

# **Carnegie Technologies**

LoRa Sensor 3 Button (Model LV-PSH-173)

FCC 15.247:2019 902 - 928 MHz Transceiver

Report # CRNE0006.6





This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government. This Report shall not be reproduced, except in full without written approval of the laboratory.





### Last Date of Test: February 27, 2019 Carnegie Technologies Model: LoRa Sensor 3 Button (Model LV-PSH-173)

# **Radio Equipment Testing**

Standards

| Specification   | Method           |  |  |
|-----------------|------------------|--|--|
| FCC 15.247:2019 | ANSI C63.10:2013 |  |  |

Results

| Method<br>Clause | Test Description                    | Applied | Results | Comments                                |
|------------------|-------------------------------------|---------|---------|-----------------------------------------|
| 6.2              | Powerline Conducted Emissions       | No      | N/A     | Not required for a battery powered EUT. |
| 6.5, 6.6         | Spurious Radiated Emissions         | Yes     | Pass    |                                         |
| 7.5              | Duty Cycle                          | Yes     | Pass    |                                         |
| 7.8.2            | Carrier Frequency Separation        | Yes     | Pass    |                                         |
| 7.8.3            | Number of Hopping Frequencies       | Yes     | Pass    |                                         |
| 7.8.4            | Dwell Time                          | Yes     | Pass    |                                         |
| 7.8.5            | Output Power                        | Yes     | Pass    |                                         |
| 7.8.5            | Equivalent Isotropic Radiated Power | Yes     | Pass    |                                         |
| 7.8.6            | Band Edge Compliance                | Yes     | Pass    |                                         |
| 7.8.6            | Band Edge Compliance - Hopping Mode | Yes     | Pass    |                                         |
| 7.8.7            | Occupied Bandwidth                  | Yes     | Pass    |                                         |
| 7.8.8            | Spurious Conducted Emissions        | Yes     | Pass    |                                         |
| 11.10.2          | Power Spectral Density              | Yes     | Pass    |                                         |

### **Deviations From Test Standards**

None

**Approved By:** 

Jeremiah Darden, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

# **REVISION HISTORY**



| Revision<br>Number | Description | Date<br>(yyyy-mm-dd) | Page Number |
|--------------------|-------------|----------------------|-------------|
| 00                 | None        |                      |             |

# ACCREDITATIONS AND AUTHORIZATIONS



### **United States**

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

### Canada

**ISED** - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

### European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

### Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

### Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

### Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

### Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

**NCC** - Recognized by NCC as a CAB for the acceptance of test data.

### Singapore

**IDA** – Recognized by IDA as a CAB for the acceptance of test data.

### Israel

**MOC** – Recognized by MOC as a CAB for the acceptance of test data.

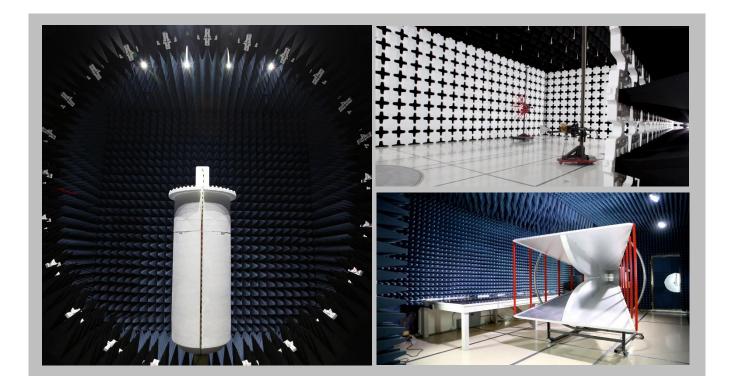
### Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

### Vietnam

**MIC** – Recognized by MIC as a CAB for the acceptance of test data.

### SCOPE


For details on the Scopes of our Accreditations, please visit: https://www.nwemc.com/emc-testing-accreditations

# FACILITIES





| California<br>Labs OC01-17<br>41 Tesla<br>Irvine, CA 92618<br>(949) 861-8918 | 9349 W Broadway Ave. 4939 Jordan Rd. 6775 NE Evergreen Pkwy #400         |                          | <b>Texas</b><br>Labs TX01-09<br>3801 E Plano Pkwy<br>Plano, TX 75074<br>(469) 304-5255 | Washington<br>Labs NC01-05<br>19201 120 <sup>th</sup> Ave NE<br>Bothell, WA 98011<br>(425)984-6600 |                          |  |  |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------|--|--|
|                                                                              |                                                                          | NV                       | LAP                                                                                    |                                                                                                    |                          |  |  |
| NVLAP Lab Code: 200676-0                                                     | NVLAP Lab Code: 200881-0                                                 | NVLAP Lab Code: 200761-0 | NVLAP Lab Code: 200630-0                                                               | NVLAP Lab Code:201049-0                                                                            | NVLAP Lab Code: 200629-0 |  |  |
|                                                                              | Innovation, Science and Economic Development Canada                      |                          |                                                                                        |                                                                                                    |                          |  |  |
| 2834B-1, 2834B-3                                                             | 2834E-1, 2834E-3                                                         | N/A                      | 2834D-1                                                                                | 2834G-1                                                                                            | 2834F-1                  |  |  |
|                                                                              |                                                                          | BSI                      | MI                                                                                     |                                                                                                    |                          |  |  |
| SL2-IN-E-1154R                                                               | SL2-IN-E-1152R                                                           | N/A                      | SL2-IN-E-1017                                                                          | SL2-IN-E-1158R                                                                                     | SL2-IN-E-1153R           |  |  |
|                                                                              |                                                                          | VC                       | CI                                                                                     |                                                                                                    |                          |  |  |
| A-0029                                                                       | A-0109                                                                   | N/A                      | A-0108                                                                                 | A-0201                                                                                             | A-0110                   |  |  |
|                                                                              | Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA |                          |                                                                                        |                                                                                                    |                          |  |  |
| US0158                                                                       | US0175                                                                   | N/A                      | US0017                                                                                 | US0191                                                                                             | US0157                   |  |  |
|                                                                              |                                                                          |                          |                                                                                        |                                                                                                    |                          |  |  |

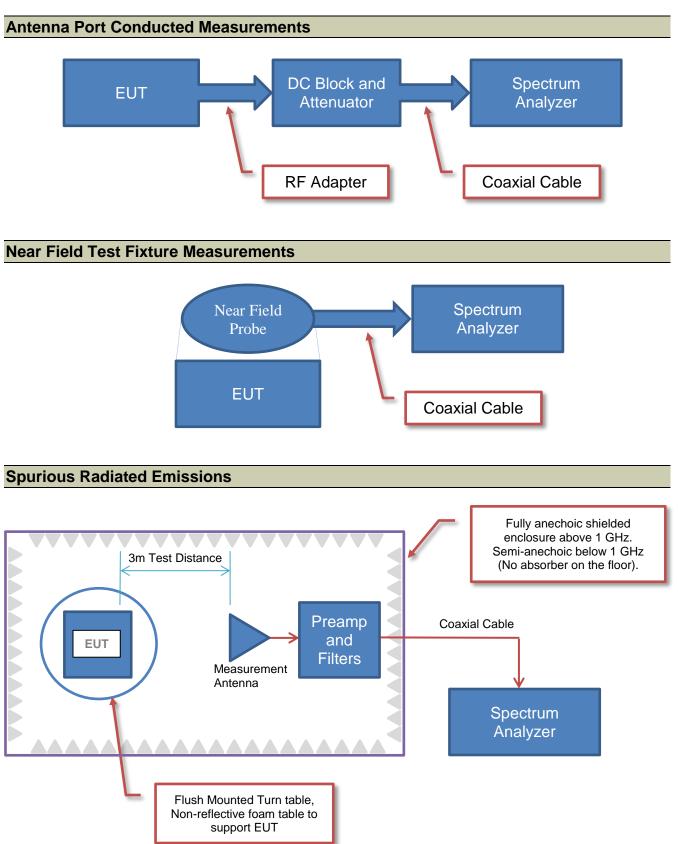


# **MEASUREMENT UNCERTAINTY**



### **Measurement Uncertainty**

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.


A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

| Test                                  | + MU    | - MU     |
|---------------------------------------|---------|----------|
| Frequency Accuracy (Hz)               | 0.0007% | -0.0007% |
| Amplitude Accuracy (dB)               | 1.2 dB  | -1.2 dB  |
| Conducted Power (dB)                  | 0.3 dB  | -0.3 dB  |
| Radiated Power via Substitution (dB)  | 0.7 dB  | -0.7 dB  |
| Temperature (degrees C)               | 0.7°C   | -0.7°C   |
| Humidity (% RH)                       | 2.5% RH | -2.5% RH |
| Voltage (AC)                          | 1.0%    | -1.0%    |
| Voltage (DC)                          | 0.7%    | -0.7%    |
| Field Strength (dB)                   | 5.1 dB  | -5.1 dB  |
| AC Powerline Conducted Emissions (dB) | 2.4 dB  | -2.4 dB  |

# **Test Setup Block Diagrams**





# **POWER SETTINGS**



The EUT was tested using the power settings provided by the manufacturer:

### SETTINGS FOR ALL TESTS IN THIS REPORT

| Modulation Types / Data |      |         |                 |               |  |
|-------------------------|------|---------|-----------------|---------------|--|
| Rates                   | Туре | Channel | Frequency (MHz) | Power Setting |  |
|                         |      | Low     | 903             | 10            |  |
| LoRa                    | DTS  | Mid     | 909             | 10            |  |
|                         |      | High    | 915             | 10            |  |
|                         |      |         |                 |               |  |
| Modulation Types / Data |      |         |                 |               |  |
| Rates                   | Туре | Channel | Frequency (MHz) | Power Setting |  |
| LoRa                    | FHSS | All     | 902.3-914.9     | 10            |  |

# **PRODUCT DESCRIPTION**



### **Client and Equipment Under Test (EUT) Information**

| Company Name:            | Carnegie Technologies                   |
|--------------------------|-----------------------------------------|
| Address:                 | 9737 Great Hills Trail STE 260          |
| City, State, Zip:        | Austin, TX 78759                        |
| Test Requested By:       | Mark Jones                              |
| Model:                   | LoRa Sensor 3 Button (Model LV-PSH-173) |
| First Date of Test:      | February 26, 2019                       |
| Last Date of Test:       | February 27, 2019                       |
| Receipt Date of Samples: | February 25, 2019                       |
| Equipment Design Stage:  | Prototype                               |
| Equipment Condition:     | No Damage                               |
| Purchase Authorization:  | Verified                                |

### Information Provided by the Party Requesting the Test

### Functional Description of the EUT:

The device has 3 buttons (Model LV-PSH-173) that send a LoRa status after being depressed.

### **Testing Objective:**

Seeking to demonstrate compliance under FCC 15.247:2019 for operation in the 902 - 928 MHz Band.





### Configuration CRNE0006-2

| EUT                  |                       |                   |               |
|----------------------|-----------------------|-------------------|---------------|
| Description          | Manufacturer          | Model/Part Number | Serial Number |
| LoRa Sensor 3 Button | Carnegie Technologies | LV-PSH-173        | 1236          |

### Configuration CRNE0006-4

| EUT                                      |                       |                   |               |
|------------------------------------------|-----------------------|-------------------|---------------|
| Description                              | Manufacturer          | Model/Part Number | Serial Number |
| LoRa Sensor 3 Button (Direct<br>Connect) | Carnegie Technologies | LV-PSH-173        | 1237          |

# **MODIFICATIONS**



## **Equipment Modifications**

| Item | Date       | Test           | Modification  | Note                       | Disposition of EUT |
|------|------------|----------------|---------------|----------------------------|--------------------|
|      |            | Spurious       | Tested as     | No EMI suppression         | EUT remained at    |
| 1    | 2019-02-26 | Radiated       | delivered to  | devices were added or      | Element following  |
|      |            | Emissions      | Test Station. | modified during this test. | the test.          |
|      |            | Number of      | Tested as     | No EMI suppression         | EUT remained at    |
| 2    | 2019-02-27 | Hopping        | delivered to  | devices were added or      | Element following  |
|      |            | Frequencies    | Test Station. | modified during this test. | the test.          |
|      |            |                | Tested as     | No EMI suppression         | EUT remained at    |
| 3    | 2019-02-27 | Dwell Time     | delivered to  | devices were added or      | Element following  |
|      |            |                | Test Station. | modified during this test. | the test.          |
|      |            |                | Tested as     | No EMI suppression         | EUT remained at    |
| 4    | 2019-02-27 | Output Power   | delivered to  | devices were added or      | Element following  |
|      |            |                | Test Station. | modified during this test. | the test.          |
|      |            | Equivalent     | Tested as     | No EMI suppression         | EUT remained at    |
| 5    | 2019-02-27 | Isotropic      | delivered to  | devices were added or      | Element following  |
|      |            | Radiated Power | Test Station. | modified during this test. | the test.          |
|      |            | Band Edge      | Tested as     | No EMI suppression         | EUT remained at    |
| 6    | 2019-02-27 | Compliance     | delivered to  | devices were added or      | Element following  |
|      |            | •              | Test Station. | modified during this test. | the test.          |
|      |            | Band Edge      | Tested as     | No EMI suppression         | EUT remained at    |
| 7    | 2019-02-27 | Compliance -   | delivered to  | devices were added or      | Element following  |
|      |            | Hopping Mode   | Test Station. | modified during this test. | the test.          |
|      |            | Occupied       | Tested as     | No EMI suppression         | EUT remained at    |
| 8    | 2019-02-27 | Bandwidth      | delivered to  | devices were added or      | Element following  |
|      |            |                | Test Station. | modified during this test. | the test.          |
| _    |            | Spurious       | Tested as     | No EMI suppression         | EUT remained at    |
| 9    | 2019-02-27 | Conducted      | delivered to  | devices were added or      | Element following  |
|      |            | Emissions      | Test Station. | modified during this test. | the test.          |
|      |            | Power Spectral | Tested as     | No EMI suppression         | EUT remained at    |
| 10   | 2019-02-27 | Density        | delivered to  | devices were added or      | Element following  |
|      |            | -              | Test Station. | modified during this test. | the test.          |
|      |            | Carrier        | Tested as     | No EMI suppression         | Scheduled testing  |
| 11   | 2019-02-27 | Frequency      | delivered to  | devices were added or      | was completed.     |
|      |            | Separation     | Test Station. | modified during this test. | was completed.     |

