

HEADQUARTERS: 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230 • PHONE (410) 354-3300 • FAX (410) 354-3313

December 26, 2018

Carnegie Technologies 9737 Great Hills Trail, Suite 260 Austin, Texas 78759

Dear Mark Jones,

Enclosed is the EMC Wireless test report for compliance testing of the Carnegie Technologies, Longview as tested to the requirements of Title 47 of the CFR, Ch. 1 (10-1-06 ed.), FCC Part 15 Subpart C for Intentional Radiators.

Thank you for using the services of Eurofins | MET Labs, Inc. If you have any questions regarding these results or if MET can be of further service to you, please feel free to contact me.

Sincerely yours, EUROFINS | MET LABS, INC.

Huna

Joel Huna Documentation Department

Reference: (\Carnegie Technologies\EMCA98009A-FCC247 Rev. 1)

Certificates and reports shall not be reproduced except in full, without the written permission of Eurofins | MET Labs, Inc. While use of the A2LA logo in this report reflects MET accreditation under these programs, the report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the Federal Government. This letter of transmittal is not a part of the attached report.

Carnegie Technologies Longview Electromagnetic Compatibility Cover Page CFR Title 47, 15.247

Electromagnetic Compatibility Criteria Test Report

for the

Carnegie Technologies Longview

Tested under the FCC Certification Rules contained in Title 47 of the CFR, Parts 15 Subpart C 15.247 for Intentional Radiators

MET Report: EMCA98009A-FCC247 Rev. 1

December 26, 2018

Prepared For:

Carnegie Technologies 9737 Great Hills Trail, Suite 260 Austin, Texas 78759

> Prepared By: Eurofins | MET Labs, Inc. 13501 McCallen Pass Austin, TX 78753

Carnegie Technologies Longview

Electromagnetic Compatibility Criteria Test Report

for the

Carnegie Technologies Longview

Tested under the FCC Certification Rules

contained in Title 47 of the CFR, Parts 15 15.247 Subpart C for Intentional Radiators

Giuliano Messina, Project Engineer Electromagnetic Compatibility Lab

Huna

Joel Huna Documentation Department

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules Part 15.247 under normal use and maintenance.

John W. Mason

John Mason, Director, Electromagnetic Compatibility Lab

Report Status Sheet

Revision	Report Date	Reason for Revision	
Ø	December 26, 2018	Initial Issue.	
1	February 15, 2019	TCB corrections	

Table of Contents

I.	Executive Summary	1
	A. Purpose of Test	2
	B. Executive Summary	2
II.	Equipment Configuration	3
	A. Overview	4
	B. References	5
	C. Test Site	5
	D. Measurement Uncertainty	5
	E. Description of Test Sample	6
	F. Equipment Configuration	7
	G. Support Equipment	7
	H. Ports and Cabling Information	7
	I. Mode of Operation	
	J. Method of Monitoring EUT Operation	8
	K. Modifications	8
	a) Modifications to EUT	8
	b) Modifications to Test Standard	8
	L. Disposition of EUT	
III.	Electromagnetic Compatibility Criteria for Intentional Radiators	9
	§ 15.203 Antenna Requirement	
	§ 15.207(a) Conducted Emissions Limits	
	§ 15.247(a)(1) 20 dB Occupied Bandwidth	
	§15.247(a)(1) Average Time of Occupancy (Dwell Time)	
	§15.247(a)(1) Number of RF Channels	
	§15.247(a)(1) RF Channel Separation	
	§ 15.247(b) Peak Power Output	
	§ 15.247(d) Radiated Spurious Emissions Requirements and Band Edge	
	§ 15.247(d) RF Conducted Spurious Emissions Requirements and Band Edge	
	§ 15.247(g)(h) Declaration Statements for FHSS	
IV.	Test Equipment	47
V.	Certification & User's Manual Information	
	A. Certification Information	
	B. Label and User's Manual Information	54

List of Tables

Table 1. Executive Summary of EMC Part 15.247 ComplianceTesting	2
Table 2. EUT Summary Table	4
Table 3. References	
Table 4. Uncertainty Calculations Summary	5
Table 5. Equipment Configuration	7
Table 6. Support Equipment	7
Table 7. Ports and Cabling Information	7
Table 7. Ports and Cabling Information Table 8. Antenna List	10
Table 9. Conducted Limits for Intentional Radiators from FCC Part 15 § 15.207(a)	
Table 10. Conducted Emissions, Bonding Measurements	11
Table 11. Conducted Emissions, Test Results	
Table 12. Occupied Bandwidth measurements	16
Table 13. Peak Power Output, Test Results	23
Table 14. Restricted Bands of Operation	
Table 15. Radiated Emissions Limits Calculated from FCC Part 15, § 15.209 (a)	
Table 16. Test Equipment List	

