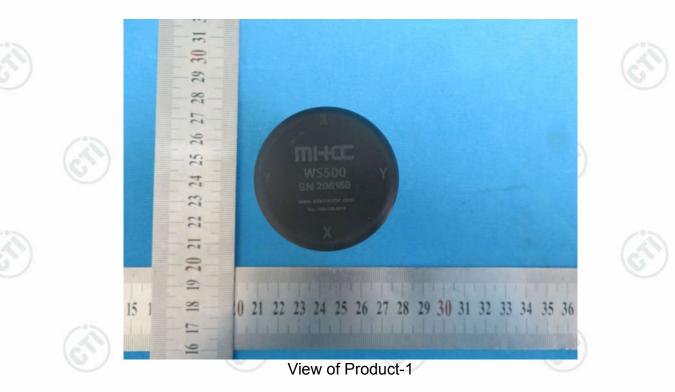
3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

PHOTOGRAPHS OF TEST SETUP

Test model No.: WS500

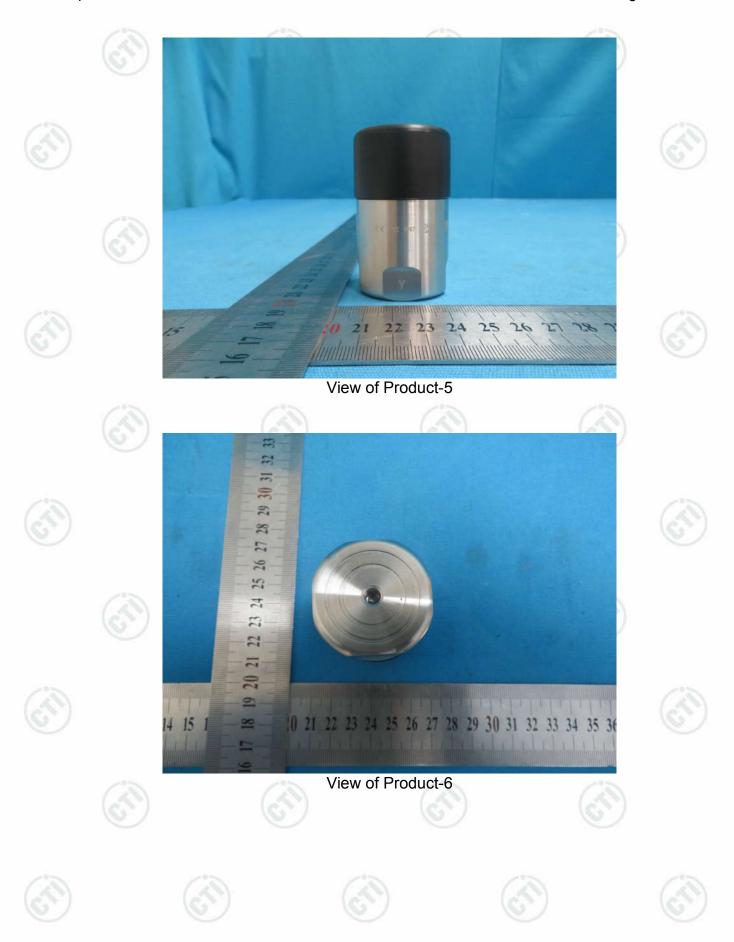
Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(30MHz - 1GHz)