# SPURIOUS RADIATED EMISSIONS



Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

### MODES OF OPERATION

Continuously Transmitting at Low Channel 903 MHz, Mid Channel 909 MHz, High Channel 915 MHz

### POWER SETTINGS INVESTIGATED

Battery

### CONFIGURATIONS INVESTIGATED

CRNE0006 - 2

### FREQUENCY RANGE INVESTIGATED Start Frequency 30 MHz

Stop Frequency 10 GHz

### SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

### **TEST EQUIPMENT**

| Description                  | Manufacturer           | Model                        | ID  | Last Cal.   | Interval |
|------------------------------|------------------------|------------------------------|-----|-------------|----------|
| Filter - Low Pass            | Micro-Tronics          | LPM50003                     | ННТ | 3-Aug-2018  | 12 mo    |
| Filter - High Pass           | Micro-Tronics          | HPM50108                     | HGD | 10-Oct-2018 | 12 mo    |
| Attenuator                   | Weinschel Corp         | 4H-10                        | AWA | 16-Mar-2018 | 12 mo    |
| Attenuator                   | Weinschel Corp         | 4H-20                        | AWB | 16-Mar-2018 | 12 mo    |
| Filter - Low Pass            | Micro-Tronics          | LPM50004                     | HHV | 3-Aug-2018  | 12 mo    |
| Amplifier - Pre-Amplifier    | Miteq                  | AMF-6F-08001200-30-10P       | PAK | 9-Oct-2018  | 12 mo    |
| Antenna - Standard Gain      | ETS Lindgren           | 3160-07                      | AJF | NCR         | 0 mo     |
| Cable                        | Northwest EMC          | 8-18GHz                      | TXD | 31-May-2018 | 12 mo    |
| Amplifier - Pre-Amplifier    | Miteq                  | AMF-3D-00100800-32-13P       | PAJ | 31-May-2018 | 12 mo    |
| Antenna - Double Ridge       | ETS Lindgren           | 3115                         | AJL | 11-Oct-2018 | 24 mo    |
| Cable                        | Northwest EMC          | 1-8.2 GHz                    | TXC | 31-May-2018 | 12 mo    |
| Pre-Amplifier                | Fairview Microwave     | FMAM63001                    | PAS | 24-Jan-2019 | 12 mo    |
| Cable                        | Northwest EMC          | RE 9kHz - 1GHz               | TXB | 22-Aug-2018 | 12 mo    |
| Antenna - Biconilog          | ETS Lindgren           | 3143B                        | AYF | 10-May-2018 | 24 mo    |
| Analyzer - Spectrum Analyzer | Agilent                | E4446A                       | AAT | 21-May-2018 | 12 mo    |
| Filter - Band Reject         | Wainwright Instruments | WTRCTV5-750-1000-20-70-60EEK | CUL | 25-Feb-2019 | 12 mo    |

### **TEST DESCRIPTION**

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements at the edges of the allowable band may be presented in an alternative method as provided for in the ANSI C63.10 Marker-Delta method. This method involves performing an in-band fundamental measurement followed by a screen capture of the fundamental and out-of-band emission using reduced measurement instrumentation bandwidths. The amplitude delta measured on this screen capture is applied to the fundamental emission value to show the out-of-band emission level as applied to the limit.

Where the radio test software does not provide for a duty cycle at continuous transmit conditions (> 98%) and the RMS (power average) measurements were made across the on and off times of the EUT transmissions, a duty cycle correction is added to the measurements using the formula of 10\*LOG(dc).

# SPURIOUS RADIATED EMISSIONS



|                |           |                      |                                                                                           |              |              |            | EmiR5 2018.09.26        | PSA-ESCI 2018.07.27 |  |  |
|----------------|-----------|----------------------|-------------------------------------------------------------------------------------------|--------------|--------------|------------|-------------------------|---------------------|--|--|
| Wor            | k Order:  | CRNE0006             |                                                                                           | Date:        | 26-Feb-2019  |            |                         |                     |  |  |
|                | Project:  | None                 | Ten                                                                                       | nperature:   | 21.9 °C      | Jo         | rathan Kief             | pen                 |  |  |
|                | Job Site: | TX02                 |                                                                                           | Humidity:    | 31.4% RH     |            |                         |                     |  |  |
| Serial I       | Number:   | 1236                 |                                                                                           | etric Pres.: | 1025 mbar    | Tes        | sted by: Jonathan Kiefe | er                  |  |  |
|                | EUT:      | LoRa Sensor 3 Buttor | n (Model LV                                                                               | -PSH-173)    |              |            |                         |                     |  |  |
|                | guration: |                      |                                                                                           |              |              |            |                         |                     |  |  |
| Cı             | ustomer:  | Carnegie Technologie | es                                                                                        |              |              |            |                         |                     |  |  |
|                |           | Kevin Cotton         |                                                                                           |              |              |            |                         |                     |  |  |
| EUT            | Power:    | Battery              |                                                                                           |              |              |            |                         |                     |  |  |
| Operatin       |           | Continuously Transm  | ntinuously Transmitting at Low Channel 903 MHz, Mid Channel 909 MHz, High Channel 915 MHz |              |              |            |                         |                     |  |  |
| Dev            | viations: | None                 |                                                                                           |              |              |            |                         |                     |  |  |
| Coi            | mments:   | See the table comme  | nts for EUT                                                                               | channel and  | prientation. |            |                         |                     |  |  |
| Test Specifi   | ications  |                      |                                                                                           |              | Test M       | ethod      |                         |                     |  |  |
| FCC 15.247:    |           |                      |                                                                                           |              |              | 63.10:2013 |                         |                     |  |  |
| Run #          | 25        | Test Distance (m)    | 3                                                                                         | Antenna H    | eight(s)     | 1 to 4(m)  | Results                 | Pass                |  |  |
| Null #         | 20        |                      | Ū                                                                                         | Antenna h    | cigit(3)     | 110 4(11)  | nesuits                 | 1 435               |  |  |
|                |           |                      |                                                                                           |              |              |            |                         |                     |  |  |
| 80             |           |                      |                                                                                           |              |              |            |                         |                     |  |  |
|                |           |                      |                                                                                           |              |              |            |                         |                     |  |  |
| 70             |           |                      |                                                                                           |              |              |            |                         |                     |  |  |
| 70             |           |                      |                                                                                           |              |              |            |                         |                     |  |  |
|                |           |                      |                                                                                           |              |              |            |                         |                     |  |  |
| 60             |           |                      |                                                                                           |              |              |            |                         |                     |  |  |
| 00             |           |                      |                                                                                           |              |              |            |                         |                     |  |  |
|                |           |                      |                                                                                           |              |              |            |                         |                     |  |  |
| <b>5</b> 0     |           |                      |                                                                                           |              |              |            |                         |                     |  |  |
| Ę              |           |                      |                                                                                           |              |              |            | ▼ <b>▼ ●</b>            |                     |  |  |
| <b>W/Nn gp</b> |           |                      |                                                                                           |              |              |            |                         |                     |  |  |
| <b>n</b> 40    |           |                      |                                                                                           |              |              |            |                         |                     |  |  |
| ō              |           |                      |                                                                                           |              |              |            |                         |                     |  |  |
| 20             |           |                      |                                                                                           |              |              |            |                         |                     |  |  |
| 30             |           |                      |                                                                                           |              |              |            |                         |                     |  |  |
|                |           |                      |                                                                                           |              |              |            |                         |                     |  |  |
| 20             |           |                      |                                                                                           |              |              |            |                         |                     |  |  |
|                |           |                      |                                                                                           |              |              |            |                         |                     |  |  |
|                |           |                      |                                                                                           |              |              |            |                         |                     |  |  |
| 10 +           |           |                      |                                                                                           |              |              |            |                         |                     |  |  |
|                |           |                      |                                                                                           |              |              |            |                         |                     |  |  |
|                |           |                      |                                                                                           |              |              |            |                         |                     |  |  |
| 0 +            |           |                      |                                                                                           |              |              |            |                         |                     |  |  |
| 10             |           |                      | 100                                                                                       |              |              | 1000       |                         | 10000               |  |  |
|                |           |                      |                                                                                           |              | MHz          |            | ■ PK ◆                  | AV OP               |  |  |

| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Antenna Height<br>(meters) | Azimuth<br>(degrees) | Test Distance<br>(meters) | External<br>Attenuation<br>(dB) | Polarity/<br>Transducer<br>Type | Detector | Distance<br>Adjustment<br>(dB) | Adjusted<br>(dBuV/m) | Spec. Limit<br>(dBuV/m) | Compared to<br>Spec.<br>(dB) | Comments                |
|---------------|---------------------|----------------|----------------------------|----------------------|---------------------------|---------------------------------|---------------------------------|----------|--------------------------------|----------------------|-------------------------|------------------------------|-------------------------|
| 2726.900      | 55.0                | -1.9           | 3.3                        | 267.0                | 3.0                       | 0.0                             | Horz                            | AV       | 0.0                            | 53.1                 | 54.0                    | -0.9                         | Mid Ch, EUT Horizontal  |
| 2709.117      | 53.9                | -1.9           | 3.4                        | 274.9                | 3.0                       | 0.0                             | Horz                            | AV       | 0.0                            | 52.0                 | 54.0                    | -2.0                         | Low Ch, EUT Horizontal  |
| 3612.092      | 48.5                | 3.4            | 3.2                        | 235.0                | 3.0                       | 0.0                             | Horz                            | AV       | 0.0                            | 51.9                 | 54.0                    | -2.1                         | Low Ch, EUT Horizontal  |
| 3636.042      | 48.0                | 3.5            | 3.2                        | 252.0                | 3.0                       | 0.0                             | Horz                            | AV       | 0.0                            | 51.5                 | 54.0                    | -2.5                         | Mid Ch, EUT Horizontal  |
| 2744.975      | 53.4                | -1.9           | 3.3                        | 274.9                | 3.0                       | 0.0                             | Horz                            | AV       | 0.0                            | 51.5                 | 54.0                    | -2.5                         | High Ch, EUT Horizontal |
| 2727.067      | 53.1                | -1.9           | 3.3                        | 228.0                | 3.0                       | 0.0                             | Horz                            | AV       | 0.0                            | 51.2                 | 54.0                    | -2.8                         | Mid Ch, EUT Vertical    |
| 3659.817      | 47.6                | 3.5            | 3.2                        | 87.0                 | 3.0                       | 0.0                             | Horz                            | AV       | 0.0                            | 51.1                 | 54.0                    | -2.9                         | High Ch, EUT Horizontal |
| 3635.850      | 47.1                | 3.5            | 2.8                        | 183.0                | 3.0                       | 0.0                             | Vert                            | AV       | 0.0                            | 50.6                 | 54.0                    | -3.4                         | Mid Ch, EUT Vertical    |
| 3611.892      | 47.0                | 3.4            | 3.1                        | 194.0                | 3.0                       | 0.0                             | Vert                            | AV       | 0.0                            | 50.4                 | 54.0                    | -3.6                         | Low Ch, EUT Vertical    |
| 2727.042      | 50.9                | -1.9           | 3.2                        | 9.0                  | 3.0                       | 0.0                             | Horz                            | AV       | 0.0                            | 49.0                 | 54.0                    | -5.0                         | Mid Ch, EUT On Side     |
| 3659.942      | 45.4                | 3.5            | 2.8                        | 183.9                | 3.0                       | 0.0                             | Vert                            | AV       | 0.0                            | 48.9                 | 54.0                    | -5.1                         | High Ch, EUT Vertical   |
| 2745.075      | 50.6                | -1.9           | 3.2                        | 273.0                | 3.0                       | 0.0                             | Vert                            | AV       | 0.0                            | 48.7                 | 54.0                    | -5.3                         | High Ch, EUT Vertical   |
| 2709.100      | 50.2                | -1.9           | 3.2                        | 276.0                | 3.0                       | 0.0                             | Vert                            | AV       | 0.0                            | 48.3                 | 54.0                    | -5.7                         | Low Ch, EUT Vertical    |
| 2726.900      | 50.0                | -1.9           | 3.3                        | 267.0                | 3.0                       | 0.0                             | Vert                            | AV       | 0.0                            | 48.1                 | 54.0                    | -5.9                         | Mid Ch, EUT Vertical    |
| 2727.150      | 49.6                | -1.9           | 1.0                        | 343.0                | 3.0                       | 0.0                             | Vert                            | AV       | 0.0                            | 47.7                 | 54.0                    | -6.3                         | Mid Ch, EUT Horizontal  |
| 2726.983      | 48.4                | -1.9           | 1.1                        | 357.0                | 3.0                       | 0.0                             | Vert                            | AV       | 0.0                            | 46.5                 | 54.0                    | -7.5                         | Mid Ch, EUT On Side     |
| 4544.842      | 35.7                | 5.7            | 4.0                        | 27.9                 | 3.0                       | 0.0                             | Horz                            | AV       | 0.0                            | 41.4                 | 54.0                    | -12.6                        | Mid Ch, EUT Horizontal  |
| 4545.033      | 34.4                | 5.7            | 4.0                        | 183.9                | 3.0                       | 0.0                             | Vert                            | AV       | 0.0                            | 40.1                 | 54.0                    | -13.9                        | Mid Ch, EUT Vertical    |

