

FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices

For further applied test standards please refer to section 3 of this test report.

	Test Item			
Kind of test item:	Radar Level Sensor			
Model name:	SENS-4015			
FCC ID:	2ARIX-SENS-4015			
Frequency:	57 GHz – 64 GHz			
Antenna:	2 embedded dipole antennas			
Power supply:	3.6 V DC (3.0 V – 5.0 V DC) from external battery			
Temperature range:	-40°C to +60°C			

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Thomas Vogler Lab Manager Radio Communications & EMC

Test performed:

Meheza Walla Lab Manager Radio Communications & EMC

Test report no.: 1-6824_23-01-02

1 Table of contents

1	Table	of contents	2
2	Gener	al information	3
	2.1 2.2 2.3	Notes and disclaimer Application details Test laboratories sub-contracted	3
3	Test s	tandard/s, references and accreditations	4
4	Repor	ting statements of conformity – decision rule	5
5	Test e	nvironment	6
6	Test it	em	6
	6.1 6.2	General description Additional information	
7	Descri	iption of the test setup	7
	7.1 7.3 7.4 7.5	Shielded semi anechoic chamber Radiated measurements, 18 GHz – 50 GHz Radiated measurements > 50 GHz Radiated measurements > 50 GHz	12 12
8	Seque	nce of testing	15
	8.1 8.2 8.3 8.4 8.5	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 18 GHz Sequence of testing radiated spurious above 18 GHz Sequence of testing radiated spurious above 50 GHz with external mixers	16 17 18
9	Measu	urement uncertainty	20
10	Far	field consideration for measurements above 18 GHz	20
11	Sun	nmary of measurement results	21
12	Add	litional comments	21
13	Bas	ic information of the DUT & selection of applicable rule parts	22
14	Mea	asurement results	27
	14.1 14.2 14.3 14.4	Occupied bandwidth & emission bandwidth & Frequency stability Radiated power (EIRP) Time domain requirements: Continous transmitter off-times & transmit duty cycle Spurious emissions radiated	36 42
15	Glos	ssary	53
16	Doc	ument history	

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. cetecom advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of cetecom advanced GmbH.

The testing service provided by cetecom advanced GmbH has been rendered under the current "General Terms and Conditions for cetecom advanced GmbH".

cetecom advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the cetecom advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the cetecom advanced GmbH test report include or imply any product or service warranties from cetecom advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by cetecom advanced GmbH.

All rights and remedies regarding vendor's products and services for which cetecom advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by cetecom advanced GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

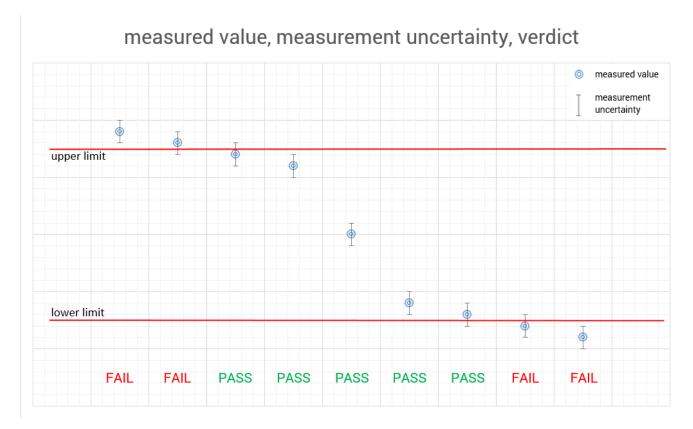
Date of receipt of order:	2023-09-11
Date of receipt of test item:	2023-10-02
Start of test:*	2023-10-04
End of test:*	2023-10-06
Person(s) present during the test:	Mr. Hans-Joerg Beyer / Mr. Johannes Muench

*Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

2.3 Test laboratories sub-contracted

None

Test standard	Date	Description
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
Guidance	Version	Description
ANSI C63.4-2014	-/-	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
KDB guidance 996369	D01	Module Certification Guide v02


3 Test standard/s, references and accreditations

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

5 Test environment

Temperature	:	T _{nom} T _{max} T _{min}	+22 °C during room temperature tests +60 °C during high temperature tests -20 °C during low temperature tests
Relative humidity content	:		55 %
Barometric pressure	:		1021 hpa
		Vnom	3.6 V DC from power supply
Power supply	:	V_{max}	5.0 V (No tests under extreme voltage conditions required).
		V _{min}	3.0 V (No tests under extreme voltage conditions required).

6 Test item

6.1 General description

Kind of test item	:	Radar Level Sensor
Model name		SENS-4015
S/N serial number		2201-000103
Hardware status		3.1
Software status		Radartest (0.50.1)
Frequency band		57 GHz – 64 GHz
Type of modulation		Pulse modulation
Number of channels	•	1
Antenna		2 embedded dipole antennas
Power supply		3.6 V DC (3.0 V – 5.0 V DC) from external battery
Temperature range	:	-40°C to +60°C

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report:

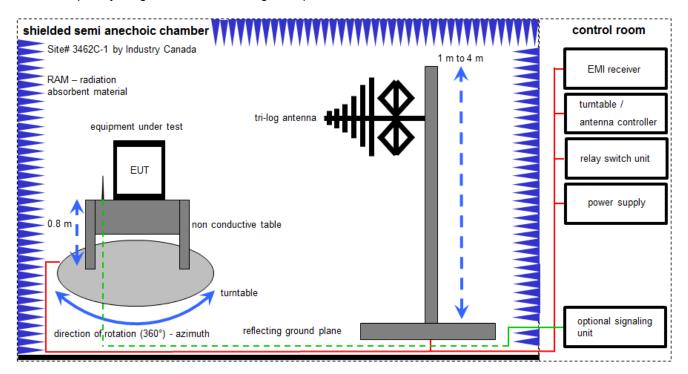
1-6824/23-01-01_AnnexA 1-6824/23-01-01_AnnexB 1-6824/23-01-01_AnnexD

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

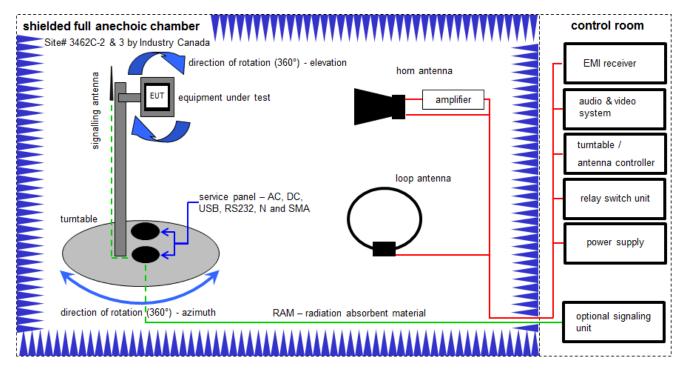
- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter EMC32 software version: 10.30.0

FS = UR + CL + AF (FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


<u>Example calculation</u>: FS [dBµV/m] = 12.35 [dBµV/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dBµV/m] (35.69 µV/m)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne	-/-	-/-
3	n. a.	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
4	n. a.	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	09.12.2022	31.12.2023
5	n. a.	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
6	n. a.	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
7	n. a.	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
8	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	01029	300005379	vlKl!	18.10.2021	31.10.2023
9	n. a.	Switch-Unit	3488A	HP	2719A14505	30000368	ev	-/-	-/-

7.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

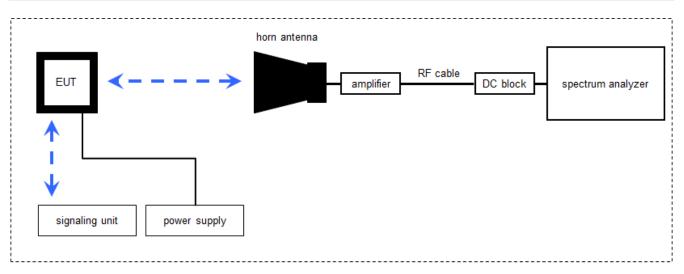
FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

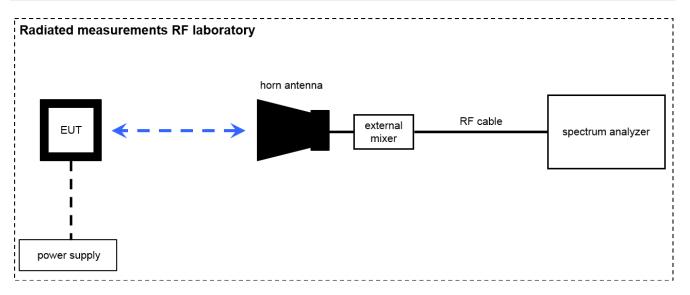
Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 <math>\mu V/m$)

cetecom



Equipment table:

