TEST REPORT

Report Reference No.....:: CHTEW21050182 Report Verification:

Project No..... SHT2101056603EW

FCC ID.....:: 2ARJFLUCIA2

Applicant's name.....: Antarus S.A.

Chemin de la Bruyere 4, 1197 Prangins, Switzerland Address....:

Test item description: **LUCIA**

Trade Mark: Lucia

Model/Type reference..... V2

Listed Model(s):

47 CFR FCC Part 15 Subpart B Standard::

Date of receipt of test sample..... Apr. 27, 2021

Date of testing..... Apr. 28, 2021- May. 27, 2021

Date of issue..... May. 28, 2021

Result....: **Pass**

Compiled by

(position+printed name+signature)... File administrators Silvia Li

Supervised by

Silvia Li Aaron.Fang Hunstu (position+printed name+signature)... Project Engineer Aaron Fang

Approved by

(position+printed name+signature)..: RF Manager Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd.

1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Address....:

Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely corresponds to the test sample.

Report No.: CHTEW21050182 Page: 2 of 17 Issued: 2021-05-28

Contents

Test Standards Report version information	3 3
TEST DESCRIPTION	4
SUMMARY	5
Client Information	5
Product Description	5
EUT operation mode	5
Configuration of Tested System	5
Support unit used in test configuration	6
TEST ENVIRONMENT	7
Testing Laboratory Information	7
Environmental conditions	7
Statement of the measurement uncertainty	7
Equipments Used during the Test	8
TEST CONDITIONS AND RESULTS	9
Conducted Emissions Test	9
Radiated Emissions Test	12
TEST SETUP PHOTOS OF THE EUT	

Report No.: CHTEW21050182 Page: 3 of 17 Issued: 2021-05-28

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

47 CFR FCC Part 15 Subpart B - Unintentional Radiators

<u>ANSI C63.4: 2014</u> – American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz

1.2. Report version information

Revision No.	Date of issue	Description
N/A	2021-05-28	Original

Report No.: CHTEW21050182 Page: 4 of 17 Issued: 2021-05-28

2. TEST DESCRIPTION

Test Item	Section in CFR 47	Result	Test Engineer
Conducted Emissions	15.107(a)	PASS	Jiongsheng Feng
Radiated Emissions	15.109(a)	PASS	Pan Xie

Note: The measurement uncertainty is not included in the test result.

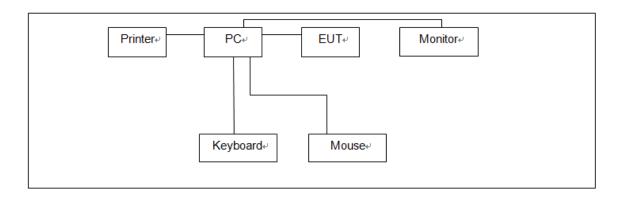
Report No.: CHTEW21050182 Page: 5 of 17 Issued: 2021-05-28

3. **SUMMARY**

3.1. Client Information

Applicant:	Antarus S.A.
Address:	Chemin de la Bruyere 4, 1197 Prangins, Switzerland
Manufacturer:	Antarus S.A.
Address:	Chemin de la Bruyere 4, 1197 Prangins, Switzerland

3.2. Product Description


Name of EUT:	LUCIA
Trade Mark:	Lucia
Model No.:	V2
Listed Model(s)	-
Power supply:	DC3.85V
	Model:SMI5-5-V-I38
Adapter information:	Input: AC100-240V, 50/60Hz, 0.2A
	Output: 5.0Vdc, 1.0A

3.3. EUT operation mode

Test mode	Describe	
Video Playing mode	Keep the EUT in Video Playing status	
Data exchange mode	Keep the EUT in Data exchange with PC status	

Pre-scan all of above modes. Only show video playing mode for conducted emission and data exchange mode for radiated emission which is the worst case on the report.

3.4. Configuration of Tested System

Report No.: CHTEW21050182 Page: 6 of 17 Issued: 2021-05-28

3.5. Support unit used in test configuration

			,			
Item	Equipment	Manufacturer	Model No.	FCC ID / FCC DoC	Data Cable	Power Cord
1	PC	DELL	OptiPlex 3020 MT	FCC DoC	N/A	Unshielded 1.8m
2	Monitor	DELL	E1912Hf	FCC DoC	N/A	Unshielded 1.8m
3	Keyboard	DELL	SK8115	FCC DoC	Unshielded, 1.5m	N/A
4	Mouse	DELL	MS111-T	FCC DoC	Unshielded, 1.5m	N/A
5	Printer	EPSON	L101	FCC DoC	N/A	Unshielded 1.8m