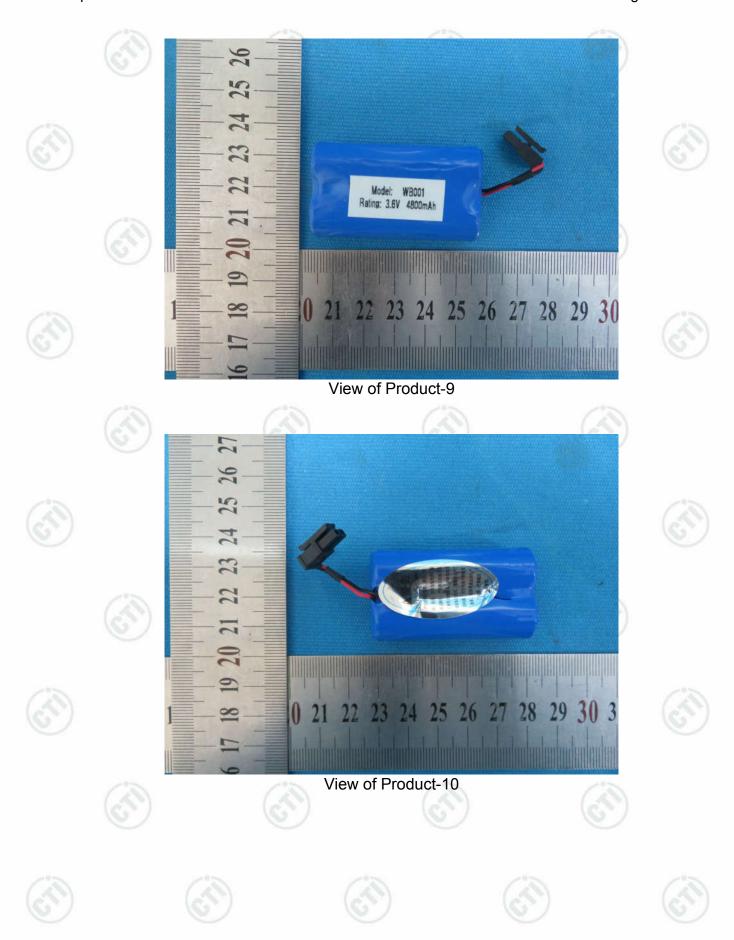


PHOTOGRAPHS OF EUT Constructional Details

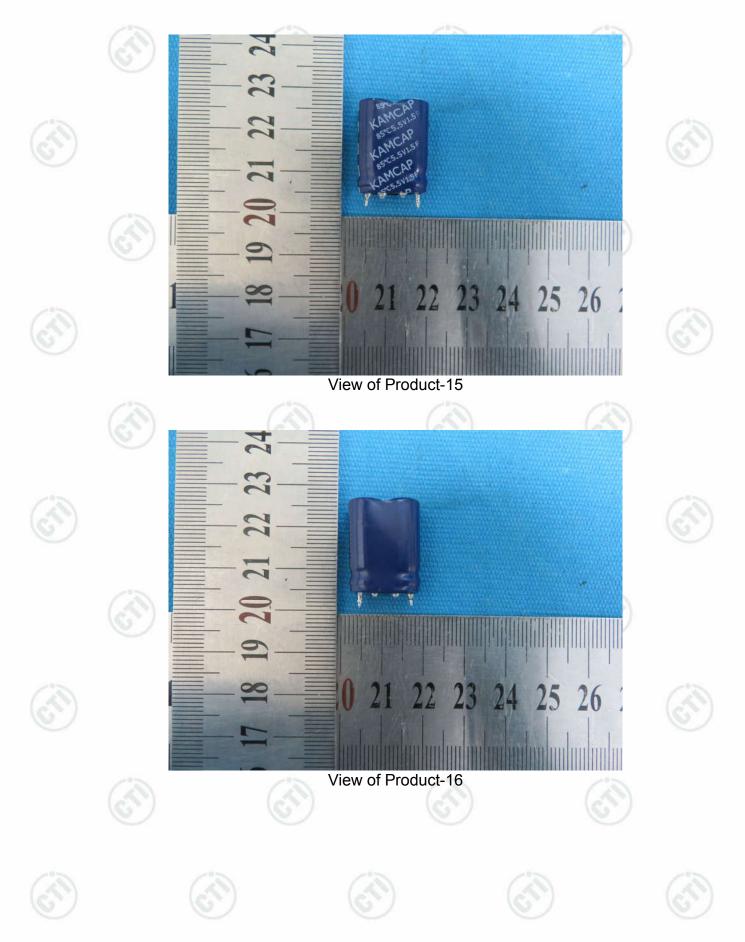
Test model No.: WS500

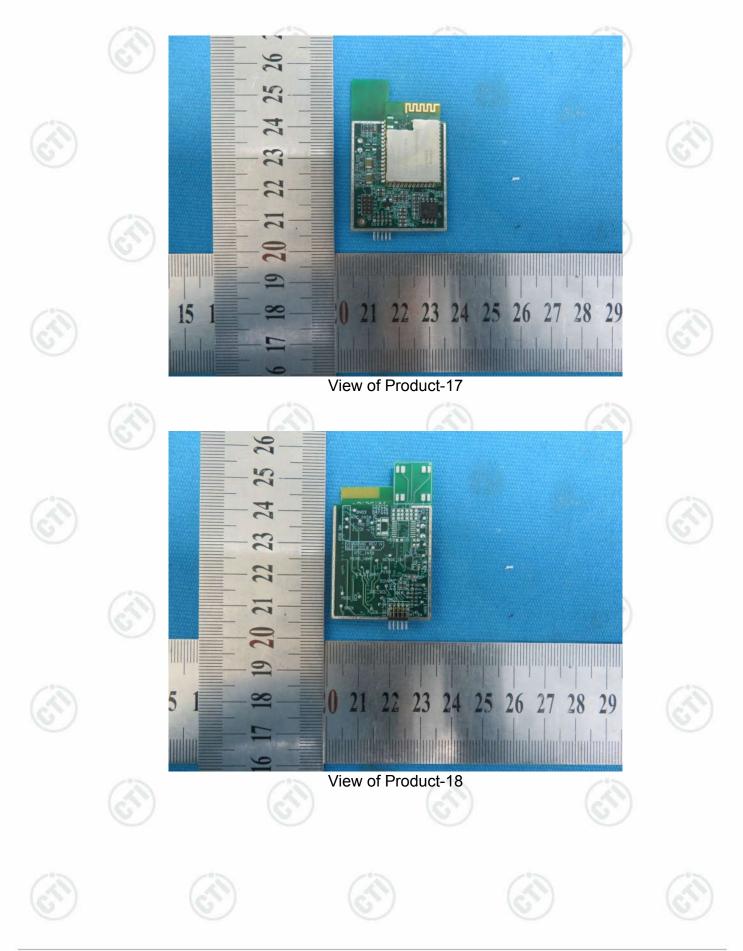