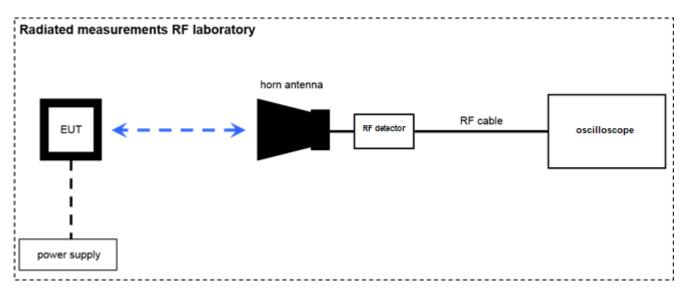

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	vlKI!	09.12.2020	08.12.2023
2	n. a.	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKl!	02.08.2023	31.08.2025
3	n. a.	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
4	n.a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	vlKl!	30.10.2021	31.10.2023
5	n.a.	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9709-5289	300000213	vlKl!	26.07.2022	25.07.2024
6	n.a.	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
7	n.a.	Variable isolating transformer	MPL IEC625 Bus Variable isolating transformer	Erfi	91350	300001155	ne	-/-	-/-
8	n. a.	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	07.12.2022	31.12.2023
9	n. a.	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
10	n.a.	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
11	n. a.	Broadband Amplifier 5-13 GHz	CBLU5135235	CERNEX	22010	300004491	ev	-/-	-/-
12	n. a.	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
13	n. a.	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO		300004682	ne	-/-	-/-
14	n. a.	PC	ExOne	F+W		300004703	ne	-/-	-/-
15	n. a.	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-

7.3 Radiated measurements, 18 GHz - 50 GHz

7.4 Radiated measurements > 50 GHz

OP = AV + D - G

(OP-rad. output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain)


Example calculation:

OP [dBm] = -54.0 [dBm] + 64.0 [dB] - 20.0 [dBi] = -10 [dBm] (100 μW)

Note: conversion loss of mixer is already included in analyzer value.

7.5 Radiated measurements > 50 GHz

Note: EUT is replaced by reference source for substitution measurement

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n.a.	Horn Antenna 18.0-40.0 GHz	LHAF180	Microw.Devel	39180-103-021	300001747	vlKli	17.01.2022	31.01.2024
2	n. a.	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda		300000486	vlKI!	17.01.2022	31.01.2024
3	n. a.	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	82-16	300000510	vlKl!	17.01.2022	31.01.2024
4	n.a.	Std. Gain Horn Antenna 33.0-50.1 GHz	2324-20	Flann	57	400000683	ne	-/-	-/-
5	n. a.	Std. Gain Horn Antenna 49.9-75.8 GHz	2524-20	Flann	*	300001983	ne	-/-	-/-
6	n. a.	Std. Gain Horn Antenna 60-90 GHz	COR 60_90	Thomson CSF		30000814	ev	-/-	-/-
7	n. a.	Std. Gain Horn Antenna 73.8-112 GHz	2724-20	Flann	*	300001988	ne	-/-	-/-
8	n.a.	Std. Gain Horn Antenna 92.3-140 GHz	2824-20	Flann		300001993	ne	-/-	-/-
9	n. a.	Std. Gain Horn Antenna 114-173 GHz	2924-20	Flann	*	300001999	ne	-/-	-/-
10	n. a.	Std. Gain Horn Antenna 145-220 GHz	3024-20	Flann	*	300002000	ne	-/-	-/-
11	n. a.	Broadband LNA 18-50 GHz	CBL18503070PN	CERNEX	25240	300004948	ev	09.03.2022	08.03.2024
12	n. a.	Harmonic Mixer 3- Port, 50-75 GHz	FS-Z75	Rohde & Schwarz	101578	300005788	k	19.07.2023	31.07.2024
13	n. a.	Harmonic Mixer 3- Port, 60-90 GHz	FS-Z90	Rohde & Schwarz	102152	300006202	k	24.03.2023	31.03.2024
14	n. a.	Harmonic Mixer 3- Port, 75-110 GHz	FS-Z110	Rohde & Schwarz	101411	300004959	k	21.07.2023	31.07.2024
15	n.a.	Harmonic Mixer 3-port, 90-140 GHz	FS-Z140	Rohde & Schwarz	101119	300005581	k	03.08.2023	31.08.2024
16	n.a.	Harmonic Mixer 3-port, 110-170 GHz	FS-Z170	Rohde & Schwarz	100014	300004156	k	21.07.2023	31.07.2024
17	n. a.	Harmonic Mixer 3- Port, 140-220 GHz	SAM-220	Radiometer Physics GmbH	200001	300004157	k	02.08.2023	31.08.2024
18	n.a.	Spectrum Analyzer 2 Hz - 85 GHz	FSW85	R&S	101333	300005568	k	02.08.2023	31.08.2024
19	n. a.	Temperature Test Chamber	VT4002	Heraeus Voetsch	521/83761	300002326	ev	12.05.2022	31.05.2024
20	n.a.	Waveguide amplifier 50 to 75 GHz 30 dB Gain	AFB-V30LN-02	Ducommun	2K1701116	300005899	ev	-/-	-/-
21	n.a.	Thermal Power Sensor, DC-110GHz, 300nW-100mW	NRP-Z58	Rohde & Schwarz	100913	300004808	k	04.01.2022	31.01.2024
22	n.a.	SG Extension Module 50 – 75 GHz	E8257DV15	VDI	US54250124	300005541	ev	-/-	-/-
23	n.a.	Std. Gain Horn Antenna 50-75 GHz	COR 50_75	Thomson CSF		300000813	ev	-/-	-/-
24	n.a.	Std. Gain Horn Antenna 50-75 GHz	COR 50_75	Thomson CSF		300000813 -0001	ev	-/-	-/-
25	n.a.	RF Detector	SFD-503753- 15SF-P1	Eravant	07353-1	300006118	ev	-/-	-/-
26 27	n.a.	Oscilloscope	DP05054	Tektronix	C010174	300004169	k	07.12.2021	31.12.2023

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

8.5 Sequence of testing radiated spurious above 50 GHz with external mixers

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate for far field (e.g. 0.25 m).
- The EUT is set into operation.

Premeasurement

- The test antenna with external mixer is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.
- Caution is taken to reduce the possible overloading of the external mixer.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- As external mixers may generate false images care is taken to ensure that any emission measured by the spectrum analyzer does indeed originate in the EUT. Signal identification feature of spectrum analyzer is used to eliminate false mixer images (i.e., it is not the fundamental emission or a harmonic falling precisely at the measured frequency).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

9 Measurement uncertainty

Test case	Uncertainty
Permitted range of operating frequencies	± 100 kHz
Conducted unwanted emissions in the spurious domain (up to 40 GHz)	± 1 dB
Radiated unwanted emissions in the spurious domain (up to 40 GHz)	± 3 dB
Conducted unwanted emissions in the spurious domain (40 to 50 GHz)	± 4 dB
Radiated unwanted emissions in the spurious domain (40 to 50 GHz)	± 4 dB
Conducted unwanted emissions in the spurious domain (50 to 300 GHz)	± 5 dB
Radiated unwanted emissions in the spurious domain (50 to 300 GHz)	± 5 dB
DC and low frequency voltages	± 3 %
Temperature	± 1 °C
Humidity	± 3 %

10 Far field consideration for measurements above 18 GHz

Far field distance calculation:

 $D_{ff} = 2 \times D^2 / \lambda$

with

- D_{ff} Far field distance
- D Antenna dimension
- λ wavelength

Spurious emission measurements:

Antenna frequency range in GHz	Highest measured frequency in GHz	D in cm	λ in cm	D _{ff} in cm
18-26	26	3.4	1.15	20.04
26-40	40	2.2	0.75	12.91
40-50	50	2.77	0.60	25.58
50-75	75	1.85	0.40	17.11
75-110	110	1.24	0.27	11.28
110-170	170	0.85	0.18	8.19
170-220	220	0.68	0.14	6.78

In band measurement (EIRP, OBW):

Antenna frequency range in GHz	Highest measured frequency in GHz	Antenna dimension in cm	Wavelength in cm	far field distance in cm	
50-75	64	1.85	0.47	14.6	

11 Summary of measurement results

×	No deviations from the technical specifications were ascertained	
	There were deviations from the technical specifications ascertained	
This test report is only a partial test report. The content and verdict of the performed test cases are listed below.		