| Freq<br>(MHz) | Amplitude<br>(dBuV) | Factor<br>(dB) | Antenna Height<br>(meters) | Azimuth<br>(degrees) | Test Distance<br>(meters) | External<br>Attenuation<br>(dB) | Polarity/<br>Transducer<br>Type | Detector | Distance<br>Adjustment<br>(dB) | Adjusted<br>(dBuV/m) | Spec. Limit<br>(dBuV/m) | Compared to<br>Spec.<br>(dB) | Comments                |
|---------------|---------------------|----------------|----------------------------|----------------------|---------------------------|---------------------------------|---------------------------------|----------|--------------------------------|----------------------|-------------------------|------------------------------|-------------------------|
| 4514.808      | 34.3                | 5.6            | 3.3                        | 218.0                | 3.0                       | 0.0                             | Horz                            | AV       | 0.0                            | 39.9                 | 54.0                    | -14.1                        | Low Ch, EUT Horizontal  |
| 4514.925      | 33.8                | 5.6            | 3.1                        | 184.9                | 3.0                       | 0.0                             | Vert                            | AV       | 0.0                            | 39.4                 | 54.0                    | -14.6                        | Low Ch, EUT Vertical    |
| 4575.183      | 33.1                | 5.8            | 4.0                        | 187.0                | 3.0                       | 0.0                             | Vert                            | AV       | 0.0                            | 38.9                 | 54.0                    | -15.1                        | High Ch, EUT Vertical   |
| 2726.883      | 56.7                | -1.9           | 3.3                        | 267.0                | 3.0                       | 0.0                             | Horz                            | PK       | 0.0                            | 54.8                 | 74.0                    | -19.2                        | Mid Ch, EUT Horizontal  |
| 4575.942      | 28.4                | 5.8            | 1.2                        | 236.0                | 3.0                       | 0.0                             | Horz                            | AV       | 0.0                            | 34.2                 | 54.0                    | -19.8                        | High Ch, EUT Horizontal |
| 3612.042      | 50.4                | 3.4            | 3.2                        | 235.0                | 3.0                       | 0.0                             | Horz                            | PK       | 0.0                            | 53.8                 | 74.0                    | -20.2                        | Low Ch, EUT Horizontal  |
| 3636.142      | 50.2                | 3.5            | 3.2                        | 252.0                | 3.0                       | 0.0                             | Horz                            | PK       | 0.0                            | 53.7                 | 74.0                    | -20.3                        | Mid Ch, EUT Horizontal  |
| 2709.058      | 55.6                | -1.9           | 3.4                        | 274.9                | 3.0                       | 0.0                             | Horz                            | PK       | 0.0                            | 53.7                 | 74.0                    | -20.3                        | Low Ch, EUT Horizontal  |
| 3636.117      | 49.9                | 3.5            | 2.8                        | 183.0                | 3.0                       | 0.0                             | Vert                            | PK       | 0.0                            | 53.4                 | 74.0                    | -20.6                        | Mid Ch, EUT Vertical    |
| 3659.967      | 49.9                | 3.5            | 3.2                        | 87.0                 | 3.0                       | 0.0                             | Horz                            | PK       | 0.0                            | 53.4                 | 74.0                    | -20.6                        | High Ch, EUT Horizontal |
| 2745.083      | 55.1                | -1.9           | 3.3                        | 274.9                | 3.0                       | 0.0                             | Horz                            | PK       | 0.0                            | 53.2                 | 74.0                    | -20.8                        | High Ch, EUT Horizontal |
| 2727.033      | 55.0                | -1.9           | 3.3                        | 228.0                | 3.0                       | 0.0                             | Horz                            | PK       | 0.0                            | 53.1                 | 74.0                    | -20.9                        | Mid Ch, EUT Vertical    |
| 3611.800      | 49.3                | 3.4            | 3.1                        | 194.0                | 3.0                       | 0.0                             | Vert                            | PK       | 0.0                            | 52.7                 | 74.0                    | -21.3                        | Low Ch, EUT Vertical    |
| 3659.967      | 48.3                | 3.5            | 2.8                        | 183.9                | 3.0                       | 0.0                             | Vert                            | PK       | 0.0                            | 51.8                 | 74.0                    | -22.2                        | High Ch, EUT Vertical   |
| 2727.167      | 53.5                | -1.9           | 3.2                        | 9.0                  | 3.0                       | 0.0                             | Horz                            | PK       | 0.0                            | 51.6                 | 74.0                    | -22.4                        | Mid Ch, EUT On Side     |
| 2709.050      | 53.2                | -1.9           | 3.2                        | 276.0                | 3.0                       | 0.0                             | Vert                            | PK       | 0.0                            | 51.3                 | 74.0                    | -22.7                        | Low Ch, EUT Vertical    |
| 2744.800      | 52.8                | -1.9           | 3.2                        | 273.0                | 3.0                       | 0.0                             | Vert                            | PK       | 0.0                            | 50.9                 | 74.0                    | -23.1                        | High Ch, EUT Vertical   |
| 2726.850      | 52.5                | -1.9           | 3.3                        | 267.0                | 3.0                       | 0.0                             | Vert                            | PK       | 0.0                            | 50.6                 | 74.0                    | -23.4                        | Mid Ch, EUT Vertical    |
| 2727.125      | 52.4                | -1.9           | 1.0                        | 343.0                | 3.0                       | 0.0                             | Vert                            | PK       | 0.0                            | 50.5                 | 74.0                    | -23.5                        | Mid Ch, EUT Horizontal  |
| 2726.983      | 51.6                | -1.9           | 1.1                        | 357.0                | 3.0                       | 0.0                             | Vert                            | PK       | 0.0                            | 49.7                 | 74.0                    | -24.3                        | Mid Ch, EUT On Side     |
| 4544.975      | 42.0                | 5.7            | 4.0                        | 27.9                 | 3.0                       | 0.0                             | Horz                            | PK       | 0.0                            | 47.7                 | 74.0                    | -26.3                        | Mid Ch, EUT Horizontal  |
| 4545.358      | 41.3                | 5.7            | 4.0                        | 183.9                | 3.0                       | 0.0                             | Vert                            | PK       | 0.0                            | 47.0                 | 74.0                    | -27.0                        | Mid Ch, EUT Vertical    |
| 4515.058      | 41.3                | 5.6            | 3.1                        | 184.9                | 3.0                       | 0.0                             | Vert                            | PK       | 0.0                            | 46.9                 | 74.0                    | -27.1                        | Low Ch, EUT Vertical    |
| 4515.575      | 41.1                | 5.6            | 3.3                        | 218.0                | 3.0                       | 0.0                             | Horz                            | PK       | 0.0                            | 46.7                 | 74.0                    | -27.3                        | Low Ch, EUT Horizontal  |
| 4574.508      | 40.7                | 5.8            | 4.0                        | 187.0                | 3.0                       | 0.0                             | Vert                            | PK       | 0.0                            | 46.5                 | 74.0                    | -27.5                        | High Ch, EUT Vertical   |
| 4574.025      | 39.4                | 5.8            | 1.2                        | 236.0                | 3.0                       | 0.0                             | Horz                            | PK       | 0.0                            | 45.2                 | 74.0                    | -28.8                        | High Ch, EUT Horizontal |

# **DUTY CYCLE**



### **TEST DESCRIPTION**

The Duty Cycle (x) were measured for each of the EUT operating modes. The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

The EUT operates at 100% Duty Cycle.

# **CARRIER FREQUENCY SEPARATION**



XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### TEST EQUIPMENT

| Description                  | Manufacturer       | Model                 | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------------|-----|-----------|-----------|
| Attenuator                   | Fairview Microwave | SA4018-20             | TYW | 29-Mar-18 | 29-Mar-19 |
| Block - DC                   | Fairview Microwave | SD3379                | AMM | 29-Mar-18 | 29-Mar-19 |
| Cable                        | Micro-Coax         | UFD150A-1-0720-200200 | TXG | 10-Oct-18 | 10-Oct-19 |
| Generator - Signal           | Keysight           | N5171B-506            | TEW | 2-May-18  | 2-May-21  |
| Analyzer - Spectrum Analyzer | Keysight           | N9010A                | AFM | 19-Mar-18 | 19-Mar-19 |

### **TEST DESCRIPTION**

The channel carrier frequencies in the 902-928 MHz band must be separated by 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. The EUT was operated in pseudorandom hopping mode. The spectrum was scanned across two adjacent peaks. The separation between the peaks of these channels was measured.

# **CARRIER FREQUENCY SEPARATION**



|                     |                              |                 |          |                  |  |                   | TbtTx 2018.09.13 | XMit 2017.12.1 |
|---------------------|------------------------------|-----------------|----------|------------------|--|-------------------|------------------|----------------|
| EUT:                | LoRa Sensor 3 Button (Mod    | lel LV-PSH-173) |          |                  |  | Work Order:       | CRNE0006         |                |
| Serial Number:      | 1237                         |                 |          |                  |  | Date:             | 27-Feb-19        |                |
| Customer:           | Carnegie Technologies        |                 |          |                  |  | Temperature:      | 22.1 °C          |                |
| Attendees:          | Kevin Cotton                 |                 |          |                  |  | Humidity:         | 46.5% RH         |                |
| Project:            | None                         |                 |          |                  |  | Barometric Pres.: | 1020 mbar        |                |
|                     | Jonathan Kiefer              |                 | Power:   | Battery          |  | Job Site:         | TX09             |                |
| TEST SPECIFICATI    | IONS                         |                 |          | Test Method      |  |                   |                  |                |
| FCC 15.247:2019     |                              |                 |          | ANSI C63.10:2013 |  |                   |                  |                |
|                     |                              |                 |          |                  |  |                   |                  |                |
| COMMENTS            |                              |                 |          |                  |  |                   |                  |                |
| Ref Offset 20.44 dB | 3 (20 dB Attenuator + DC Blo | ck + Cable).    |          |                  |  |                   |                  |                |
| DEVIATIONS FROM     | I TEST STANDARD              |                 |          |                  |  |                   |                  |                |
| None                |                              |                 |          |                  |  |                   |                  |                |
| Configuration #     | 4                            | Signature       | Jonathan | Kiefer           |  |                   |                  |                |
|                     |                              |                 |          |                  |  |                   | Limit            |                |
|                     |                              |                 |          |                  |  | Value             | (≥)              | Results        |
| Hopping Mode (All C | Channels)                    |                 |          |                  |  |                   |                  |                |
|                     | Mid Channel, 908.9 MHz       |                 |          |                  |  | 200.27 kHz        | 160.197 kHz      | Pass           |

Report No. CRNE0006.6

# **CARRIER FREQUENCY SEPARATION**





# NUMBER OF HOPPING FREQUENCIES



XMit 2017.12.13

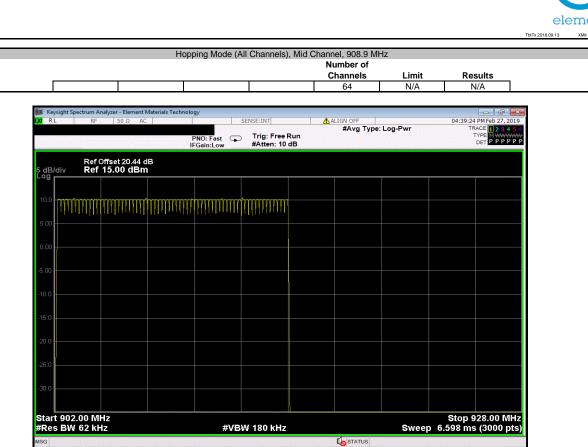
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### TEST EQUIPMENT

| Description                  | Manufacturer       | Model                 | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------------|-----|-----------|-----------|
| Attenuator                   | Fairview Microwave | SA4018-20             | TYW | 29-Mar-18 | 29-Mar-19 |
| Block - DC                   | Fairview Microwave | SD3379                | AMM | 29-Mar-18 | 29-Mar-19 |
| Cable                        | Micro-Coax         | UFD150A-1-0720-200200 | TXG | 10-Oct-18 | 10-Oct-19 |
| Generator - Signal           | Keysight           | N5171B-506            | TEW | 2-May-18  | 2-May-21  |
| Analyzer - Spectrum Analyzer | Keysight           | N9010A                | AFM | 19-Mar-18 | 19-Mar-19 |

### TEST DESCRIPTION

The number of hopping frequencies was measured across the authorized band. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The hopping function of the EUT was enabled.


# NUMBER OF HOPPING FREQUENCIES



|                     |                            |                  |                  |                       | TbtTx 2018.09.13 | XMit 2017.12.13 |
|---------------------|----------------------------|------------------|------------------|-----------------------|------------------|-----------------|
| EUT:                | LoRa Sensor 3 Button (M    | odel LV-PSH-173) |                  | Work Order:           | CRNE0006         |                 |
| Serial Number:      | 1237                       |                  |                  | Date:                 | 27-Feb-19        |                 |
| Customer:           | Carnegie Technologies      |                  |                  | Temperature:          | 22.2 °C          |                 |
| Attendees:          | Kevin Cotton               |                  |                  | Humidity              | 46.3% RH         |                 |
| Project:            | None                       |                  |                  | Barometric Pres.:     | 1020 mbar        |                 |
| Tested by:          | Jonathan Kiefer            |                  | Power: Battery   | Job Site:             | TX09             |                 |
| TEST SPECIFICAT     | IONS                       |                  | Test Method      |                       |                  |                 |
| FCC 15.247:2019     |                            |                  | ANSI C63.10:2013 |                       |                  |                 |
|                     |                            |                  |                  |                       |                  |                 |
| COMMENTS            |                            |                  |                  |                       |                  |                 |
| Ref Offset 20.44 dE | 3 (20 dB Attenuator + DC E | Block + Cable).  |                  |                       |                  |                 |
| DEVIATIONS FROM     | M TEST STANDARD            |                  |                  |                       |                  |                 |
| None                |                            |                  |                  |                       |                  |                 |
| Configuration #     | 4                          | Signature        | Jonathan Kiefer  |                       |                  |                 |
|                     |                            |                  |                  | Number of<br>Channels | Limit            | Results         |
| Hopping Mode (All C | Channels)                  |                  |                  |                       |                  |                 |
|                     | Mid Channel, 908.9 MHz     |                  |                  | 64                    | N/A              | N/A             |

Report No. CRNE0006.6

## NUMBER OF HOPPING FREQUENCIES









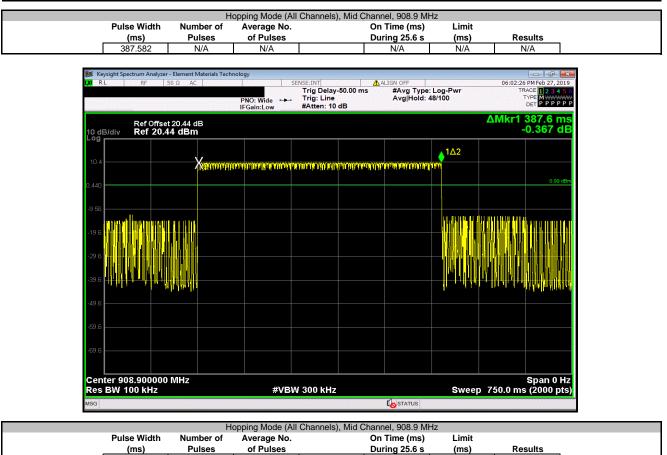
XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### TEST EQUIPMENT