Report No.: CHTEW21050182 Page: 7 of 17 Issued: 2021-05-28

4. TEST ENVIRONMENT

4.1. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.			
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China			
	Tel: 86-755-26715499			
Connect information:	E-mail: cs@szhtw.com.cn			
	http://www.szhtw.com.cn			
Qualifications	Туре	Accreditation Number		
Qualifications	FCC	762235		

4.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

4.3. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emissions	30~1000MHz	4.90 dB	(1)
Radiated Emissions	1~18GHz	4.96 dB	(1)
Conducted Disturbance	0.15~30MHz	3.02 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: CHTEW21050182 Page: 8 of 17 Issued: 2021-05-28

4.4. Equipments Used during the Test

•	Conducted Em	ission					
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Shielded Room	Albatross projects	HTWE0114	N/A	N/A	2018/09/28	2023/09/27
•	EMI Test Receiver	R&S	HTWE0111	ESCI	101247	2020/10/19	2021/10/18
•	Artificial Mains	SCHWARZBECK	HTWE0113	NNLK 8121	573	2020/10/15	2021/10/14
•	Pulse Limiter	R&S	HTWE0033	ESH3-Z2	100499	2020/10/15	2021/10/14
•	RF Connection Cable	HUBER+SUHNER	HTWE0113-02	ENVIROFLE X_142	EF-NM- BNCM-2M	2020/10/15	2021/10/14
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A

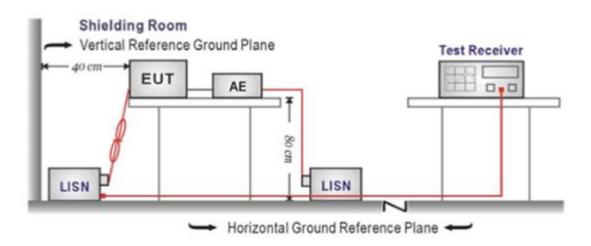
•	Radiated Emission-6th test site						
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0127	SAC-3m-02	C11121	2018/09/30	2021/09/29
•	EMI Test Receiver	R&S	HTWE0099	ESCI	100900	2020/10/19	2021/10/18
•	Ultra-Broadband Antenna	SCHWARZBECK	HTWE0119	VULB9163	546	2020/04/28	2023/04/27
•	Pre-Amplifer	SCHWARZBECK	HTWE0295	BBV 9742	N/A	2020/11/12	2021/11/11
•	RF Connection Cable	HUBER+SUHNER	HTWE0062-01	N/A	N/A	2021/05/25	2022/05/24
•	RF Connection Cable	HUBER+SUHNER	HTWE0062-02	SUCOFLEX104	501184/4	2021/05/25	2022/05/24
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A

Radiated emission-7th test site									
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	N/A	2018/09/30	2021/09/29		
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2020/10/20	2021/10/19		
•	Horn Antenna	SCHWARZBECK	HTWE0126	9120D	1011	2020/04/01	2023/03/31		
•	Broadband Pre- amplifier	SCHWARZBECK	HTWE0201	BBV 9718	9718-248	2021/05/21	2022/05/22		
•	RF Connection Cable	HUBER+SUHNER	HTWE0121-01	RE-7-FH	N/A	2021/05/08	2022/05/07		
•	Test Software	Audix	N/A	E3	N/A	N/A	N/A		

Report No.: CHTEW21050182 Page: 9 of 17 Issued: 2021-05-28

5. TEST CONDITIONS AND RESULTS

5.1. Conducted Emissions Test


LIMIT

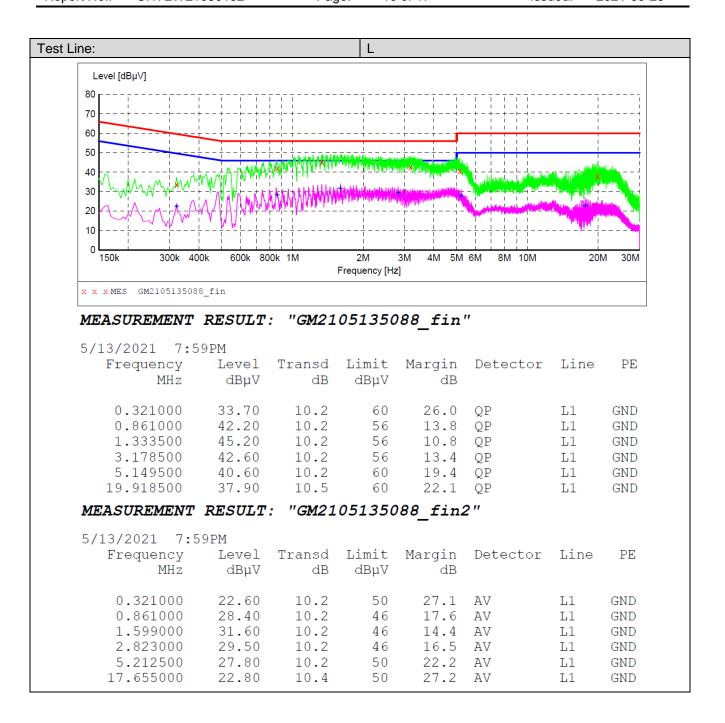
FCC CFR Title 47 Part 15 Subpart B Section 15.107:

Frequency range (MHz)	Limit (dBuV)		
Frequency range (Wiriz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

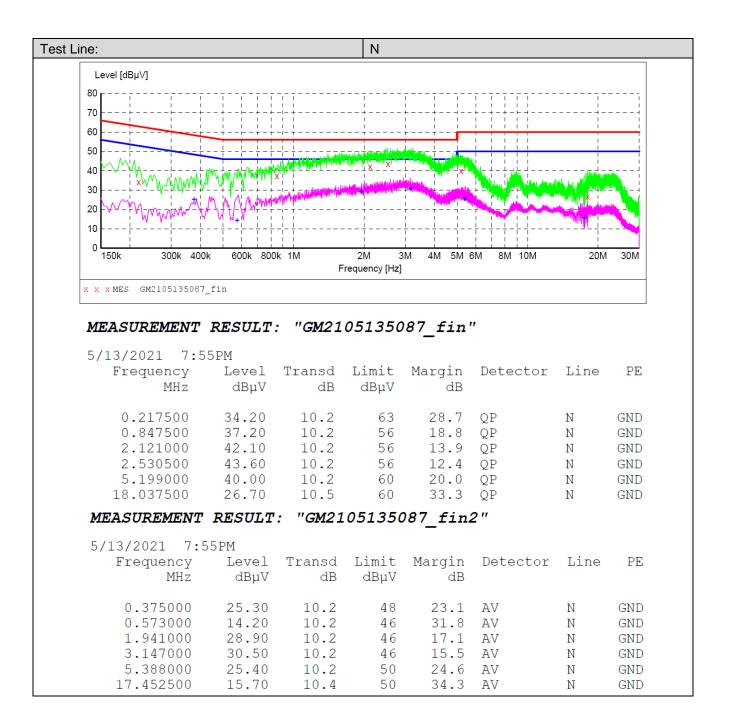
^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE


- 1. The EUT was setup according to ANSI C63.4:2014
- 2. The EUT was placed on a plat form of nominal size, 1 m by 1.5 m, raised 10 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 10 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50ohm / 50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:


Please refer to the clause 3.3

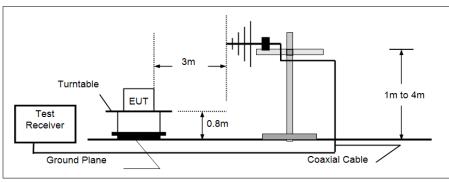
TEST RESULTS

 Report No.: CHTEW21050182 Page: 10 of 17 Issued: 2021-05-28

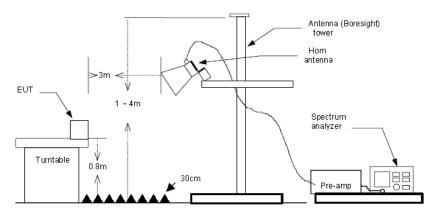
Report No.: CHTEW21050182 Page: 11 of 17 Issued: 2021-05-28

Report No.: CHTEW21050182 Page: 12 of 17 Issued: 2021-05-28

5.2. Radiated Emissions Test


LIMIT

FCC CFR Title 47 Part 15 Subpart B Section 15.109


TO OTA THE IT THE CORPORT DOCUMENT TO THE						
Frequency	Limit (dBuV/m @3m)	Value				
30MHz-88MHz	40.00	Quasi-peak				
88MHz-216MHz	43.50	Quasi-peak				
216MHz-960MHz	46.00	Quasi-peak				
960MHz-1GHz	54.00	Quasi-peak				
Above 1GHz	54.00	Average				
Above Toriz	74.00	Peak				