TC identifier	Description	verdict	date	Remark
RF-Testing	FCC 47 CFR Part 15	see below	2023-10-25	-/-

Test specification clause	Test case	Temperature conditions	Power supply	Pass	Fail	NA	NP	Remark
47 CFR 15.215(c): 47 CFR 15.255(f):	Occupied bandwidth & Frequency stability	Nominal Extreme	Nominal Extreme	\boxtimes				complies
47 CFR 15.255(c)(3)	Radiated power (EIRP)	Nominal	Nominal	\boxtimes				complies
47 CFR 15.255(c)(3)	Time domain requirements	Nominal	Nominal	\boxtimes				complies
47 CFR 15.255(d)	Spurious emissions radiated	Nominal	Nominal	\boxtimes				complies

Note: NA = Not applicable; NP = Not performed

12 Additional comments

Reference documents: No

Special test descriptions: None

Configuration descriptions: None

13 Basic information of the DUT & selection of applicable rule parts

Basic information of the DUT:

Operation condition:	Operation on aircraft (47 CFR 15.255(b))				
	Unmanned aircraft (47 CFR 15.255(b)(3))				
	Not unmanned aircraft				
	\boxtimes No operation on aircraft				
	Note: Operation under the provisions of this section is not permitted for equipment used on satellites (47 CFR 15.255(a)).				
Kind of DUT:	Devices other than field disturbance sensors and other than fixed point-to-point transmitters located outdoors				
	Fixed point-to-point transmitters located outdoors				
	Field disturbance sensors/radars				
	Pulsed field disturbance sensors/radars				
	Other than pulsed field disturbance sensors/radars				
Frequency band:	Operating within band 57 – 71 GHz (47 CFR 15.255 / 47 CFR 15.255(c))				
	Operating within band 59.3 – 71.0 GHz (47 CFR 15.255(b)(2)(iii))				
	Operating within band 60 – 64 GHz (47 CFR 15.255(b)(3))				
	🔀 Operating within band 57 – 64 GHz (47 CFR 15.255(c)(3) / 47 CFR 15.255(c)(2)(iii))				
	Operating within band 57 – 71 GHz (47 CFR 15.255(c)(2))				
	Operating within band 57.0 – 59.4 GHz (47 CFR 15.255(c)(2)(i))				
	☐ Operating within band 57.0 – 61.56 GHz (47 CFR 15.255(c)(2)(ii))				
	Operating within band 61.0 – 61.5 GHz (47 CFR 15.255(c)(2)(v))				
	Note: See results in chapter 14.1				

Selection of applicable rule parts:

Applicable rule parts and limits depend on the basic information of the DUT (see chapter 13). The comparison of the basic information of the DUT with the rule parts lead to the following conclusions:

Rule Part			
47 CFR 15.255:			
(a) General: Operation under the provisions of this section is not permitted for equipment			
used on satellites.			
(b) Operation on aircraft: Operation on aircraft is permitted under the following conditions:			
(1) When the aircraft is on the ground.			
(2) While airborne, only in closed exclusive on-board communication networks within the aircraft, with the following exceptions:			
 (i) Equipment shall not be used in wireless avionics intra-communication (WAIC) applications where external structural sensors or external cameras are mounted on the outside of the aircraft structure. 			
(ii) Except as permitted in paragraph (b)(3) of this section, equipment shall not be used on aircraft where there is little attenuation of RF signals by the body/fuselage of the aircraft.			
 (iii) Field disturbance sensor/radar devices may only operate in the frequency band 59.3–71.0 GHz while installed in passengers' personal portable electronic equipment (e.g., smartphones, tablets) and shall comply with paragraph (b)(2)(i) of this section, and relevant requirements of paragraphs (c)(2) through (c)(4) of this section. 			
(3) Field disturbance sensors/radar devices deployed on unmanned aircraft may operate within the frequency band 60–64 GHz, provided that the transmitter not exceed 20 dBm peak EIRP. The sum of continuous transmitter off-times of at least two milliseconds shall equal at least 16.5 milliseconds within any contiguous interval of 33 milliseconds. Operation shall be limited to a maximum of 121.92 meters (400 feet) above ground level.			
(c) Radiated power limits: Within the 57–71 GHz band , emission levels shall not exceed the following equivalent isotropically radiated power (EIRP):			
(1) Devices other than field disturbance sensors shall comply with one of the following power limits, as measured during the transmit interval:			
(i) The average power of any emission shall not exceed 40 dBm and the peak power of any emission shall not exceed 43 dBm; or			
(ii) For fixed point-to-point transmitters located outdoors, the average power of any emission shall not exceed 82 dBm, and shall be reduced by 2 dB for every dB that the antenna gain is less than 51 dBi. The peak power of any emission shall not exceed 85 dBm, and shall be reduced by 2 dB for every dB that the antenna gain is less than 51 dBi.			
(A) The provisions in this paragraph (c) for reducing transmit power based on antenna gain shall not require that the power levels be reduced below the limits specified in paragraph (c)(1)(i) of this section.			
(B) The provisions of § 15.204(c)(2) and (4) that permit the use of different antennas of the same type and of equal or less directional gain do not apply to intentional radiator systems operating under this provision. In lieu thereof, intentional radiator systems shall be certified using the specific antenna(s) with which the system will be marketed and operated.			

Test report no.:	1-6824	_23-01-02
------------------	--------	-----------

Compliance testing shall be performed using the highest gain and the lowest gain antennas for which certification is sought and with the intentional radiator operated at its maximum available output power level. The responsible party, as defined in § 2.909 of this chapter, shall supply a list of acceptable antennas with the application for certification.	
(2) Field disturbance sensors/radars shall not exceed -10 dBm peak conducted output power and 10 dBm peak EIRP except that field disturbance sensors/radars that limit their operation to all or part of the specified frequency band may operate without being subject to a transmitter conducted output power limit if they operate in compliance with paragraph (b)(3) of this section or with one or more of the provisions below:	
 (i) 57.0-59.4 GHz: the peak EIRP level shall not exceed 20 dBm for indoor operation or 30 dBm for outdoor operation; 	
 (ii) 57.0-61.56 GHz: the peak EIRP shall not exceed 3 dBm except that the peak EIRP shall not exceed 20 dBm if the sum of continuous transmitter off-times of at least two milliseconds equals at least 16.5 milliseconds within any contiguous interval of 33 milliseconds; 	
(iii) 57.0–64.0 GHz :	
 (A) The peak EIRP shall not exceed 14 dBm, and the sum of continuous transmitter off-times of at least two milliseconds shall equal at least 25.5 milliseconds within any contiguous interval of 33 milliseconds, except as specific in paragraph (c)(2)(iii)(B) of this section; 	
(B) The peak EIRP shall not exceed 20 dBm, and the sum of continuous transmitter off-times of at least two milliseconds shall equal at least 16.5 milliseconds within any contiguous interval of 33 milliseconds when operated outdoors:	
(1) As part of a temporary or permanently fixed application ; or	
(2) When being used in vehicular applications to perform specific tasks of	
moving something or someone, except for in-cabin applications;	
moving something or someone, except for in-cabin applications; (iv) A field disturbance sensor may operate in any of the modes in the above subsections so long as the device operates in only one mode at any time and does	
moving something or someone, except for in-cabin applications;(iv) A field disturbance sensor may operate in any of the modes in the above sub-	
 moving something or someone, except for in-cabin applications; (iv) A field disturbance sensor may operate in any of the modes in the above subsections so long as the device operates in only one mode at any time and does so for at least 33 milliseconds before switching to another mode. (v) 61.0-61.5 GHz: For field disturbance sensors/radars that occupy 500 MHz bandwidth or less that are contained wholly within the frequency band 61.0-61.5 GHz, the average power of any emission, measured during the transmit interval, shall not exceed 40 dBm, and the peak power of any emission shall not exceed 43 dBm. In addition, the average power of any emission outside of the 61.0-61.5 GHz band, measured during the transmit interval, but still within the 57-71 GHz band, shall not exceed 10 dBm, and the peak power of any emission 	