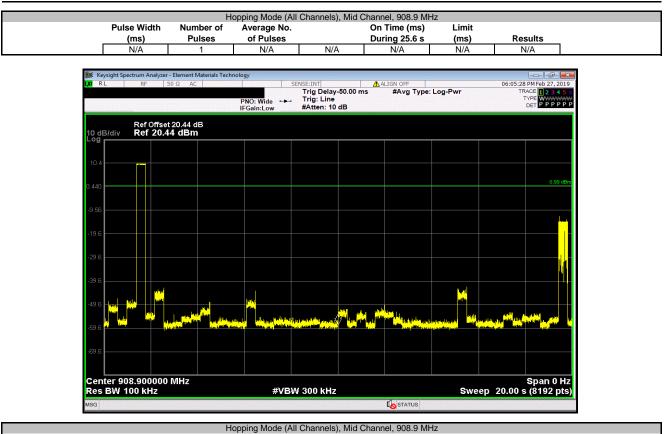
| Description                  | Manufacturer       | Model                 | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------------|-----|-----------|-----------|
| Attenuator                   | Fairview Microwave | SA4018-20             | TYW | 29-Mar-18 | 29-Mar-19 |
| Block - DC                   | Fairview Microwave | SD3379                | AMM | 29-Mar-18 | 29-Mar-19 |
| Cable                        | Micro-Coax         | UFD150A-1-0720-200200 | TXG | 10-Oct-18 | 10-Oct-19 |
| Generator - Signal           | Keysight           | N5171B-506            | TEW | 2-May-18  | 2-May-21  |
| Analyzer - Spectrum Analyzer | Keysight           | N9010A                | AFM | 19-Mar-18 | 19-Mar-19 |

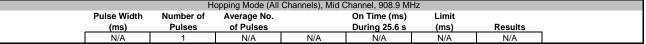
#### TEST DESCRIPTION

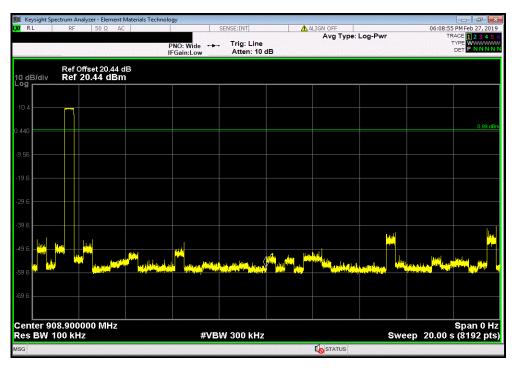

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The average dwell time per hopping channel was measured at one hopping channel in the middle of the authorized band. The hopping function of the EUT was enabled.

The dwell time limit is based on the Number of Hopping Channels \* 400 mS. For this device it would be 64 Channels \* 400mS = 25.6 Sec.




|                         | LoRa Sensor 3 Button (Me                                                                     | odel LV-PSH-173) |                                                     |                               |                                       | Work Order:                               |                                  |                          |
|-------------------------|----------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------|-------------------------------|---------------------------------------|-------------------------------------------|----------------------------------|--------------------------|
| Serial Number           |                                                                                              |                  |                                                     |                               |                                       |                                           | 27-Feb-19                        |                          |
|                         | : Carnegie Technologies                                                                      |                  |                                                     |                               |                                       | Temperature:                              |                                  |                          |
|                         | : Kevin Cotton                                                                               |                  |                                                     |                               |                                       | Humidity:                                 |                                  |                          |
| Project                 |                                                                                              |                  |                                                     |                               |                                       | Barometric Pres.:                         |                                  |                          |
|                         | Jonathan Kiefer                                                                              |                  |                                                     | Battery                       |                                       | Job Site:                                 | TX09                             |                          |
| TEST SPECIFICAT         | TIONS                                                                                        |                  |                                                     | Test Method                   |                                       |                                           |                                  |                          |
| FCC 15.247:2019         |                                                                                              |                  |                                                     | ANSI C63.10:2013              |                                       |                                           |                                  |                          |
|                         |                                                                                              |                  |                                                     |                               |                                       |                                           |                                  |                          |
| COMMENTS                |                                                                                              |                  |                                                     |                               |                                       |                                           |                                  |                          |
| DEVIATIONS FRO          |                                                                                              |                  |                                                     |                               |                                       |                                           |                                  |                          |
| None<br>Configuration # | 4                                                                                            |                  | Jonathan                                            | Niefer                        |                                       |                                           |                                  |                          |
| None<br>Configuration # | 4                                                                                            | Signature        | Jonathan<br>Pulse Width<br>(ms)                     | Niefer<br>Number of<br>Pulses | Average No.<br>of Pulses              | On Time (ms)<br>During 25.6 s             | Limit<br>(ms)                    | Results                  |
| None                    | 4<br>Channels)                                                                               | Signature        | Pulse Width<br>(ms)                                 | Number of<br>Pulses           | of Pulses                             | During 25.6 s                             | (ms)                             |                          |
| None<br>Configuration # | 4<br>Channels)<br>Mid Channel, 908.9 MHz                                                     | Signature        | Pulse Width<br>(ms)<br>387.582                      | Number of                     | of Pulses                             | During 25.6 s                             | (ms)<br>N/A                      | N/A                      |
| lone<br>Configuration # | 4<br>Channels)<br>Mid Channel, 908.9 MHz<br>Mid Channel, 908.9 MHz                           | Signature        | Pulse Width<br>(ms)<br>387.582<br>N/A               | Number of<br>Pulses           | N/A<br>N/A                            | During 25.6 s<br>N/A<br>N/A               | (ms)<br>N/A<br>N/A               | N/A<br>N/A               |
| None<br>Configuration # | 4<br>Channels)<br>Mid Channel, 908.9 MHz<br>Mid Channel, 908.9 MHz<br>Mid Channel, 908.9 MHz | Signature        | Pulse Width<br>(ms)<br>387.582<br>N/A<br>N/A        | Number of<br>Pulses           | of Pulses<br>N/A<br>N/A<br>N/A        | During 25.6 s<br>N/A<br>N/A<br>N/A        | (ms)<br>N/A<br>N/A<br>N/A        | N/A<br>N/A<br>N/A        |
| lone<br>Configuration # | 4<br>Channels)<br>Mid Channel, 908.9 MHz<br>Mid Channel, 908.9 MHz<br>Mid Channel, 908.9 MHz | Signature        | Pulse Width<br>(ms)<br>387.582<br>N/A<br>N/A<br>N/A | Number of<br>Pulses           | of Pulses<br>N/A<br>N/A<br>N/A<br>N/A | During 25.6 s<br>N/A<br>N/A<br>N/A<br>N/A | (ms)<br>N/A<br>N/A<br>N/A<br>N/A | N/A<br>N/A<br>N/A<br>N/A |
| lone<br>Configuration # | 4<br>Channels)<br>Mid Channel, 908.9 MHz<br>Mid Channel, 908.9 MHz<br>Mid Channel, 908.9 MHz | Signature        | Pulse Width<br>(ms)<br>387.582<br>N/A<br>N/A        | Number of<br>Pulses           | of Pulses<br>N/A<br>N/A<br>N/A        | During 25.6 s<br>N/A<br>N/A<br>N/A        | (ms)<br>N/A<br>N/A<br>N/A        | N/A<br>N/A<br>N/A        |
















|                       | н                        | opping Mode (All                                                                                                | Channels) M           | lid Channel  | 908 9 MHz                       |                     |                                                                                                                |          |
|-----------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------|--------------|---------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------|----------|
| Pulse Width           | Number of                | Average No.                                                                                                     | C                     |              | ne (ms)                         | Limit               |                                                                                                                |          |
| (ms)                  | Pulses                   | of Pulses                                                                                                       |                       |              | 25.6 s                          | (ms)                | Results                                                                                                        |          |
| N/A                   | 1                        | N/A                                                                                                             | N/A                   | N            |                                 | N/A                 | N/A                                                                                                            |          |
| 19/74                 | 1                        | IN/A                                                                                                            | 19/73                 | 14/          |                                 | 19/73               | 11/73                                                                                                          |          |
|                       |                          |                                                                                                                 |                       |              |                                 |                     |                                                                                                                |          |
| 📜 Keysight Spectrum A | nalyzer - Element Materi | als Technology                                                                                                  | नस्मिननस्मितनस्मितनस् |              |                                 |                     |                                                                                                                |          |
| LXI RL RF             | 50 Ω AC                  |                                                                                                                 | SENSE:INT             | Δ            | ALIGN OFF                       |                     | 06:13:24 PM Feb 2                                                                                              | 7,2019   |
|                       |                          |                                                                                                                 | 🛶 Trig: Lir           |              | Avg Type                        | e: Log-Pwr          |                                                                                                                | 3 4 5 6  |
|                       |                          | PNO: Wide<br>IFGain:Low                                                                                         | Atten: 1              | 0 dB         |                                 |                     | TYPE WW<br>DET P N                                                                                             | NNNN     |
|                       |                          |                                                                                                                 |                       |              |                                 |                     |                                                                                                                |          |
| Ref .                 | Offset 20.44 dB          |                                                                                                                 |                       |              |                                 |                     |                                                                                                                |          |
| 10 dB/div Ref         | 20.44 dBm                | 1                                                                                                               |                       | 1            |                                 | 1                   |                                                                                                                |          |
|                       |                          |                                                                                                                 |                       |              |                                 |                     |                                                                                                                |          |
| 10.4                  |                          |                                                                                                                 |                       |              |                                 |                     |                                                                                                                |          |
|                       |                          |                                                                                                                 | <u>1997</u>           |              |                                 |                     |                                                                                                                |          |
|                       |                          |                                                                                                                 |                       |              |                                 |                     |                                                                                                                | 0.99 dBm |
| 0.440                 |                          |                                                                                                                 |                       |              |                                 |                     |                                                                                                                |          |
|                       |                          |                                                                                                                 |                       |              |                                 |                     |                                                                                                                |          |
| -9.56                 |                          | <u>/</u>                                                                                                        |                       |              |                                 |                     |                                                                                                                |          |
|                       |                          |                                                                                                                 |                       |              |                                 |                     |                                                                                                                |          |
| -19.6                 |                          |                                                                                                                 |                       |              |                                 |                     |                                                                                                                |          |
|                       |                          |                                                                                                                 |                       |              |                                 |                     |                                                                                                                |          |
| -29.6                 |                          |                                                                                                                 |                       |              |                                 |                     |                                                                                                                |          |
|                       |                          |                                                                                                                 |                       |              |                                 |                     |                                                                                                                |          |
| -39.6                 |                          |                                                                                                                 |                       |              |                                 |                     |                                                                                                                |          |
| -39.b                 |                          |                                                                                                                 |                       |              |                                 |                     |                                                                                                                |          |
|                       |                          |                                                                                                                 |                       | No.          |                                 |                     |                                                                                                                |          |
| -49.6                 |                          |                                                                                                                 |                       |              |                                 |                     |                                                                                                                | tin and  |
| and the state         | Market Market            | The second se |                       | فأنقله فرواد | and Mahamatana                  | a day on busingede  | a a statistica a st |          |
| -59.6                 | Concepting and the pass  |                                                                                                                 | and a star            |              | all of the second second second | <b>hings</b> himmin | ale still <sup>the</sup> grade <sup>the</sup> and <sup>the</sup> ye                                            |          |
|                       |                          |                                                                                                                 |                       |              |                                 |                     |                                                                                                                |          |
| -69.6                 |                          |                                                                                                                 |                       |              |                                 |                     |                                                                                                                |          |
|                       |                          |                                                                                                                 |                       |              |                                 |                     |                                                                                                                |          |
|                       |                          |                                                                                                                 |                       |              |                                 |                     |                                                                                                                |          |
| Center 908.900        | 00 MHz                   |                                                                                                                 |                       |              |                                 |                     | Span 1.000                                                                                                     | MHz      |
| #Res BW 100 I         | KHZ                      | #                                                                                                               | VBW 300 kH            | z            |                                 | #Sv                 | veep 20.00 s (8192                                                                                             | 2 pts)   |
| MSG                   |                          |                                                                                                                 |                       |              | <b>STATUS</b>                   |                     |                                                                                                                |          |
|                       |                          |                                                                                                                 |                       |              | •                               |                     |                                                                                                                |          |
|                       | Н                        | opping Mode (All                                                                                                | Channels), N          | lid Channel, | 908.9 MHz                       |                     |                                                                                                                |          |
| Pulse Width           | Number of                | Average No.                                                                                                     | ,,                    |              | ne (ms)                         | Limit               |                                                                                                                |          |
| (ms)                  | Pulses                   | of Pulses                                                                                                       |                       |              | 25.6 s                          | (ms)                | Results                                                                                                        |          |
| 387.582               | N/A                      | 1                                                                                                               | 1                     |              | .582                            | 400                 | Pass                                                                                                           |          |