List of Plots

Plot 1. Conducted Emissions, 125 kHz, Phase Line	13
Plot 2. Conducted Emissions, 125 kHz, Neutral Line	13
Plot 3. Conducted Emissions, 250 kHz, Phase Line	
Plot 4. Conducted Emissions, 250 kHz, Neutral Line	
Plot 5. 20 dB Occupied Bandwidth, 125 kHz BW, 902.6 MHz, 137 kHz	17
Plot 6. 20 dB Occupied Bandwidth, 125 kHz BW, 909 MHz, 138 kHz	17
Plot 7. 20 dB Occupied Bandwidth, 125 kHz BW, 915.4 MHz, 138 kHz	
Plot 8. 20 dB Occupied Bandwidth, 250 kHz BW, 902.6 MHz, 283 kHz	18
Plot 9. 20 dB Occupied Bandwidth, 250 kHz BW, 909 MHz, 281 kHz	18
Plot 10. 20 dB Occupied Bandwidth, 250 kHz BW, 915.4 MHz, 293 kHz	18
Plot 11. Dwell Time, 125 kHz BW, 20s span	19
Plot 12. Dwell Time, 125 kHz BW, 180 ms pulse	
Plot 13. Dwell Time, 250 kHz BW, 200 ms pulse	20
Plot 14. Number of Channels, 125 kHz BW, 64	
Plot 15. Number of Channels, 250 kHz BW, 32	
Plot 16. Minimum Channel Separation, 125 kHz BW, 200 kHz	
Plot 17. Minimum Channel Separation, 250 kHz BW, 400 kHz	22
Plot 18. Peak Power Output, 125 kHz BW, 902.6, 14.34 dBm	24
Plot 19. Peak Power Output, 125 kHz BW, 909, 14.54 dBm	
Plot 20. Peak Power Output, 125 kHz BW, 915.4, 14.58 dBm	
Plot 21. Peak Power Output, 250 kHz BW, 902.6, 14.38 dBm	25
Plot 22. Peak Power Output, 250 kHz BW, 909, 14.63 dBm	
Plot 23. Peak Power Output, 250 kHz BW, 915.4, 14.68 dBm	25
Plot 24. Radiated Spurious Emissions, 1 - 10 GHz, 902.6 MHz, Horizontal, Average	
Plot 25. Radiated Spurious Emissions, 1 - 10 GHz, 902.6 MHz, Vertical, Average	
Plot 26. Radiated Spurious Emissions, 1 - 10 GHz, 909 MHz, Horizontal, Average	
Plot 27. Radiated Spurious Emissions, 1 - 10 GHz, 909 MHz, Vertical, Average	
Plot 28. Radiated Spurious Emissions, 1 - 10 GHz, 915.4 MHz, Horizontal, Average	
Plot 29. Radiated Spurious Emissions, 1 - 10 GHz, 915.4 MHz, Vertical, Average	29