limit do not apply to devices operating under paragraphs (c)(2) and (3) of this section.		
(d) Limits on spurious emissions:	\square	
(1) The power density of any emissions outside the 57–71 GHz band shall consist		
solely of spurious emissions.		
(2) Radiated emissions below 40 GHz shall not exceed the general limits in § 15.209.		
(3) Between 40 GHz and 200 GHz, the level of these emissions shall not exceed 90 pW/cm ² at a distance of 3 meters.	\square	
(4) The levels of the spurious emissions shall not exceed the level of the fundamental		
emission.		
(e) Limits on transmitter conducted output power.		
(1) Except as specified in paragraph (e)(2) of this section, the peak transmitter		
conducted output power of devices other than field disturbance sensors/radars		
shall not exceed 500 mW. Depending on the gain of the antenna, it may be		
necessary to operate the intentional radiator using a lower peak transmitter output		
power in order to comply with the EIRP limits specified in paragraph (c) of this		
section.		
(2) Devices other than field disturbance sensors/radars with an emission bandwidth of		
less than 100 megahertz must limit their peak transmitter conducted output power		
to the product of 500 mW times their emission bandwidth divided by 100 megahertz.		
For the purposes of this paragraph, emission bandwidth is defined as the		
instantaneous frequency range occupied by a steady state radiated signal with		
modulation, outside which the radiated power spectral density never exceeds 6 dB		
below the maximum radiated power spectral density in the band, as measured with		
a 100 kilohertz resolution bandwidth spectrum analyzer. The center frequency must		
be stationary during the measurement interval, even if not stationary during normal		
operation (e.g., for frequency hopping devices).		
(f) Frequency stability: Fundamental emissions must be contained within the frequency		
bands specified in this section during all conditions of operation. Equipment is presumed		
to operate over the temperature range -20 to + 50 degrees Celsius with an input voltage	\square	
variation of 85% to 115% of rated input voltage, unless justification is presented to		
demonstrate otherwise.		
(g) Radio frequency radiation exposure: Radio frequency devices operating under the		
provisions of this part are subject to the radio frequency radiation exposure		
requirements specified in §§ 1.1307(b), 1.1310, 2.1091, and 2.1093 of this chapter, as		
appropriate. Applications for equipment authorization of mobile or portable devices	\square	
operating under this section must contain a statement confirming compliance with		
these requirements. Technical information showing the basis for this statement must be		
submitted to the Commission upon request.		
(h) Group installation: Any transmitter that has received the necessary FCC equipment		
authorization under the rules of this chapter may be mounted in a group installation for		
simultaneous operation with one or more other transmitter(s) that have received the		
necessary FCC equipment authorization, without any additional equipment	\square	
authorization. However, no transmitter operating under the provisions of this section		
may be equipped with external phase-locking inputs that permit beam-forming arrays to		
be realized.		
(i) Compliance measurement. Measurement procedures that have been found to be		
acceptable to the Commission in accordance with § 2.947 of this chapter may be used	\square	
to demonstrate compliance.	<u>ت</u>	

(1) For purposes of demonstrating compliance with this section, corrections to the transmitter conducted output power may be made due to the antenna and circuit loss.		
(2) Compliance measurements of frequency-agile field disturbance sensors/radars shall be performed with any related frequency sweep, step, or hop function activated.		
47 CFR 15.215		
(c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission , or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency to poping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.		
47 CFR 15.209	\square	
47 CFR 15.207		
(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the table of this paragraph (see chapter 14.4), as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.		
(c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or that connect to the AC power lines indirectly, obtainig their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.		

14 Measurement results

14.1 Occupied bandwidth & emission bandwidth & Frequency stability

Description:

Measurement of the bandwidth and the frequency stability of the wanted signal (fundamental emission) under temperature and supply voltage variations.

Limits and provisions:

Selection of applicable rule parts: see 13

Designated frequency band of 47 CFR 15.215	
57 GHz – 71 GHz	

Bandwidth to be measured				
Applicable	Rule part	Bandwidth		
	15.215(c)	20 dB bandwidth		
\square	15.255(c)(3)	10 dB bandwidth		
	15.255(e)(2)	6 dB emission bandwidth		

Note:

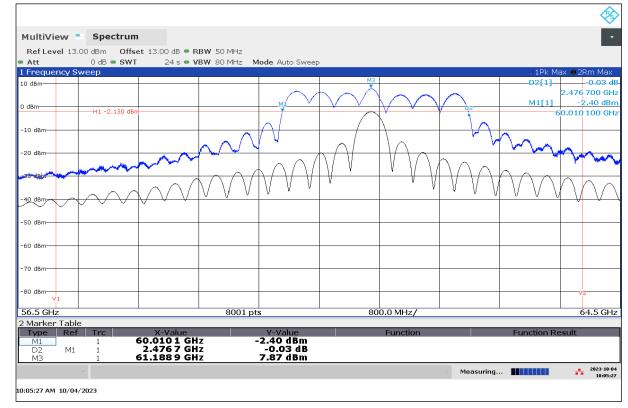
 Definition of 6dB emission bandwidth (15.255(e)(2)): the instantaneous frequency range occupied by a steady state radiated signal with modulation, outside which the radiated power spectral density never exceeds 6 dB below the maximum radiated power spectral density in the band, as measured with a 100 kilohertz resolution bandwidth spectrum analyzer. The center frequency must be stationary during the measurement interval, even if not stationary during normal operation (e.g., for frequency hopping devices).

Measurement:

Measurement parameter		
Detector:	Pos-Peak	
Resolution bandwidth:	50 MHz	
Video bandwidth:	80 MHz	
Trace-Mode:	Max Hold	

Measurement procedures:

- Bandwidth: ANSI C63.10-2013 6.9 / 9.3
- Frequency stability: ANSI C63.10-2013 6.8 / 9.4

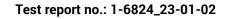


Measurement results:

10 dB bandwidth at normal conditions:

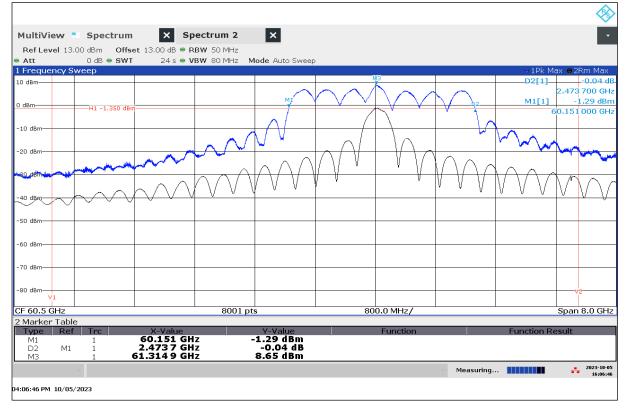
EUT	Mode	Test condition	f⊾ [GHz]	fн [GHz]	Bandwidth [GHz]
-/-	-/-	T _{nom} / V _{nom}	60.010 100	62.486 800	2.48

Plot 1: 10dB bandwidth at normal condition

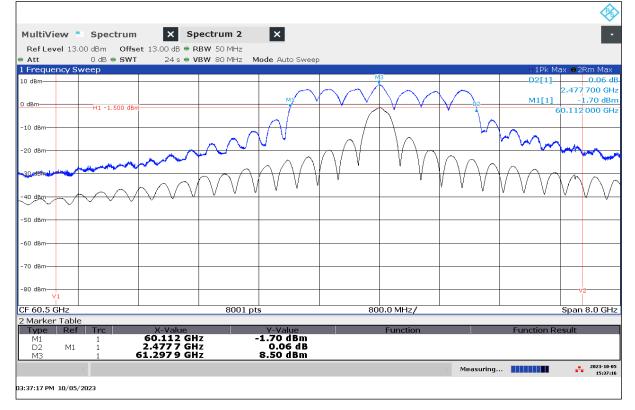


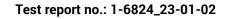
Frequency stability:

Bandwidth measurement for frequency stability tests: 10 dB bandwidth

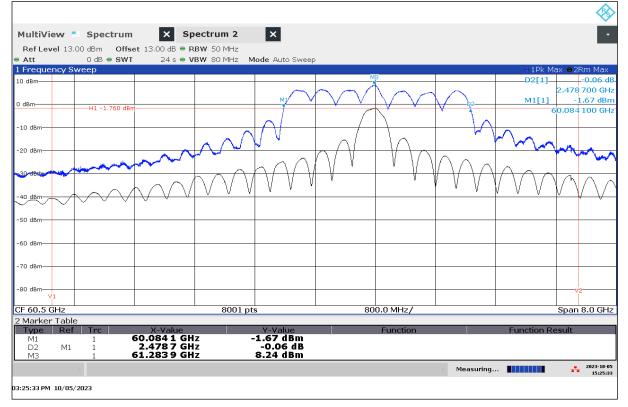

Test condition	Frequency f∟ [GHz]	Frequency f _H [GHz]	Bandwidth [GHz]
-40 °C / V _{nom}	60.151 000	62.642 700	2.47
-20 °C / V _{nom}	60.112 000	62.589 700	2.48
-10 °C / V _{nom}	60.084 100	62.562 800	2.48
0 °C / V _{nom}	60.063 100	62.538 800	2.48
10 °C / V _{nom}	60.040 100	62.517 800	2.48
20 °C / V _{nom}	60.010 100	62.486 800	2.48
20 °C / V _{min}	60.024 100	62.474 800	2.45
20 °C / V _{max}	60.015 100	62.461 800	2.45
30 °C / V _{nom}	59.997 100	62.429 800	2.43
40 °C / V _{nom}	59.986 100	62.415 800	2.43
50 °C / V _{nom}	59.985 100	62.412 800	2.43
60 °C / V _{nom}	59.962 100	62.398 800	2.44