TEST CONFIGURATION

➤ 30MHz ~ 1GHz

Above 1GHz

TEST PROCEDURE

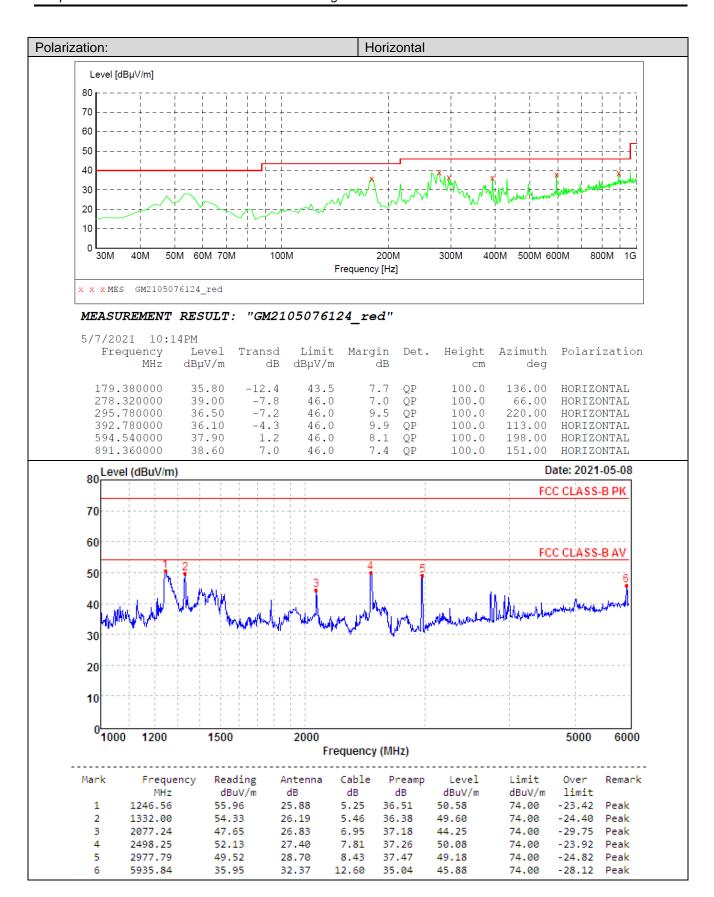
- 1. The EUT was tested according to ANSI C63.4:2014.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground.
- 3. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 4. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 5. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1GHz,

RBW=120KHz, VBW=300KHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, theemission measurement will be repeated using the quasi-peak detector and reported.

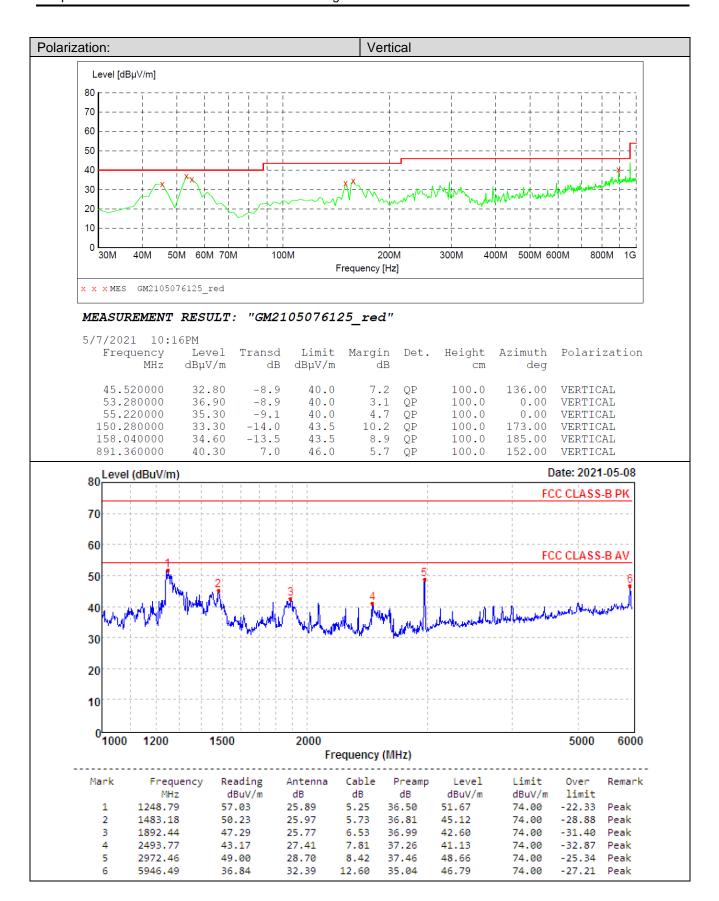
(3) From 1GHz to 5th harmonic, RBW=1MHz, VBW=3MHz

Report No.: CHTEW21050182 Page: 13 of 17 Issued: 2021-05-28

TEST MODE:
Please refer to the clause 3.3


TEST RESULTS

☑ Passed ☐ Not Applicable


Note: Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor The emission levels of frequency above 6GHz are very lower than limit and not show in test report.

Report Template Version: V03 (2021-01)

Report No.: CHTEW21050182 Page: 14 of 17 Issued: 2021-05-28

Report No.: CHTEW21050182 Page: 15 of 17 Issued: 2021-05-28

Report No.: CHTEW21050182 Page: 16 of 17 Issued: 2021-05-28

6. TEST SETUP PHOTOS OF THE EUT

Conducted Emissions (AC Mains)

Radiated Emissions (30MHz-1GHz)

Radiated Emissions (Above 1GHz)

Report No.: CHTEW21050182 Page: 17 of 17 Issued: 2021-05-28

7. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Reference to the test report No.: CHTEW21050179

-----End of Report-----