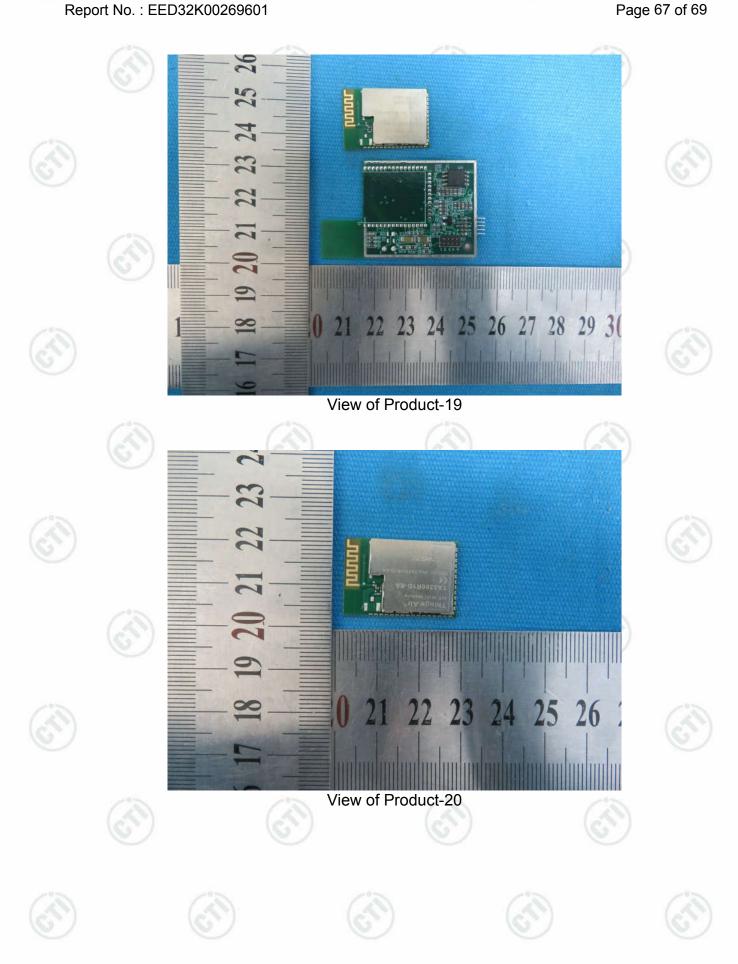




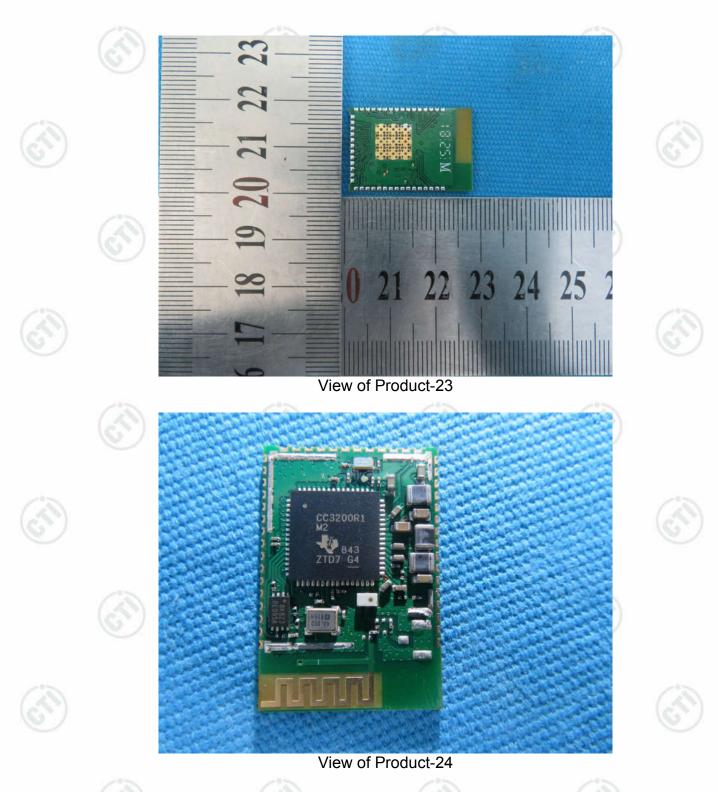








Page 67 of 69



*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.