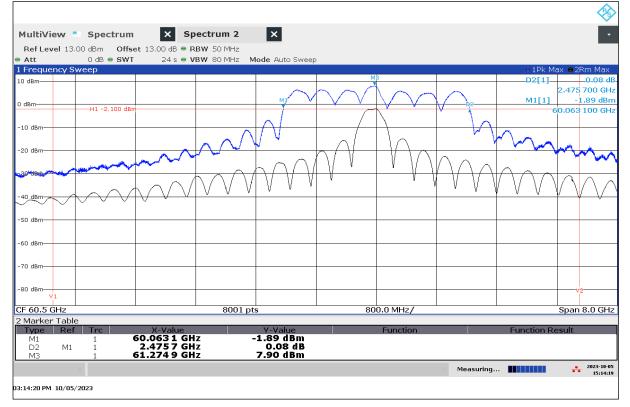
Verdict: Compliant

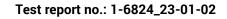




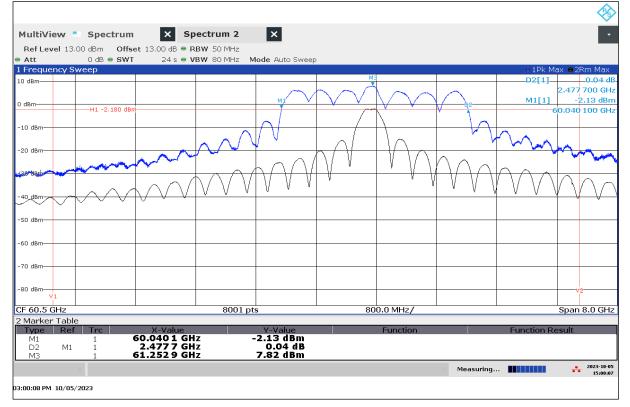
Plot 2: 10dB bandwidth at -40 °C / Vnom

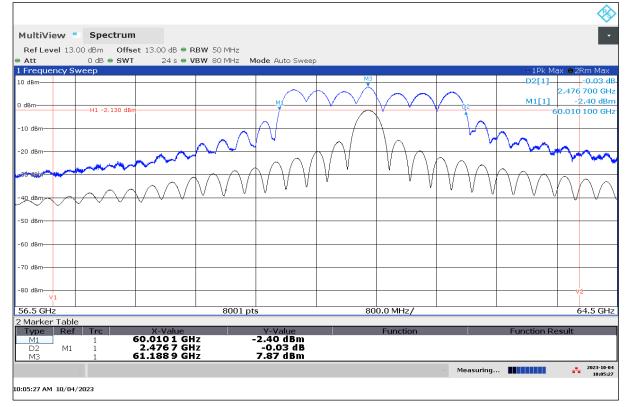

Plot 3: 10dB bandwidth at -20 °C / Vnom

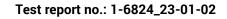




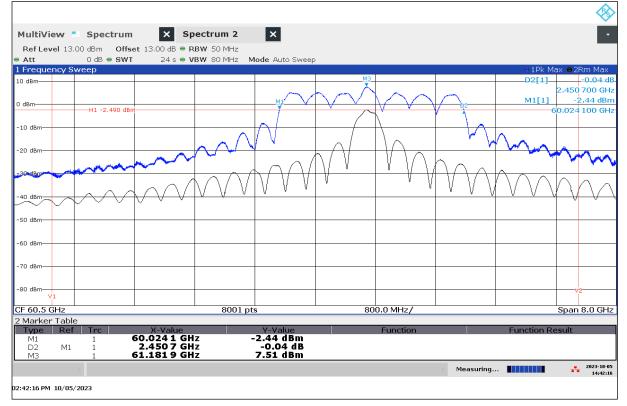
Plot 4: 10dB bandwidth at -10 °C / Vnom

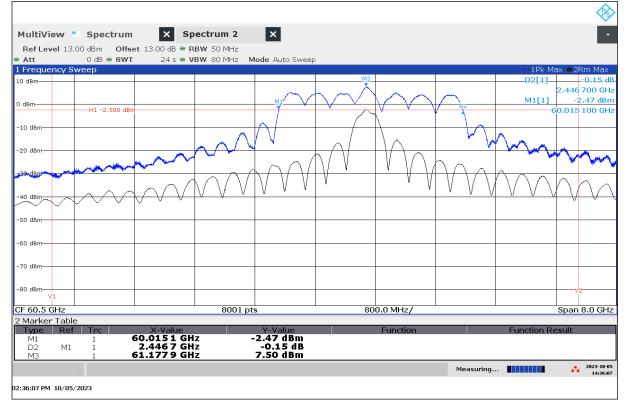

Plot 5: 10dB bandwidth at 0 °C / Vnom

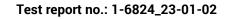




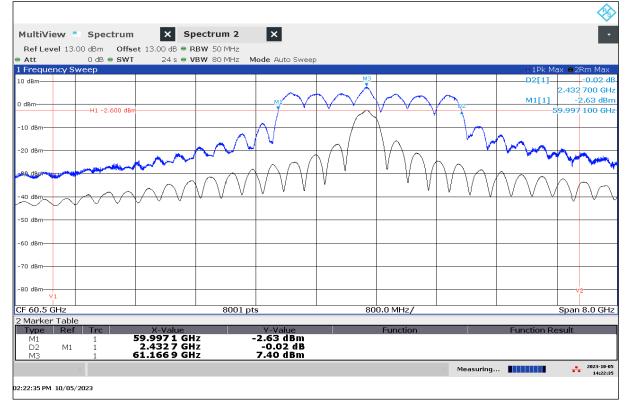
Plot 6: 10dB bandwidth at 10 °C / Vnom

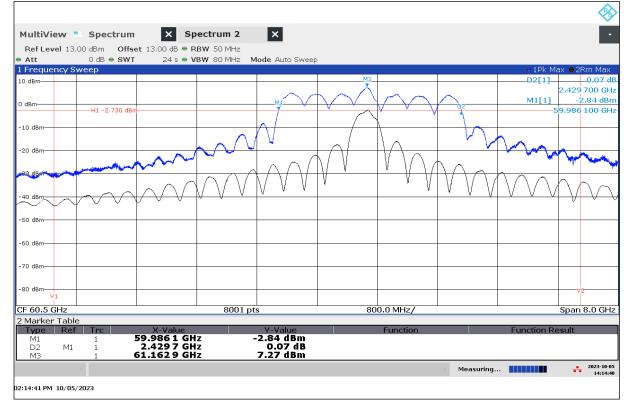

Plot 7: 10dB bandwidth at 20 °C / Vnom

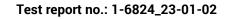




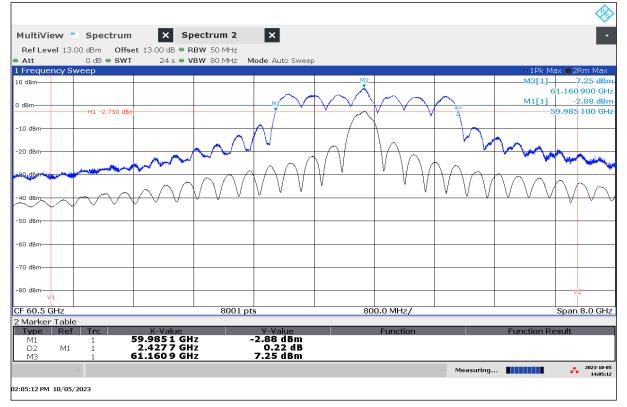
Plot 8: 10dB bandwidth at 20 °C / Vmin

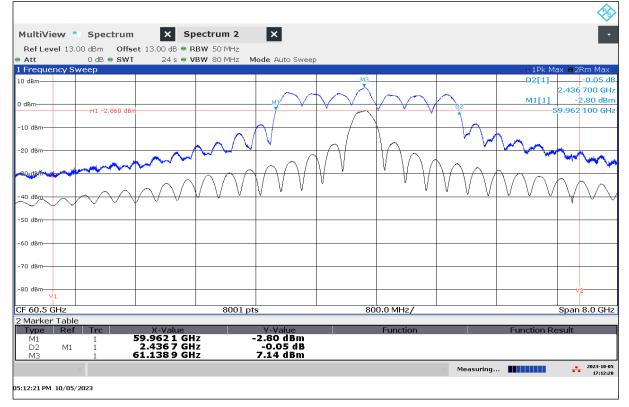

Plot 9: 10dB bandwidth at 20 °C / Vmax





Plot 10: 10dB bandwidth at 30 °C / Vnom


Plot 11: 10dB bandwidth at 40 °C / Vnom



Plot 12: 10dB bandwidth at 50 °C / Vnom

Plot 13: 10dB bandwidth at 60 °C / Vnom

14.2 Radiated power (EIRP)

Description:

Measurement of the maximum radiated E.I.R.P. of the wanted signal.