**Calculation Only** 

No Screen Capture Required



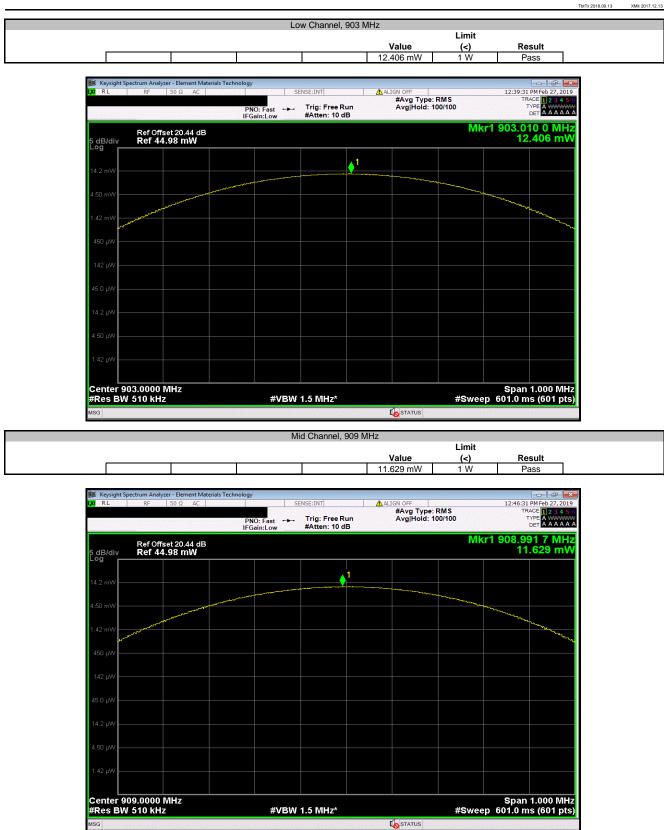
XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

| Description                  | Manufacturer       | Model                 | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------------|-----|-----------|-----------|
| Attenuator                   | Fairview Microwave | SA4018-20             | TYW | 29-Mar-18 | 29-Mar-19 |
| Block - DC                   | Fairview Microwave | SD3379                | AMM | 29-Mar-18 | 29-Mar-19 |
| Cable                        | Micro-Coax         | UFD150A-1-0720-200200 | TXG | 10-Oct-18 | 10-Oct-19 |
| Generator - Signal           | Keysight           | N5171B-506            | TEW | 2-May-18  | 2-May-21  |
| Analyzer - Spectrum Analyzer | Keysight           | N9010A                | AFM | 19-Mar-18 | 19-Mar-19 |

### TEST DESCRIPTION


The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

The method AVGSA-1 in section 11.9.2.2.2 of ANSI C63.10:2013 was used to make the measurement. This method uses trace averaging with the EUT transmitting at full power throughout each sweep using an RMS detector. Following the measurement a du ty cycle correction factor was applied by adding [10 log (1 / D)], where D is the duty cycle, to the measured power to compute t he average power during the actual transmission times.



| EUT: Lo                                                                  | Ra Sensor 3 Button (Model LV-PSH-173)                     |                                                      | Work Order:        |                     |                |
|--------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|--------------------|---------------------|----------------|
| Serial Number: 123                                                       | 37                                                        |                                                      | Date:              | 27-Feb-19           |                |
| Customer: Ca                                                             | arnegie Technologies                                      |                                                      | Temperature:       | 22.9 °C             |                |
| Attendees: Ke                                                            | evin Cotton                                               |                                                      | Humidity:          | 40.6% RH            |                |
| Project: No                                                              | one                                                       |                                                      | Barometric Pres.:  | 1022 mbar           |                |
| Tested by: Jo                                                            | nathan Kiefer                                             | Power: Battery                                       | Job Site:          | TX09                |                |
| TEST SPECIFICATION                                                       | IS                                                        | Test Method                                          |                    |                     |                |
| FCC 15.247:2019                                                          |                                                           | ANSI C63.10:2013                                     |                    |                     |                |
|                                                                          |                                                           | 1                                                    |                    |                     |                |
| COMMENTS                                                                 |                                                           |                                                      |                    |                     |                |
|                                                                          | 0 dB Attenuator - DC Block - Cable) EUT has a BIEA anton  | ana with a 2.0 dPi antonna gain                      |                    |                     |                |
|                                                                          | 0 dB Attenuator + DC Block + Cable). EUT has a PIFA anten | nna with a 2.0 dBi antenna gain.                     |                    |                     |                |
|                                                                          |                                                           | na with a 2.0 dBi antenna gain.                      |                    |                     |                |
| Ref Offset 20.44 dB (20                                                  |                                                           | ına with a 2.0 dBi antenna gain.                     |                    |                     |                |
| Ref Offset 20.44 dB (20                                                  |                                                           | ina with a 2.0 dBi antenna gain.<br>Jourathan Kiefer |                    |                     |                |
| Ref Offset 20.44 dB (20<br>DEVIATIONS FROM TE<br>None                    | EST STANDARD                                              |                                                      |                    | Limit               |                |
| Ref Offset 20.44 dB (20<br>DEVIATIONS FROM TE<br>None                    | EST STANDARD                                              |                                                      | Value              |                     | Result         |
| Ref Offset 20.44 dB (20<br>DEVIATIONS FROM TE<br>None                    | EST STANDARD 4 Signature                                  |                                                      | Value<br>12.406 mW | Limit<br>(<)<br>1 W | Result<br>Pass |
| Ref Offset 20.44 dB (20<br>DEVIATIONS FROM TE<br>None<br>Configuration # | A Signature                                               |                                                      |                    | (<)                 |                |











XMit 2017.12.13

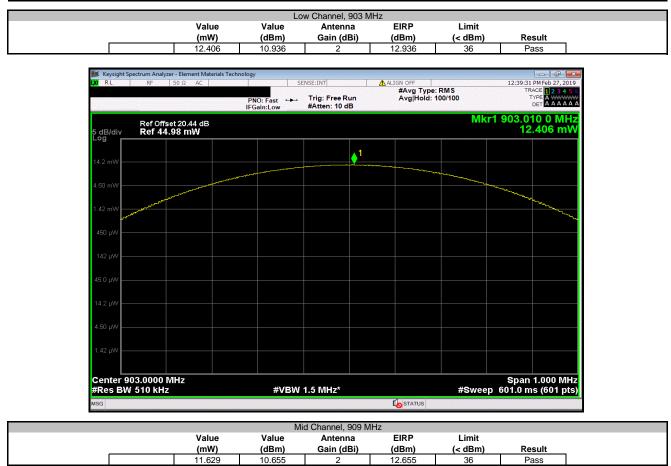
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

| Description                  | Manufacturer       | Model                 | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------------|-----|-----------|-----------|
| Attenuator                   | Fairview Microwave | SA4018-20             | TYW | 29-Mar-18 | 29-Mar-19 |
| Block - DC                   | Fairview Microwave | SD3379                | AMM | 29-Mar-18 | 29-Mar-19 |
| Cable                        | Micro-Coax         | UFD150A-1-0720-200200 | TXG | 10-Oct-18 | 10-Oct-19 |
| Generator - Signal           | Keysight           | N5171B-506            | TEW | 2-May-18  | 2-May-21  |
| Analyzer - Spectrum Analyzer | Keysight           | N9010A                | AFM | 19-Mar-18 | 19-Mar-19 |

#### TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.


The method AVGSA-1 in section 11.9.2.2.2 of ANSI C63.10:2013 was used to make the measurement. This method uses trace averaging with the EUT transmitting at full power throughout each sweep using an RMS detector. Following the measurement a duty cycle correction factor was applied by adding [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

The actual antenna gain of the EUT was added to the conducted output power to derive the EIRP values.



| EUT: LoRa Sensor 3 Button (Model LV-PSH-173)                             |                                                          |                                                       |                |                       | Work Order: CRNE0006 |                  |                |  |  |
|--------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|----------------|-----------------------|----------------------|------------------|----------------|--|--|
| Serial Number: 1237                                                      |                                                          |                                                       |                |                       | Date: 27-Feb-19      |                  |                |  |  |
| Customer: Carnegie Technologies                                          |                                                          |                                                       |                |                       | Temperature:         | rature: 22.9 °C  |                |  |  |
| Attendees: Kevin Cotton                                                  |                                                          |                                                       |                |                       | Humidity:            |                  |                |  |  |
| Project: None                                                            |                                                          |                                                       |                |                       | Barometric Pres.:    |                  |                |  |  |
| Tested by: Jonathan Kiefer Power: Battery                                |                                                          |                                                       |                |                       | Job Site:            | Site: TX09       |                |  |  |
| TEST SPECIFICATION                                                       | S                                                        | Test Method                                           |                |                       |                      |                  |                |  |  |
| FCC 15.247:2019 ANSI C63.10:2013                                         |                                                          |                                                       |                |                       |                      |                  |                |  |  |
|                                                                          |                                                          |                                                       |                |                       |                      |                  |                |  |  |
| COMMENTS                                                                 |                                                          |                                                       |                |                       |                      |                  |                |  |  |
|                                                                          | dP Attonuctor - DC Block - Cable) EUT has a BIEA anto    | anna with a 2.0 dPi antonna gain                      |                |                       |                      |                  |                |  |  |
| Ref Offset 20.44 dB (20                                                  | 0 dB Attenuator + DC Block + Cable). EUT has a PIFA ante | enna with a 2.0 dBi antenna gain.                     |                |                       |                      |                  |                |  |  |
| Ref Offset 20.44 dB (20                                                  |                                                          | enna with a 2.0 dBi antenna gain.                     |                |                       |                      |                  |                |  |  |
| Ref Offset 20.44 dB (20                                                  |                                                          | enna with a 2.0 dBi antenna gain.                     |                |                       |                      |                  |                |  |  |
| Ref Offset 20.44 dB (20                                                  |                                                          | enna with a 2.0 dBi antenna gain.<br>Jonathan Nie for |                |                       |                      |                  |                |  |  |
| Ref Offset 20.44 dB (20<br>DEVIATIONS FROM TI<br>None                    | EST STANDARD                                             | -                                                     | Value          | Antenna               | EIRP                 | Limit            |                |  |  |
| Ref Offset 20.44 dB (20<br>DEVIATIONS FROM TI<br>None                    | EST STANDARD                                             | Jonathan Kiefer                                       | Value<br>(dBm) | Antenna<br>Gain (dBi) | EIRP<br>(dBm)        | Limit<br>(< dBm) | Result         |  |  |
| Ref Offset 20.44 dB (20<br>DEVIATIONS FROM TI<br>None<br>Configuration # | 4 Signature                                              | Jonathan Niefer<br>Value                              |                |                       |                      |                  | Result<br>Pass |  |  |
| Ref Offset 20.44 dB (20<br>DEVIATIONS FROM TI<br>None                    | 4 Signature                                              | Jonathan Niefer<br>Value<br>(mW)                      | (dBm)          |                       | (dBm)                | (< dBm)          |                |  |  |





| RL             | ectrum Analyzer - Element Materials<br>RF 50 Ω AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | recimology                | SENSE:INT  | ALIGN OFF                           | 12:46:31 PM Feb 27, 201                                                                                        |  |  |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PNO: Fast ↔<br>IFGain:Low |            | #Avg Type: RMS<br>Avg Hold: 100/100 | TRACE 1 2 3 4 5<br>TYPE A WWW<br>DET A A A A A                                                                 |  |  |  |
| dB/div<br>og r | Ref Offset 20.44 dB<br>Ref 44.98 mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |            |                                     | Mkr1 908.991 7 MH<br>11.629 m\                                                                                 |  |  |  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | . 1        |                                     |                                                                                                                |  |  |  |
| .2 mW          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | ·          |                                     |                                                                                                                |  |  |  |
| 50 mW          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |            |                                     |                                                                                                                |  |  |  |
|                | - A Carlow And A Carlow A Carl |                           |            |                                     | and a second and a second and a second |  |  |  |
| 42 mVV         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |            |                                     |                                                                                                                |  |  |  |
| .50 μW         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |            |                                     |                                                                                                                |  |  |  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |            |                                     |                                                                                                                |  |  |  |
| 42 µ₩          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |            |                                     |                                                                                                                |  |  |  |
| 5.0 μW         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |            |                                     |                                                                                                                |  |  |  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |            |                                     |                                                                                                                |  |  |  |
| 4.2 µ₩         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |            |                                     |                                                                                                                |  |  |  |
| 50 μVV         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |            |                                     |                                                                                                                |  |  |  |
| 42 µW          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |            |                                     |                                                                                                                |  |  |  |
| 12.01          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |            |                                     |                                                                                                                |  |  |  |
|                | 9.0000 MHz<br>510 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | #\/B)                     | N 1.5 MHz* | #9                                  | Span 1.000 MH<br>weep 601.0 ms (601 pt                                                                         |  |  |  |
| ig Dw          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #951                      |            |                                     |                                                                                                                |  |  |  |



|                                  |                   |                                        | gh Channel, 915 N |                        |                   |                                                     |
|----------------------------------|-------------------|----------------------------------------|-------------------|------------------------|-------------------|-----------------------------------------------------|
|                                  | Value             | Value                                  | Antenna           | EIRP                   | Limit             |                                                     |
|                                  | (mW)              | (dBm)                                  | Gain (dBi)        | (dBm)                  | (< dBm)           | Result                                              |
|                                  | 11.106            | 10.456                                 | 2                 | 12.456                 | 36                | Pass                                                |
|                                  |                   |                                        |                   |                        |                   |                                                     |
| 🎉 Keysight Spectrum Analyzer - I |                   | ology                                  |                   |                        |                   |                                                     |
| LXI RL RF 50                     | Ω AC              | SI                                     | ENSE:INT          | ALIGN OFF<br>#Avg Type | DME               | 12:53:10 PM Feb 27, 2019                            |
|                                  |                   | PNO: Fast ++-                          | Trig: Free Run    | Avg Hold:              |                   | TRACE 1 2 3 4 5 6<br>TYPE A WWWW<br>DET A A A A A A |
|                                  |                   | IFGain:Low                             | #Atten: 10 dB     |                        |                   | DET A A A A A A                                     |
| Ref Offset 2                     | 20.44 dB          |                                        |                   |                        | Mkr1              | 915.008 3 MHz                                       |
| 5 dB/div Ref 44.98               | mW                |                                        |                   |                        |                   | 11.106 mW                                           |
| Log                              |                   |                                        |                   |                        |                   |                                                     |
|                                  |                   |                                        | ▲1                |                        |                   |                                                     |
| 14.2 mW                          |                   |                                        | <b>V</b>          |                        |                   |                                                     |
|                                  |                   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                   |                        | - marine - marine |                                                     |
| 4.50 mW                          | Server Warner Col |                                        |                   |                        |                   | www.                                                |
| and the second second            | ~-                |                                        |                   |                        |                   | . Warner and the second                             |
| 1.42 mW                          |                   |                                        |                   |                        |                   | - alwyknowych                                       |
| <del>ر</del>                     |                   |                                        |                   |                        |                   |                                                     |
| 450 μW                           |                   |                                        |                   |                        |                   |                                                     |
|                                  |                   |                                        |                   |                        |                   |                                                     |
| 142 μW                           |                   |                                        |                   |                        |                   |                                                     |
| 45.0 μVV                         |                   |                                        |                   |                        |                   |                                                     |
| 45.0 µVV                         |                   |                                        |                   |                        |                   |                                                     |
| 14.2 µVV                         |                   |                                        |                   |                        |                   |                                                     |
| 14.2 µVV                         |                   |                                        |                   |                        |                   |                                                     |
| 4.50 μVV                         |                   |                                        |                   |                        |                   |                                                     |
| 4300 000                         |                   |                                        |                   |                        |                   |                                                     |
| 1.42 µW                          |                   |                                        |                   |                        |                   |                                                     |
| 1.42 JWV                         |                   |                                        |                   |                        |                   |                                                     |
|                                  |                   |                                        |                   |                        |                   |                                                     |
| Center 915.0000 MH               | Z                 |                                        |                   |                        |                   | Span 1.000 MHz<br>601.0 ms (601 pts)                |
| #Res BW 510 kHz                  |                   | #VBW                                   | 1.5 MHz*          |                        | #Sweep            | 601.0 ms (601 pts)                                  |
| MSG                              |                   |                                        |                   | <b>I</b> STATUS        |                   |                                                     |

# **BAND EDGE COMPLIANCE**

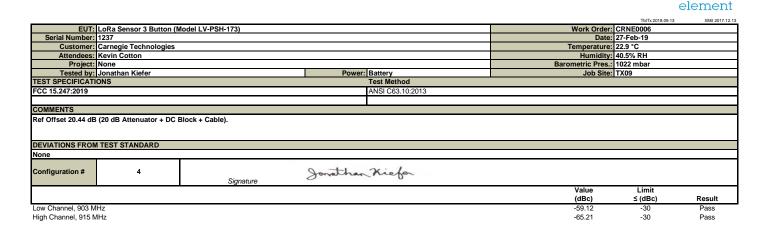


XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

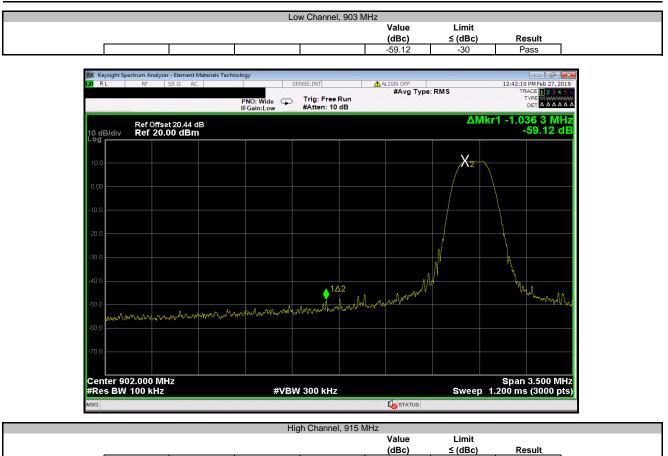
#### TEST EQUIPMENT

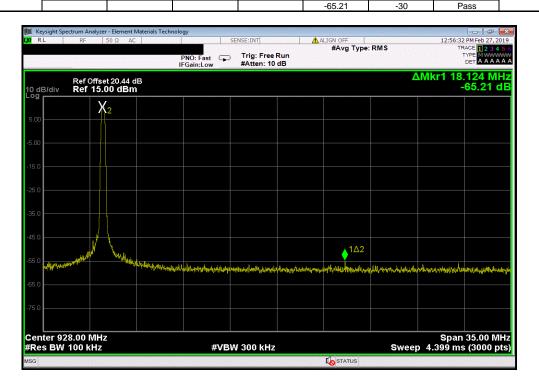
| Description                  | Description Manufacturer |                       | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------------|-----------------------|-----|-----------|-----------|
| Attenuator                   | Fairview Microwave       | SA4018-20             | TYW | 29-Mar-18 | 29-Mar-19 |
| Block - DC                   | Fairview Microwave       | SD3379                | AMM | 29-Mar-18 | 29-Mar-19 |
| Cable                        | Micro-Coax               | UFD150A-1-0720-200200 | TXG | 10-Oct-18 | 10-Oct-19 |
| Generator - Signal           | Keysight                 | N5171B-506            | TEW | 2-May-18  | 2-May-21  |
| Analyzer - Spectrum Analyzer | Keysight                 | N9010A                | AFM | 19-Mar-18 | 19-Mar-19 |


#### TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge.


An RMS detector was used to match the method called out for Output Power. Because the reference level was taken with an RMS detector, the attenuation requirement is -30 dBc.


### **BAND EDGE COMPLIANCE**



### **BAND EDGE COMPLIANCE**







# **BAND EDGE COMPLIANCE - HOPPING MODE**



XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

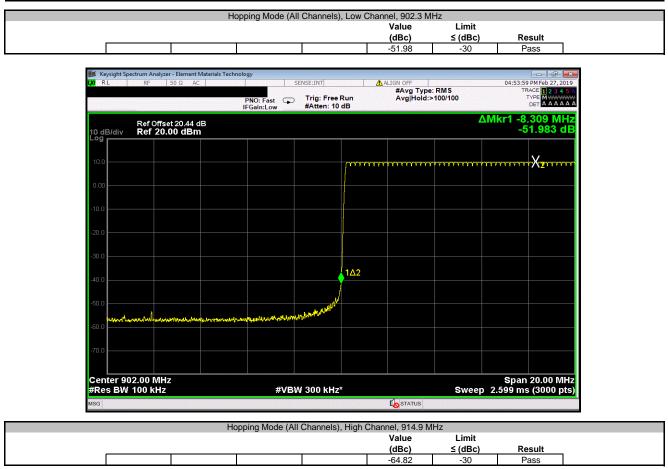
#### TEST EQUIPMENT

| Description                  | Manufacturer       | Model                 | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------------|-----|-----------|-----------|
| Attenuator                   | Fairview Microwave | SA4018-20             | TYW | 29-Mar-18 | 29-Mar-19 |
| Block - DC                   | Fairview Microwave | SD3379                | AMM | 29-Mar-18 | 29-Mar-19 |
| Cable                        | Micro-Coax         | UFD150A-1-0720-200200 | TXG | 10-Oct-18 | 10-Oct-19 |
| Generator - Signal           | Keysight           | N5171B-506            | TEW | 2-May-18  | 2-May-21  |
| Analyzer - Spectrum Analyzer | Keysight           | N9010A                | AFM | 19-Mar-18 | 19-Mar-19 |

#### TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to its normal pseudo-random hopping sequence. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge.


# **BAND EDGE COMPLIANCE -HOPPING MODE**



|                     |                            |                  |                  |                   | TbtTx 2018.09.13 | XMit 2017.12.13 |
|---------------------|----------------------------|------------------|------------------|-------------------|------------------|-----------------|
| EUT:                | LoRa Sensor 3 Button (Me   | odel LV-PSH-173) |                  | Work Order:       | CRNE0006         |                 |
| Serial Number:      | 1237                       |                  |                  | Date:             | 27-Feb-19        |                 |
| Customer:           | Carnegie Technologies      |                  |                  | Temperature:      | 22.1 °C          |                 |
|                     | Kevin Cotton               |                  |                  |                   | 46.4% RH         |                 |
| Project:            |                            |                  |                  | Barometric Pres.: |                  |                 |
|                     | Jonathan Kiefer            |                  | Power: Battery   | Job Site:         | TX09             |                 |
| TEST SPECIFICATI    | IONS                       |                  | Test Method      |                   |                  |                 |
| FCC 15.247:2019     |                            |                  | ANSI C63.10:2013 |                   |                  |                 |
|                     |                            |                  |                  |                   |                  |                 |
| COMMENTS            |                            |                  |                  |                   |                  |                 |
| Ref Offset 20.44 dB | 3 (20 dB Attenuator + DC B | lock + Cable).   |                  |                   |                  |                 |
| DEVIATIONS FROM     | I TEST STANDARD            |                  |                  |                   |                  |                 |
| None                |                            |                  |                  |                   |                  |                 |
| Configuration #     | 4                          | Signature        | Jonathan Kiefer  |                   |                  |                 |
|                     |                            |                  |                  | Value<br>(dBc)    | Limit<br>≤ (dBc) | Result          |
| Hopping Mode (All C | Channels)                  |                  |                  |                   |                  |                 |
|                     | Low Channel, 902.3 MHz     |                  |                  | -51.98            | -30              | Pass            |
|                     | High Channel, 914.9 MHz    |                  |                  | -64.82            | -30              | Pass            |

### **BAND EDGE COMPLIANCE -HOPPING MODE**









XMit 2017.12.13

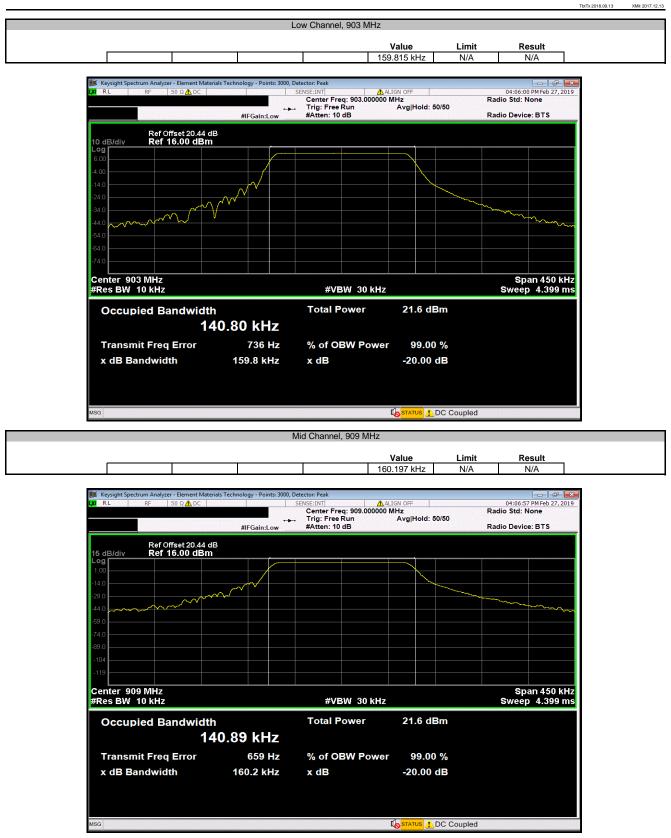
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### TEST EQUIPMENT

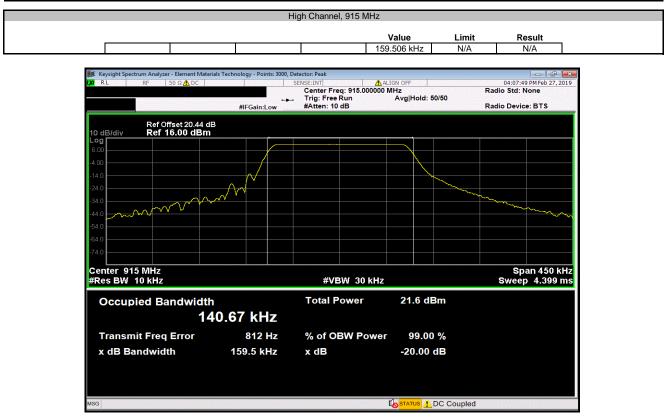
| Description                  | Manufacturer       | Model                 | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------------|-----|-----------|-----------|
| Attenuator                   | Fairview Microwave | SA4018-20             | TYW | 29-Mar-18 | 29-Mar-19 |
| Block - DC                   | Fairview Microwave | SD3379                | AMM | 29-Mar-18 | 29-Mar-19 |
| Cable                        | Micro-Coax         | UFD150A-1-0720-200200 | TXG | 10-Oct-18 | 10-Oct-19 |
| Generator - Signal           | Keysight           | N5171B-506            | TEW | 2-May-18  | 2-May-21  |
| Analyzer - Spectrum Analyzer | Keysight           | N9010A                | AFM | 19-Mar-18 | 19-Mar-19 |

#### TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was set to the channels and modes listed in the datasheet.


The 20dB occupied bandwidth was measured. Since there is no requirement for this type of hybrid system to comply with the 500 kHz minimum bandwidth, the measurements were taken for characterization only.




|                            |                           |             |                  |                      | TbtTx 2018.09.13 |               |
|----------------------------|---------------------------|-------------|------------------|----------------------|------------------|---------------|
|                            | Ra Sensor 3 Button (Model | LV-PSH-173) |                  | Work Order:          |                  |               |
| Serial Number: 123         | 37                        |             |                  |                      | 27-Feb-19        |               |
| Customer: Ca               | rnegie Technologies       |             |                  | Temperature:         | 22.9 °C          |               |
| Attendees: Key             |                           |             |                  | Humidity:            | 42.9% RH         |               |
| Project: No                |                           |             |                  | Barometric Pres.:    |                  |               |
| Tested by: Jor             |                           |             | Power: Battery   | Job Site:            | TX09             |               |
| TEST SPECIFICATIONS        | S                         |             | Test Method      |                      |                  |               |
| FCC 15.247:2019            |                           |             | ANSI C63.10:2013 |                      |                  |               |
|                            |                           |             |                  |                      |                  |               |
| COMMENTS                   |                           |             |                  |                      |                  |               |
| None                       |                           |             |                  |                      |                  |               |
|                            |                           |             |                  |                      |                  |               |
|                            |                           |             |                  |                      |                  |               |
|                            |                           |             |                  |                      |                  |               |
| DEVIATIONS FROM TE         | EST STANDARD              |             |                  |                      |                  |               |
| DEVIATIONS FROM TE<br>None | EST STANDARD              |             |                  |                      |                  |               |
| DEVIATIONS FROM TE<br>None | EST STANDARD              |             |                  |                      |                  |               |
| None                       | EST STANDARD              |             | Insthe Nieder    |                      |                  |               |
|                            | EST STANDARD              | Signature   | Jonethan Niefe   |                      |                  |               |
| None                       | EST STANDARD              | Signature   | Jonsthan Niefe   |                      |                  |               |
| None                       | EST STANDARD              | Signature   | Jonethan Niefer  | Value                | Limit            | Result        |
| None                       | 4                         | Signature   | Jonathan Kiefer  | Value<br>159.815 kHz | Limit            | Result<br>N/A |
| None<br>Configuration #    | 4                         | Signature   | Jonethan Niefe   |                      |                  |               |