Limits and provisions:

Selection of applicable rule parts: see 13

Applicable limits for radiated power (EIRP)					
Applicable	Rule part	Limit average EIRP	Limit peak EIRP		
	15.255(c)(1)(i)	40 dBm (see note 1)	43 dBm		
	15.255(c)(1)(ii)	(see note 1 & 2.1)	(see note 1 & 2.2)		
	15.255(c)(2)	none	10 dBm		
	15.255(c)(2)(i)	none	20 dBm (indoor) 30 dBm (outdoor)		
	15.255(c)(2)(ii)	none	3 dBm (general) 20 dBm (+ off-time requirement)		
	15.255(c)(2)(iii)(A)	none	14 dBm (+ off-time requirement)		
	15.255(c)(2)(iii)(B)	none	20 dBm (+ off-time requirement)		
	15.255(c)(2)(v)	40 dBm (within 61-61.5 GHz) (see note 1)	43 dBm (within 61.0-61.5 GHz)		
		10 dBm (outside 61-61.5 GHz) (see note 1)	13 dBm (outside 61-61.5 GHz)		
	15.255(c)(3)	13 dBm (+ time domain requirement)	applicable average limit + 20 dB		
		5 dBm (average integrated EIRP within 61.5–64.0 GHz in any 0.3 µs time window)			

Note:

- 1. Measured during the transmit interval
- 2. Calculation:
 - 2.1. The average power of any emission shall not exceed 82 dBm, and shall be reduced by 2 dB for every dB that the antenna gain is less than 51 dBi.
 - 2.2. The peak power of any emission shall not exceed 85 dBm, and shall be reduced by 2 dB for every dB that the antenna gain is less than 51 dBi.

Measurement:

Spectrum analyzer:

Measurement parameter			
Detector:	RMS		
Resolution bandwidth:	50 MHz		
Video bandwidth:	80 MHz		
Trace-Mode:	Clear write		

RF detector:

Measurement parameter				
Detector: Pos-Peak (RF-Detector)				
Video bandwidth: ≥ 10 MHz				

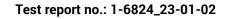
Measurement procedures:

• Fundamental emission using an RF detector: ANSI C63.10-2013 9.11

Measurement results:

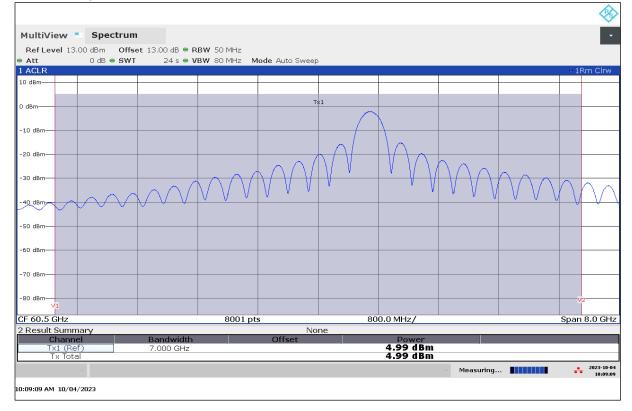
Test condition	Peak E.I.R.P.	Limit peak E.I.R.P	Average E.I.R.P	Limit average EIRP	Averaged integrated E.I.R.P. within 61.5 – 64 GHz within 0.3µs	Limit Averaged integrated E.I.R.P. within 61.5 – 64 GHz within 0.3µs
T _{nom} / V _{nom}	23 dBm	33 dBm	9.8 dBm	13 dBm -8.2 dBm		5 dBm

Verdict: Compliant

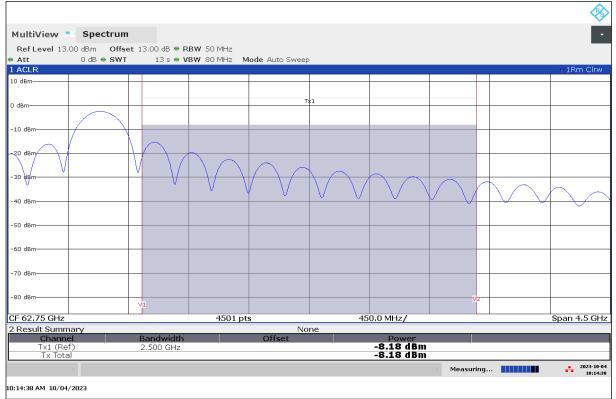


Description of the Peak E.I.R.P. measurement by substitution method:

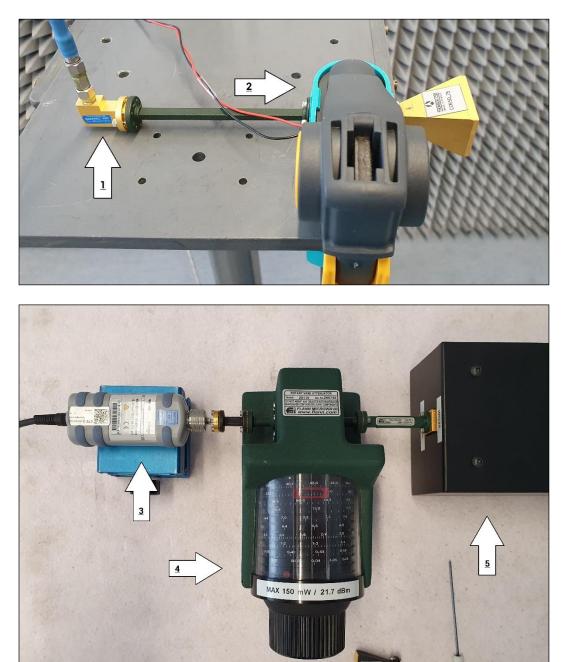
Measurement:	with Lens	Note:
Readout average (mean) value of oscilloscope at 1 m with EUT	80 mV	
EIRP of reference source at 1 m	40.5 dBm	Multiplier: ~20 dB; Horn 20.4 dBi Readout value of power sensor adjusted by far field attenuation
fix attenuation added	-10 dB	
rotary attenuator setting to reach peak voltage value of EUT with detector	-7.5 dB	adjusted to oscilloscope readout value of EUT
Peak EIRP of EUT	23.0 dBm	
Average EIRP of EUT within 0.3µs	9.8 dBm	4.8 % duty cycle within 0.3µs


Calculation of Averaged integrated EIRP within 61.5 – 64 GHz and within 0.3µs:

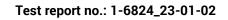
Measurement:	with Lens	Note:
Channel power full band	4.99 dBm	
Channel power 61.5 – 64 GHz	-8.18 dBm	
Difference	13.2 dBm	
Average EIRP of EUT within 0.3µs	9.8 dBm	from detector measurement
Average EIRP of EUT within 0.3µs	-3.4 dBm	Limit: 5 dBm
and within 61.5 – 64 GHz		

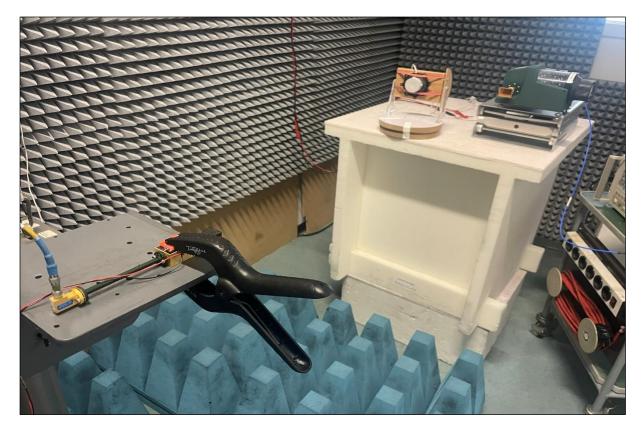


Plot 14: Channel power within 57 to 64 GHz with lens



Plot 15: Channel power within 61.5 to 64 GHz with lens




Setup of the substitution:

- 1) RF Detector
- 2) Low Noise Amplifier Waveguide & Std. Gain Horn Antenna 50-75 GHz
- 3) Power Meter Sensor
- 4) Rotary Attenuator
- 5) SG Extension Module 50 75 GHz (connected to Synthesized Sweeper 10 MHz 40 GHz)

14.3 Time domain requirements: Continous transmitter off-times & transmit duty cycle

Description:

Measurement of the time domain parameter.

Limits and provisions:

Selection of applicable rule parts: see 13

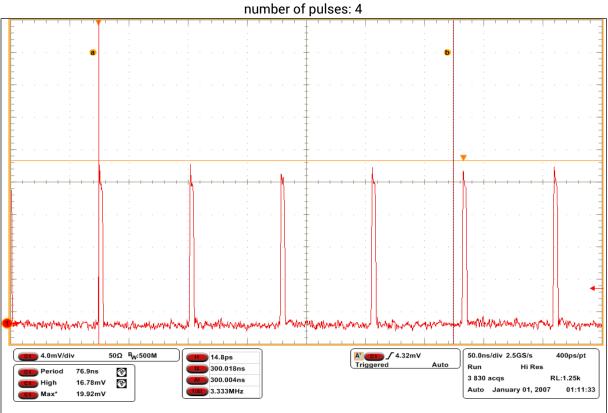
	Applicable time domain requirements				
Applicable	Rule part	Time domain requirement			
	15.255(b)(3)	sum of continuous transmitter off-times of at least two milliseconds shall equal at least 16.5 milliseconds within any contiguous interval of 33 milliseconds			
		Peak EIRP ≤ 3 dBm: none			
15.2	15.255(c)(2)(i)	Peak EIRP ≤ 20 dBm: sum of continuous transmitter off-times of at least two milliseconds equals at least 16.5 milliseconds within any contiguous interval of 33 milliseconds			
	15.255(c)(2)(iii)(A)	sum of continuous transmitter off-times of at least two milliseconds shall equal at least 25.5 milliseconds within any contiguous interval of 33 milliseconds			
	15.255(c)(2)(iii)(B)	sum of continuous transmitter off-times of at least two milliseconds shall equal at least 16.5 milliseconds within any contiguous interval of 33 milliseconds			
\square	15.255(c)(3)	maximum pulse duration of 6 ns; transmit duty cycle shall not exceed 10% during any 0.3 µs time window			
		none			

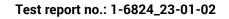
Note:

 Continous transmitter off-times: Off-times are only taken into account if they are larger than the specified minimum value (e.g. 2 ms). Off-times smaller than the specified minimum value are not considered when checking the specified limit (e.g. "at least 25.5 ms within any contiguous interval of 33 ms").

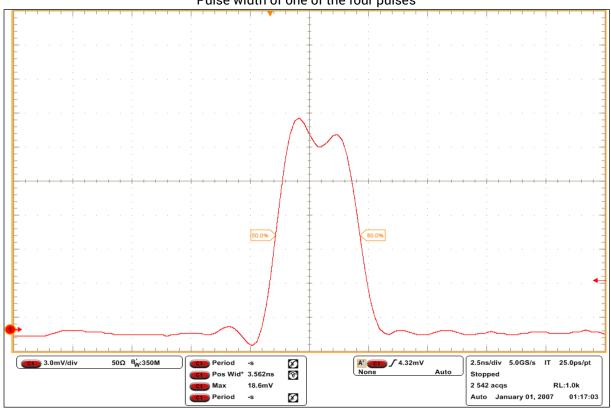
Measurement:

Measurement parameter				
Detector: Pos-Peak (RF-Detector)				
Video bandwidth: Video bandwidth:				

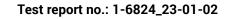



Measurement results:

	EUT	Mode	Test condition	Maximum nulse duration			
	-/-	-/-	T _{nom} / V _{nom}	Measured value	Limit	Measured value	Limit
				3.6 ns	6 ns	4.8 %	10 %

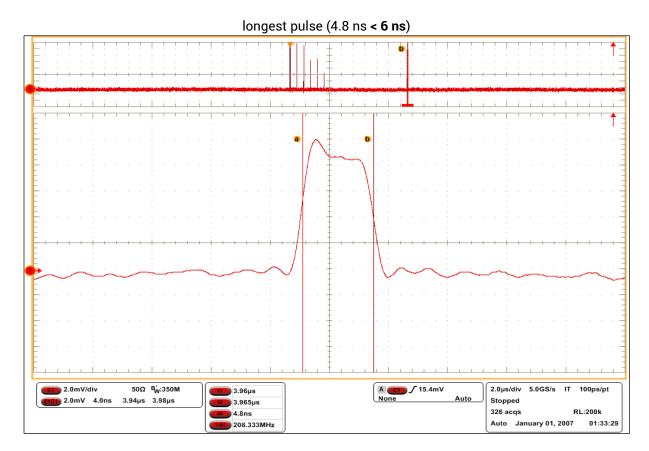

Verdict: Compliant

Determination of maximum number of pulses within 0.3µs:



Pulse width of one of the four pulses

Result:


pulse duration: 3.6 ns (limit: < 6 ns)

duty factor within 300 ns(0.3 µs): 4x 3.6 ns/300 ns = 4.8% (limit: 10%)

Determination of longest pulse duration:

Note:

longest pulse duration: 4.8 ns (limit: < 6 ns)

duty factor within 300 ns(0.3 µs): 4.8 ns/300 ns = 1.6% (limit: 10%)

14.4 Spurious emissions radiated

Description:

Measurement of the radiated spurious emissions.

Limits and provisions:

Selection of applicable rule parts: see 13

	47CFR Part 15.209(a)			
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 - 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		
30 - 88	100	3		
88 - 216	150	3		
216 - 960	200	3		
Above 960	500	3		
	47 CFR 15.255(d)			
Frequency (GHz)	Power density [pW/cm2]	Equivalent isotropically radiated power: EIRP [dBm]		
Below 40	See §15.209			
40 - 200	90 @ distance of 3 m	-10		
The power density of any emiss	ions outside the 57-71 GHz band shall co	onsist solely of spurious emissions.		
The levels of the spurio	us emissions shall not exceed the level o	f the fundamental emission.		
	47 CEB 15 255(i)(2)			

47 CFR 15.255(i)(2)

Compliance measurements of frequency-agile field disturbance sensors/radars shall be performed with any related frequency sweep, step, or hop function activated.

47 CFR 15.33(a)(3)

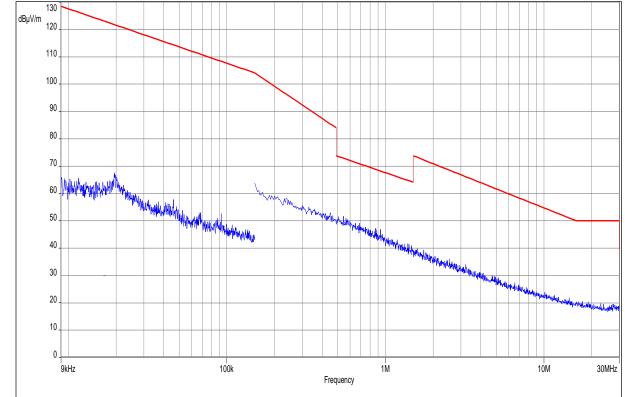
If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

Limit conversion (ANSI C63.10-2013 9.6):

 $EIRP[dBm] = 10 \times log(4 \times \pi \times d^2 \times PD[W/m^2])$

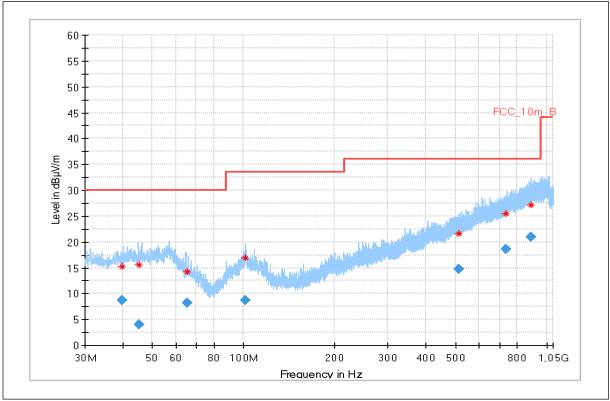
- Power density at the distance specified by the limit: PD [W/m²]
- Equivalent isotropically radiated power: EIRP [dBm]
- Distance at which the power density limit is specified: d [m]

According to this formula, an emission limit of PD = 90 pW/cm² at a distance of d = 3 m corresponds to an equivalent isotropically radiated power of EIRP = -10 dBm.