Report No. CRNE0006.6











XMit 2017.12.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

| Description                  | Manufacturer       | Model                 | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------------|-----|-----------|-----------|
| Attenuator                   | Fairview Microwave | SA4018-20             | TYW | 29-Mar-18 | 29-Mar-19 |
| Block - DC                   | Fairview Microwave | SD3379                | AMM | 29-Mar-18 | 29-Mar-19 |
| Cable                        | Micro-Coax         | UFD150A-1-0720-200200 | TXG | 10-Oct-18 | 10-Oct-19 |
| Generator - Signal           | Keysight           | N5171B-506            | TEW | 2-May-18  | 2-May-21  |
| Analyzer - Spectrum Analyzer | Keysight           | N9010A                | AFM | 19-Mar-18 | 19-Mar-19 |

#### TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.



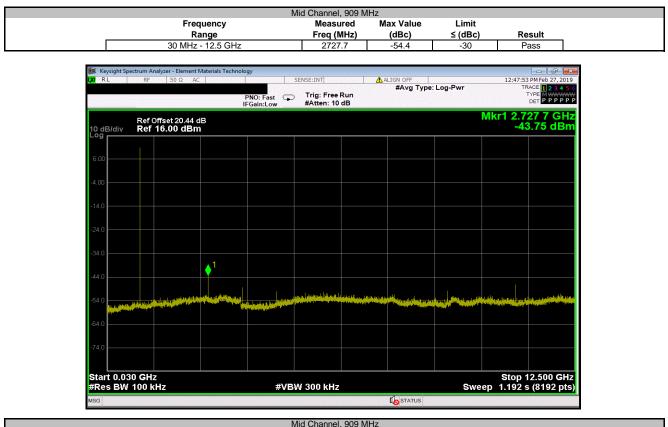
|                                                                                                                                    | LoRa Sensor 3 Button (Mo                                  | del LV-PSH-173) |                                                                                                                                                                                                                                                                                                |                                                                             | Work Order:                                                |                                                   |                                            |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------|--------------------------------------------|
| Serial Number:                                                                                                                     |                                                           |                 |                                                                                                                                                                                                                                                                                                |                                                                             |                                                            | 27-Feb-19                                         |                                            |
| Customer:                                                                                                                          | : Carnegie Technologies                                   |                 |                                                                                                                                                                                                                                                                                                |                                                                             | Temperature:                                               | 22.9 °C                                           |                                            |
|                                                                                                                                    | : Kevin Cotton                                            |                 |                                                                                                                                                                                                                                                                                                |                                                                             | Humidity:                                                  |                                                   |                                            |
| Project:                                                                                                                           |                                                           |                 |                                                                                                                                                                                                                                                                                                |                                                                             | <b>Barometric Pres.:</b>                                   | 1022 mbar                                         |                                            |
|                                                                                                                                    | : Jonathan Kiefer                                         |                 | Power: Battery                                                                                                                                                                                                                                                                                 |                                                                             | Job Site:                                                  | TX09                                              |                                            |
| EST SPECIFICATI                                                                                                                    | TIONS                                                     |                 | Test Method                                                                                                                                                                                                                                                                                    |                                                                             |                                                            |                                                   |                                            |
| CC 15.247:2019                                                                                                                     |                                                           |                 | ANSI C63.10:2013                                                                                                                                                                                                                                                                               |                                                                             |                                                            |                                                   |                                            |
|                                                                                                                                    |                                                           |                 |                                                                                                                                                                                                                                                                                                |                                                                             |                                                            |                                                   |                                            |
| COMMENTS                                                                                                                           |                                                           |                 | ·                                                                                                                                                                                                                                                                                              |                                                                             |                                                            |                                                   |                                            |
| ef Offset 20.44 dB                                                                                                                 | B (20 dB Attenuator + DC Blo                              | ock + Cable).   |                                                                                                                                                                                                                                                                                                |                                                                             |                                                            |                                                   |                                            |
|                                                                                                                                    |                                                           |                 |                                                                                                                                                                                                                                                                                                |                                                                             |                                                            |                                                   |                                            |
|                                                                                                                                    |                                                           |                 |                                                                                                                                                                                                                                                                                                |                                                                             |                                                            |                                                   |                                            |
|                                                                                                                                    | M TEAT AT AND ADD                                         |                 |                                                                                                                                                                                                                                                                                                |                                                                             |                                                            |                                                   |                                            |
|                                                                                                                                    | M TEST STANDARD                                           |                 |                                                                                                                                                                                                                                                                                                |                                                                             |                                                            |                                                   |                                            |
| DEVIATIONS FROM                                                                                                                    | M TEST STANDARD                                           |                 |                                                                                                                                                                                                                                                                                                |                                                                             |                                                            |                                                   |                                            |
| None                                                                                                                               | M TEST STANDARD                                           |                 |                                                                                                                                                                                                                                                                                                |                                                                             |                                                            |                                                   |                                            |
|                                                                                                                                    | M TEST STANDARD                                           | Sinnati ira     | Jonethan Kiefer                                                                                                                                                                                                                                                                                |                                                                             |                                                            |                                                   |                                            |
| None                                                                                                                               | M TEST STANDARD                                           | Signature       |                                                                                                                                                                                                                                                                                                | Measured                                                                    | Max Value                                                  | Limit                                             |                                            |
| lone                                                                                                                               | M TEST STANDARD                                           | Signature       | Jonathan Kiefen<br>Frequency<br>Range                                                                                                                                                                                                                                                          | Measured<br>Freq (MHz)                                                      | Max Value<br>(dBc)                                         | Limit<br>≤ (dBc)                                  | Result                                     |
| lone                                                                                                                               | 4                                                         | Signature       | Frequency                                                                                                                                                                                                                                                                                      | Measured<br>Freq (MHz)<br>902.94                                            |                                                            |                                                   | Result<br>N/A                              |
| lone<br>Configuration #<br>.ow Channel, 903 M                                                                                      | 4 MHz                                                     | Signature       | Frequency<br>Range                                                                                                                                                                                                                                                                             | Freq (MHz)                                                                  | (dBc)                                                      | ≤ (dBc)                                           |                                            |
| None                                                                                                                               | 4<br>WHz<br>WHz                                           | Signature       | Frequency<br>Range<br>Fundamental                                                                                                                                                                                                                                                              | Freq (MHz)<br>902.94                                                        | (dBc)<br>N/A                                               | <b>≤ (dBc)</b><br>N/A                             | N/A                                        |
| Configuration #<br>Configuration #<br>Low Channel, 903 M<br>Low Channel, 903 M<br>Low Channel, 903 M                               | 4<br>WHz<br>WHz<br>WHz                                    | Signature       | Frequency<br>Range<br>Fundamental<br>30 MHz - 12.5 GHz                                                                                                                                                                                                                                         | Freq (MHz)<br>902.94<br>2709.43                                             | (dBc)<br>N/A<br>-54.56                                     | ≤ (dBc)<br>N/A<br>-30                             | N/A<br>Pass                                |
| tone<br>configuration #<br>ow Channel, 903 M<br>ow Channel, 903 M<br>ow Channel, 903 M<br>did Channel, 909 MI                      | 4<br>MHz<br>MHz<br>WHz<br>HHz                             | Signature       | Frequency<br>Range           Fundamental           30 MHz - 12.5 GHz           12.5 GHz - 25 GHz           12.5 GHz - 25 GHz                                                                                                                                                                   | Freq (MHz)<br>902.94<br>2709.43<br>24989.32                                 | (dBc)<br>N/A<br>-54.56<br>-51.28                           | ≤ (dBc)<br>N/A<br>-30<br>-30                      | N/A<br>Pass<br>Pass                        |
| tone<br>Configuration #<br>ow Channel, 903 M<br>ow Channel, 903 M<br>ow Channel, 903 M<br>did Channel, 909 M<br>lid Channel, 909 M | 4<br>MHz<br>MHz<br>MHz<br>MHz<br>MHz<br>MHz               | Signature       | Frequency<br>Range<br>Fundamental<br>30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz<br>Fundamental                                                                                                                                                                                                     | Freq (MHz)<br>902.94<br>2709.43<br>24989.32<br>908.94                       | (dBc)<br>N/A<br>-54.56<br>-51.28<br>N/A                    | ≤ (dBc)<br>N/A<br>-30<br>-30<br>N/A               | N/A<br>Pass<br>Pass<br>N/A                 |
| ow Channel, 903 M<br>ow Channel, 903 M<br>ow Channel, 903 M<br>ow Channel, 903 M<br>lid Channel, 909 M<br>lid Channel, 909 M       | 4<br>WHz<br>WHz<br>WHz<br>AHz<br>AHz<br>AHz<br>Hz         | Signature       | Frequency<br>Range           Fundamental           30 MHz - 12.5 GHz           12.5 GHz - 25 GHz           Fundamental           30 MHz - 12.5 GHz           12.5 GHz - 25 GHz           50 MHz - 12.5 GHz           12.5 GHz - 25 GHz           30 MHz - 12.5 GHz           12.5 GHz - 25 GHz | Freq (MHz)<br>902.94<br>2709.43<br>24989.32<br>908.94<br>2727.7<br>24475.03 | (dBc)<br>N/A<br>-54.56<br>-51.28<br>N/A<br>-54.4<br>-50.88 | ≤ (dBc)<br>N/A<br>-30<br>-30<br>N/A<br>-30<br>-30 | N/A<br>Pass<br>Pass<br>N/A<br>Pass<br>Pass |
| Configuration #<br>configuration #<br>.ow Channel, 903 M<br>.ow Channel, 903 M                                                     | 4<br>MHz<br>MHz<br>MHz<br>MHz<br>MHz<br>MHz<br>MHz<br>MHz | Signature       | Frequency<br>Range<br>Fundamental<br>30 MHz - 12.5 GHz<br>12.5 GHz - 25 GHz<br>Fundamental<br>30 MHz - 12.5 GHz                                                                                                                                                                                | Freq (MHz)<br>902.94<br>2709.43<br>24989.32<br>908.94<br>2727.7             | (dBc)<br>N/A<br>-54.56<br>-51.28<br>N/A<br>-54.4           | ≤ (dBc)<br>N/A<br>-30<br>-30<br>N/A<br>-30        | N/A<br>Pass<br>Pass<br>N/A<br>Pass         |





| Frequency         | Measured   | Max Value | Limit   |        |
|-------------------|------------|-----------|---------|--------|
| Range             | Freq (MHz) | (dBc)     | ≤ (dBc) | Result |
| 30 MHz - 12.5 GHz | 2709.43    | -54.56    | -30     | Pass   |

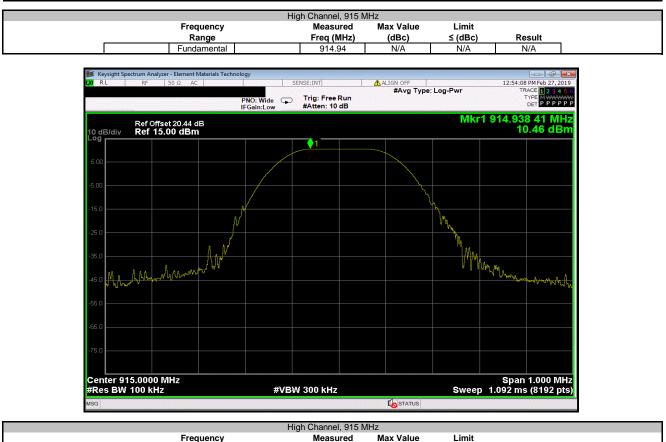
| RL        | RF 50 Ω A                         | C S S S S S S S S S S S S S S S S S S S |                               | SENSE:INT                | /\A      | LIGN OFF  |           | 12:40:50                        | 0 PM Feb 27, 201            |
|-----------|-----------------------------------|-----------------------------------------|-------------------------------|--------------------------|----------|-----------|-----------|---------------------------------|-----------------------------|
|           |                                   | I                                       | PNO: Fast 🕞<br>FGain:Low      | Trig: Free<br>#Atten: 10 | Run      | #Avg Type | : Log-Pwr |                                 | TYPE MWWWW<br>DET P P P P P |
| ) dB/div  | Ref Offset 20.44<br>Ref 16.00 dBr | dB<br>n                                 |                               |                          |          |           |           | Mkr1 2.7<br>-4                  | 09 4 GH<br>3.67 dBr         |
|           |                                   |                                         |                               |                          |          |           |           |                                 |                             |
| .00       |                                   |                                         |                               |                          |          |           |           |                                 |                             |
| .00       |                                   |                                         |                               |                          |          |           |           |                                 |                             |
| 4.0       |                                   |                                         |                               |                          |          |           |           |                                 |                             |
| 4.0       |                                   |                                         |                               |                          |          |           |           |                                 |                             |
| 4.0       |                                   |                                         |                               |                          |          |           |           |                                 |                             |
|           |                                   | <b>♦</b> <sup>1</sup>                   |                               |                          |          |           |           |                                 |                             |
| 4.0       |                                   | ر ارسانید را است.                       |                               | d Lands rate             | al a sub |           |           |                                 |                             |
| 4.0       |                                   |                                         | in the bid deal in the second |                          |          |           |           |                                 |                             |
| 4.0       |                                   |                                         |                               |                          |          |           |           |                                 |                             |
| 4.0       |                                   |                                         |                               |                          |          |           |           |                                 |                             |
| tart 0.03 | 0 GHz                             |                                         |                               |                          |          |           |           | Ston                            | 12.500 GH                   |
|           | 100 kHz                           |                                         | #VE                           | 3W 300 kHz               |          |           | Swe       | Stop <sup>2</sup><br>ep 1.192 s | s (8192 pt                  |






|   | Frequency   | Measured   | Max Value | Limit   |        |
|---|-------------|------------|-----------|---------|--------|
| _ | Range       | Freq (MHz) | (dBc)     | ≤ (dBc) | Result |
|   | Fundamental | 908.94     | N/A       | N/A     | N/A    |








| Mid Channel, 909 MHz |            |           |         |        |  |
|----------------------|------------|-----------|---------|--------|--|
| Frequency            | Measured   | Max Value | Limit   |        |  |
| Range                | Freq (MHz) | (dBc)     | ≤ (dBc) | Result |  |
| 12.5 GHz - 25 GHz    | 24475.03   | -50.88    | -30     | Pass   |  |