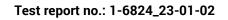

Measurement:

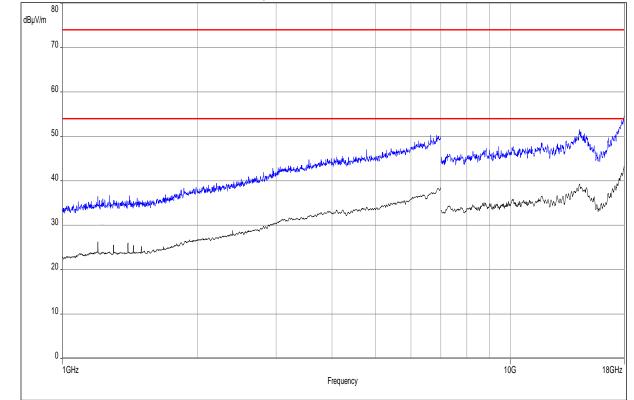
Measurement parameter					
Detector:	Quasi Peak / Pos-Peak / RMS				
Resolution bandwidth:	F < 1 GHz: 100 kHz				
Resolution bandwidth.	F > 1 GHz: 1 MHz				
Video bandwidth:	F < 1 GHz: 300 kHz				
	F > 1 GHz: 3 MHz				
Trace-Mode:	Max Hold				

Measurement results:


Frequency [GHz]	Detector	Bandwidth [MHz] Level		Limit	Margin [dB]			
-/-	-//-		-/-	-/-	-/-			
Please	Please refer to the following plots for more information on the level of spurious emissions							

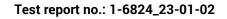
Verdict: Compliant




Plot 16: 9 kHz - 30 MHz, magnetic loop antenna

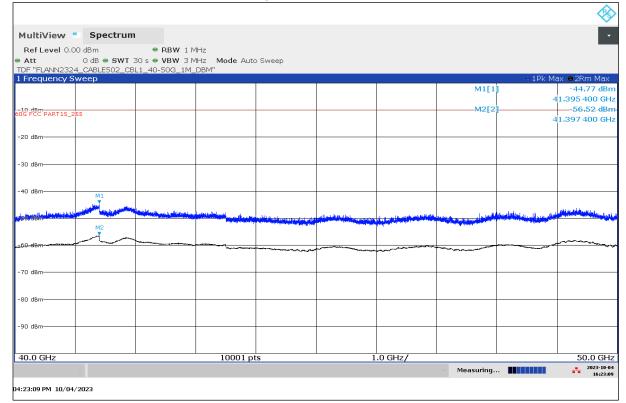
Plot 17: 30 MHz - 1GHz, horizontal / vertical polarization

cetecom advanced

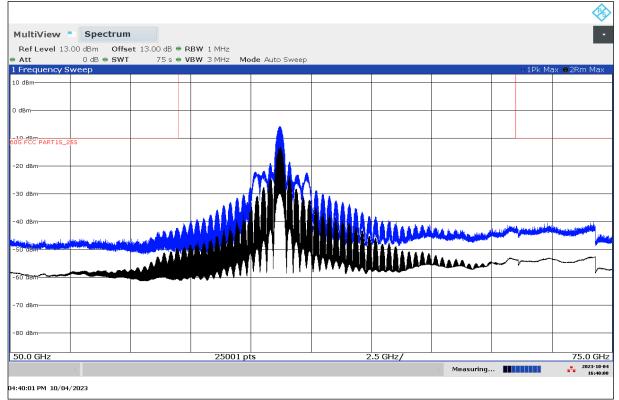


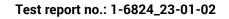
Plot 18: 1GHz – 18 GHz, horizontal / vertical polarization

Plot 19: 18 GHz - 40 GHz, horizontal / vertical polarization


Ref Level 100	- 00 dBuV	RBW	1 MHz					_
Att	0 dB = SWT 6			Auto Sweep				
DF "LHAF180_C	ABLE502_CBL1_18-							
Frequency Sv	veep			1				●2Av MaxLir
							M1[1]	
								9.893 500 G 31.09 dB
0 dBµV								9.875 500 G
							-	9.875 500 G
о dвµv								
-								
	—H1 74.000 dBµV—							
0 dBμV								
0 dBµV								
		——H2 54.000	dBµV					
0 dBµV								
ю двµV							والمتحالي والمستحد والم	Construction of the second
					المراجع المراجع المراجع المراجع	and the second second second	Contraction of the Contraction of the Contraction	
		A STREET, STRE	أفرقا والماسية فأطباعها وار	and the second secon		ľ.		
0.dBuV	Statistics of the second second second		A DESCRIPTION OF THE OWNER OF THE					
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mannen	 	
0 dBµV				mannon	-			
······································		www.www.www.						
0 dBμV								
18.0 GHz			22001 pt	ts	2	.2 GHz/		40.0 Gł

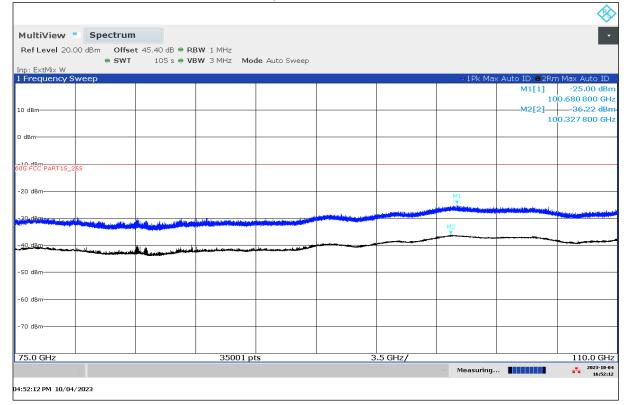
cetecom advanced



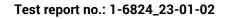

# Plot 20: 40 GHz – 50 GHz, horizontal / vertical polarization




# Plot 21: 50 GHz – 75 GHz, horizontal / vertical polarization

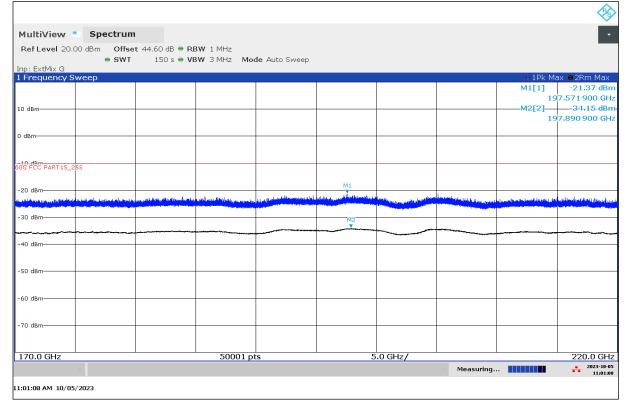







# Plot 22: 75 GHz – 110 GHz, horizontal / vertical polarization




# Plot 23: 110 GHz - 170 GHz, horizontal / vertical polarization

MultiView = Sp								
Ref Level 20.00 dBm								
np: ExtMix D	• SWT 180 s	● VBW 3 MHz Mo	de Auto Sweep					
Frequency Sweep						●1Pk Ma>	< Auto ID ⊜2Rr	n Max Auto I
							M1[1]	-27.90 d
								5.498 600 6
0 dBm								-39,29 d
							16	5.271 600 6
) dBm								
ubm								
DG FCC PART 15_255								
541 CC 1 AK1 15_255								
20 dBm								
20 dBm								
								M1
30 dBm-				and the second second second second		(alternative)	A CONTRACTOR OF THE OWNER OF THE	a design of the second second
			and the second sec					
40 dBm	Indiated a second and the first second second	a della constructione de la constructione de la constructione de la constructione de la construction de la cons						M2
40 UBIII								
-50 dBm	The second designment of the second designment							
60 dBm								
ou ubiii								
70 dBm								
110.0 GHz		60001 p	ts	6	5.0 GHz/			170.0 G
						- Measuring		2023-10





# Plot 24: 170 GHz – 220 GHz, horizontal / vertical polarization





# 15 Glossary

AVG	Average					
C AVG	Average					
_	Compliant					
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz					
CAC	Channel availability check					
CW	Clean wave					
DC	Duty cycle					
DFS	Dynamic frequency selection					
DSSS	Dynamic sequence spread spectrum					
DUT	Device under test					
EN	European Standard					
ETSI	European Telecommunications Standards Institute					
EMC	Electromagnetic Compatibility					
EUT	Equipment under test					
FCC	Federal Communications Commission					
FCC ID	Company Identifier at FCC					
FHSS	Frequency hopping spread spectrum					
FVIN	Firmware version identification number					
GNSS	Global Navigation Satellite System					
GUE	GNSS User Equipment					
HMN	Host marketing name					
HVIN	Hardware version identification number					
HW	Hardware					
IC	Industry Canada					
Inv. No.	Inventory number					
MC	Modulated carrier					
NA	Not applicable					
NC	Not compliant					
NOP	Non occupancy period					
NP	Not performed					
OBW	Occupied bandwidth					
00	Operating channel					
OCW	Operating channel bandwidth					
OFDM	Orthogonal frequency division multiplexing					
OOB	Out of band					
OP	Occupancy period					
PER	Packet error rate					
PMN	Product marketing name					
PP	Positive peak					
QP	Quasi peak					
RLAN	Radio local area network					
S/N or SN	Serial number					
SW	Software					
UUT	Unit under test					
WLAN	Wireless local area network					



# 16 Document history

Version	Applied changes	Date of release
-/-	Initial release	2023-10-25