|              |                     |         |             | ent Materials Te | cnnology                                |              |                                                                                                                  | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                       |                                          |
|--------------|---------------------|---------|-------------|------------------|-----------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------|------------------------------------------|
| RL           | -                   | RF      | 50 Ω        | AC               |                                         | 5            | ENSE:INT                                                                                                         |                        | ALIGN OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e: Log-Pwr | 12:48                                 | :54 PM Feb 27, 201                       |
|              |                     | 1       |             |                  | PNO: Fast<br>IFGain:Low                 | Ģ            | Trig: Free R<br>#Atten: 10 d                                                                                     |                        | #Avg Typ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e: Log-Pwr |                                       | TRACE 1 2 3 4 5<br>TYPE MWWW<br>DET PPPP |
|              |                     | Ref Off | set 20.4    | 4 dB             |                                         |              |                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                       | 475 0 GH<br>40.23 dBr                    |
| 0 dE<br>og n | 3/div               | Ref 10  | 5.00 dE     | sm               |                                         |              |                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | _                                     | 40.20 GDI                                |
|              |                     |         |             |                  |                                         |              |                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                       |                                          |
| 6.00         |                     |         |             |                  |                                         |              |                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                       |                                          |
|              |                     |         |             |                  |                                         |              |                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                       |                                          |
| 4.00         |                     |         |             |                  |                                         |              |                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                       |                                          |
|              |                     |         |             |                  |                                         |              |                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                       |                                          |
| 14.0         |                     |         |             |                  |                                         |              |                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                       |                                          |
|              |                     |         |             |                  |                                         |              |                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                       |                                          |
| 24.0         |                     |         |             |                  |                                         |              |                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                       |                                          |
|              |                     |         |             |                  |                                         |              |                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                       |                                          |
| 34.0         |                     |         |             |                  |                                         |              |                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                       |                                          |
|              |                     |         |             |                  |                                         |              |                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                       | <b>♦</b> '                               |
| 44.0         |                     |         |             |                  |                                         |              |                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                       | أوجاه في ومستقل سدار                     |
|              |                     |         |             | مندر فتأسره      | and the state in the state of the state | والطعان      | والمرور والمساور ووالمعاديات                                                                                     | ر بالطلقين علمه        | والمجاودة والمتحاد والمتحاد والا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | a a a a a a a a a a a a a a a a a a a |                                          |
| 54.0         | ALL LAND            |         | فأقبتنا وما |                  |                                         | Life and the | A REPORT OF A PARTY OF A | indere and designed on | and the second se |            |                                       |                                          |
|              | a Martin States and | -       |             |                  |                                         |              |                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                       |                                          |
| 64.0         |                     |         |             |                  |                                         |              |                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                       |                                          |
|              |                     |         |             |                  |                                         |              |                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                       |                                          |
| 74.0         |                     |         |             |                  |                                         |              |                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                       |                                          |
|              |                     |         |             |                  |                                         |              |                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                       |                                          |
|              |                     |         |             |                  |                                         |              |                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                       |                                          |
|              | 12.50               |         |             |                  |                                         |              |                                                                                                                  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | Stop                                  | 25.000 GH                                |
| Ret          | s BW 1              | UU KH   | 2           |                  | #                                       | VBV          | V 300 kHz                                                                                                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S          | veep 1.19:                            | is (8192 pt                              |
| SG           |                     |         |             |                  |                                         |              |                                                                                                                  |                        | STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                       |                                          |





| Frequency         | Measured   | Max Value | Limit   |        |
|-------------------|------------|-----------|---------|--------|
| Range             | Freq (MHz) | (dBc)     | ≤ (dBc) | Result |
| 30 MHz - 12.5 GHz | 2744.44    | -54.4     | -30     | Pass   |

| RL           |       | RF           | 50 Ω                    | AC                    |                         | S          | ENSE:INT                 |                      | ALIG         | N OFF                                                                                                            |         | 12:55:0                 | 5 PM Feb 27, 201                                |
|--------------|-------|--------------|-------------------------|-----------------------|-------------------------|------------|--------------------------|----------------------|--------------|------------------------------------------------------------------------------------------------------------------|---------|-------------------------|-------------------------------------------------|
|              |       |              |                         |                       | PNO: Fast<br>IFGain:Low |            | Trig: Free<br>#Atten: 10 |                      |              | #Avg Type:                                                                                                       | Log-Pwr | TI                      | RACE 1 2 3 4 5<br>TYPE M WWWWW<br>DET P P P P P |
| 0 dB<br>og r | /div  | Ref 0<br>Ref | ffset 20.44<br>15.00 dE | 4 dB<br>Sm            |                         |            |                          |                      |              |                                                                                                                  |         | Mkr1 2.7<br>-4          | 44 4 GH<br>3.95 dBr                             |
|              |       |              |                         |                       |                         |            |                          |                      |              |                                                                                                                  |         |                         |                                                 |
| .00          |       |              |                         |                       |                         |            |                          |                      |              |                                                                                                                  |         |                         |                                                 |
| .00          |       |              |                         |                       |                         |            |                          |                      |              |                                                                                                                  |         |                         |                                                 |
| 5.0 -        |       |              |                         |                       |                         |            |                          |                      |              |                                                                                                                  |         |                         |                                                 |
| 5.0          |       |              |                         |                       |                         |            |                          |                      |              |                                                                                                                  |         |                         |                                                 |
| 5.0          |       |              |                         |                       |                         |            |                          |                      |              |                                                                                                                  |         |                         |                                                 |
| 5.0          |       |              |                         | <b>♦</b> <sup>1</sup> |                         |            |                          |                      |              |                                                                                                                  |         |                         |                                                 |
| 5.0          |       |              |                         | يتوسله ويعاملوه       |                         | فلل ويعليه |                          | alian at he are list | and a little | uki na Madana na mina                                                                                            | س السل  | And the second second   | La La Joonana di Alika                          |
|              |       |              | And an Hill             |                       |                         | -          |                          |                      |              | and the second |         | Station of Anissian and |                                                 |
| 5.0          |       |              |                         |                       |                         |            |                          |                      |              |                                                                                                                  |         |                         |                                                 |
| 5.0          |       |              |                         |                       |                         |            |                          |                      |              |                                                                                                                  |         |                         |                                                 |
|              | 0.030 |              |                         |                       |                         |            | N 200 KU-                |                      |              |                                                                                                                  |         | Stop                    | 12.500 GF                                       |
| 44           | BW 1  | 00 K         | 12                      |                       | #                       | VDV        | N 300 kHz                |                      |              | STATUS                                                                                                           | Swe     | ep 1.192                | 5 (8 192 pt                                     |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Π                               | ligh Channel, 915                            |                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | Measured                                     | Max Value                                 | Limit                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | Freq (MHz)                                   | (dBc)                                     | ≤ (dBc)                                                                                                          | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.5 GHz - 25 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ηz                              | 24740.57                                     | -50.33                                    | -30                                                                                                              | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                              |                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Keysight Spectrum A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Analyzer - Element Materials Tech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nnology                         |                                              |                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X          |
| LXI RL RF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50 Ω AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | SENSE:INT                                    | ALIGN OFF                                 |                                                                                                                  | 12:56:11 PM Feb 27, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2019       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | Trig: Free Run                               | #Avg Type                                 | :: Log-Pwr                                                                                                       | TRACE 1 2 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>5</b> 6 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PNO: Fast C                     | #Atten: 10 dB                                |                                           |                                                                                                                  | TRACE 1 2 3 4<br>TYPE MWW<br>DET P P P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PPP        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in Guineon                      |                                              |                                           | ML                                                                                                               | r1 24.740 6 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Offset 20.44 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                              |                                           | WIK                                                                                                              | -39.88 dE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| 10 dB/div Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |                                              |                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                              |                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                              |                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                              |                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                              |                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| -5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                              |                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                              |                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| -15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                              |                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                              |                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| -25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                              |                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                              |                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| -35.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                              |                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                              |                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| -45.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                              |                                           | and the second | the standard in the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a later    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ويستعلوا التقارين ويروا ورزي والمراج                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and a highlight the part of the | أورينا والمتأور ومناجب والمتلح فساك الأحدادي | والمستخط والمستعلق فالمعاد والمال والمناف |                                                                                                                  | and the local distance of the local distance |            |
| -55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and the state of t |                                 |                                              |                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| and the state of t |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                              |                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| -65.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                              |                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 10010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                              |                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 75.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                              |                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| -75.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                              |                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                              |                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Start 12.500 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                                              |                                           |                                                                                                                  | Stop 25.000 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hz         |
| #Res BW 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #VB                             | W 300 kHz                                    |                                           | Sween                                                                                                            | 1.195 s (8192 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ots)       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                              | STATUS                                    |                                                                                                                  | بالكاهر وهدد                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -          |



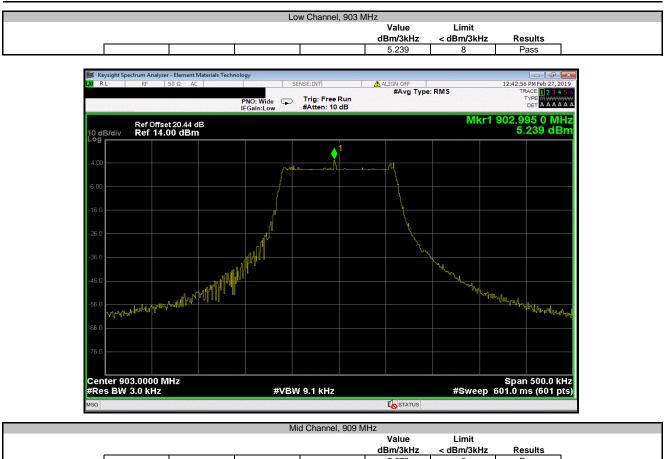
XMit 2017.12.13

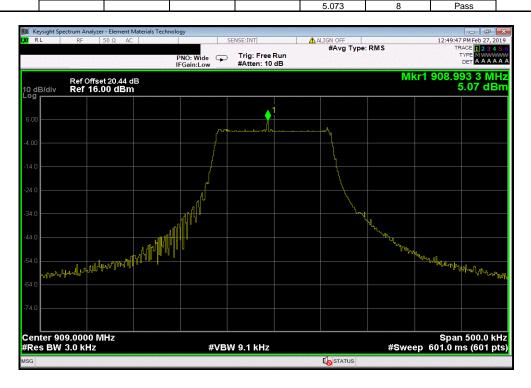
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

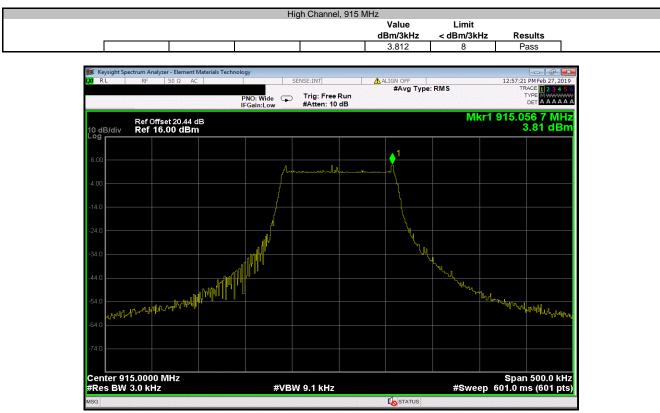
| Description                  | Manufacturer       | Model                 | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------------|-----|-----------|-----------|
| Attenuator                   | Fairview Microwave | SA4018-20             | TYW | 29-Mar-18 | 29-Mar-19 |
| Block - DC                   | Fairview Microwave | SD3379                | AMM | 29-Mar-18 | 29-Mar-19 |
| Cable                        | Micro-Coax         | UFD150A-1-0720-200200 | TXG | 10-Oct-18 | 10-Oct-19 |
| Generator - Signal           | Keysight           | N5171B-506            | TEW | 2-May-18  | 2-May-21  |
| Analyzer - Spectrum Analyzer | Keysight           | N9010A                | AFM | 19-Mar-18 | 19-Mar-19 |

#### TEST DESCRIPTION


The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The power spectral density was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.


The method AVGPSD-1 in section 11.10.3 of ANSI C63.10:2013 was used to make the measurement. This method uses trace averaging and RMS detection across the full power of the burst. This method is allowed as the same method has been used to determine the conducted output power.




|                         |                                        |                  |                   | TbtTx 2018.09.13    |                 |
|-------------------------|----------------------------------------|------------------|-------------------|---------------------|-----------------|
| EUT: Lo                 | oRa Sensor 3 Button (Model LV-PSH-173) |                  | Work Order:       |                     |                 |
| Serial Number: 12       | 237                                    |                  | Date:             | 27-Feb-19           |                 |
| Customer: Ca            | arnegie Technologies                   |                  | Temperature:      | 22.9 °C             |                 |
| Attendees: Ke           | evin Cotton                            |                  | Humidity:         | 40.6% RH            |                 |
| Project: No             | one                                    |                  | Barometric Pres.: | 1022 mbar           |                 |
|                         | onathan Kiefer                         | Power: Battery   | Job Site:         | TX09                |                 |
| TEST SPECIFICATION      | NS                                     | Test Method      |                   |                     |                 |
| FCC 15.247:2019         |                                        | ANSI C63.10:2013 |                   |                     |                 |
|                         |                                        |                  |                   |                     |                 |
| COMMENTS                |                                        |                  |                   |                     | 1               |
|                         |                                        |                  |                   |                     |                 |
| DEVIATIONS FROM TI      | EST STANDARD                           |                  |                   |                     |                 |
| DEVIATIONS FROM TI      | EST STANDARD                           |                  |                   |                     |                 |
| None                    | A Signature                            | Jonethan Hiefer  |                   |                     |                 |
| lone                    | 4                                      | Jonethan Kiefer  | Value<br>dBm/3kHz | Limit<br>< dBm/3kHz | Results         |
| lone<br>Configuration # | <b>4</b><br>Signature                  | Jonathan Kiefer  |                   |                     | Results<br>Pass |
|                         | 4 Signature                            | Jonethan Hiefer  | dBm/3kHz          | < dBm/3kHz          |                 |