	20
Plot 30. Radiated Spurious Emissions, 1 - 10 GHz, Standby, Horizontal, Average	
Plot 31. Radiated Spurious Emissions, 1 - 10 GHz, Standby, Vertical, Average	
Plot 32. Radiated Spurious Emissions, 30 - 1000 MHz, 902.6 MHz, Horizontal	
Plot 33. Radiated Spurious Emissions, 30 - 1000 MHz, 902.6 MHz, Vertical	
Plot 34. Radiated Spurious Emissions, 30 - 1000 MHz, 909 MHz, Horizontal	
Plot 35. Radiated Spurious Emissions, 30 - 1000 MHz, 909 MHz, Vertical	
Plot 36. Radiated Spurious Emissions, 30 - 1000 MHz, 915.4 MHz, Horizontal	
Plot 37. Radiated Spurious Emissions, 30 - 1000 MHz, 915.4 MHz, Vertical	
Plot 38. Radiated Spurious Emissions, 30 - 1000 MHz, Standby, Horizontal	32
Plot 39. Radiated Spurious Emissions, 30 - 1000 MHz, Standby, Vertical	33
Plot 40. Radiated Restricted Band Edge, 902.6 MHz, Horizontal, Average	34
Plot 41. Radiated Restricted Band Edge, 902.6 MHz, Vertical, Average	34
Plot 42. Radiated Restricted Band Edge, 915 MHz, Horizontal, Average	35
Plot 43. Radiated Restricted Band Edge, 915.4 MHz, Vertical, Average	35
Plot 44. Conducted Spurious Emissions, 125 kHz BW, 902.6, 30 MHz – 10 GHz	40
Plot 45. Conducted Spurious Emissions, 125 kHz BW, 909, 30 MHz - 10 GHz	40
Plot 46. Conducted Spurious Emissions, 125 kHz BW, 915.4, 30 MHz – 1 GHz	
Plot 47. Conducted Spurious Emissions, 250 kHz BW, 902.6 MHz, 30 MHz - 10 GHz	
Plot 48. Conducted Spurious Emissions, 250 kHz BW, 909 MHz, 30 MHz – 10 GHz	
Plot 49. Conducted Spurious Emissions, 250 kHz BW, 915.4 MHz, 30 MHz - 10 GHz	
Plot 50. Conducted Band Edge, 125 kHz BW, 902.6	
Plot 51. Conducted Band Edge, 125 kHz BW, 915.4	
Plot 52. Conducted Band Edge, 250 kHz BW, 902.6 MHz.	
Plot 53. Conducted Band Edge, 250 kHz BW, 915.4 MHz.	
Plot 54. Conducted Band Edge, 125 kHz BW, Hopping, High	
Plot 55. Conducted Band Edge, 125 kHz BW, Hopping, Low	
Plot 56. Conducted Band Edge, 250 kHz BW, Hopping, High	
Plot 57. Conducted Band Edge, 250 kHz BW, Hopping, Low	

List of Figures

Figure 1.	Block Diagram of Test Configuration 1	6
	Block Diagram, Occupied Bandwidth Test Setup	
U	Peak Power Output Test Setup	
U	Block Diagram, Conducted Spurious Emissions Test Setup	

List of Photographs

Photograph 1.	Conducted Emissions, Test Setup	15
Photograph 2.	Conducted Emissions, LISN Connection	15
Photograph 3.	Radiated Spurious Emissions, Above 1 GHz, Antenna, Test Setup	36
Photograph 4.	Radiated Spurious Emissions, Above 1 GHz, Front, Test Setup	36
Photograph 5.	Radiated Spurious Emissions, Below 1 GHz, Antenna, Test Setup	37
Photograph 6.	Radiated Spurious Emissions, Below 1 GHz, Front, Test Setup	37
Photograph 7.	Radiated Spurious Emissions, Below 1 GHz, Rear, Test Setup	38

Carnegie Technologies Longview

AC	Alternating Current
ACF	Antenna Correction Factor
Cal	Calibration
d	Measurement Distance
dB	Decibels
dBμA	Decibels above one microamp
dBμV	Decibels above one microvolt
dBμA/m	Decibels above one microamp per meter
dBμV/m	Decibels above one microvolt per meter
DC	Direct Current
Ε	Electric Field
DSL	Digital Subscriber Line
ESD	Electrostatic Discharge
EUT	Equipment Under Test
f	Frequency
FCC	Federal Communications Commission
GRP	Ground Reference Plane
Н	Magnetic Field
НСР	Horizontal Coupling Plane
Hz	Hertz
IEC	International Electrotechnical Commission
kHz	kilohertz
kPa	kilopascal
kV	kilovolt
LISN	Line Impedance Stabilization Network
MHz	Megahertz
μΗ	microhenry
μ	microfarad
μs	microseconds
NEBS	Network Equipment-Building System
PRF	Pulse Repetition Frequency
RF	Radio Frequency
RMS	Root-Mean-Square
ТWT	Traveling Wave Tube
V/m	Volts per meter
VCP	Vertical Coupling Plane

List of Terms and Abbreviations

Carnegie Technologies Longview Electromagnetic Compatibility Executive Summary CFR Title 47, 15.247

I. Executive Summary

A. Purpose of Test

An EMC evaluation was performed to determine compliance of the Carnegie Technologies Longview, with the requirements of Part 15, §15.247. All references are to the most current version of Title 47 of the Code of Federal Regulations in effect. In accordance with §2.1033, the following data is presented in support of the Certification of the Longview. Carnegie Technologies should retain a copy of this document which should be kept on file for at least two years after the manufacturing of the Longview, has been **permanently** discontinued.

B. Executive Summary

The following tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, §15.247, in accordance with Carnegie Technologies, purchase order number POLABS1654 All tests were conducted using measurement procedure ANSI C63.10-2013.

FCC Reference 47 CFR Part 15.247:2005	Description	Compliance
Title 47 of the CFR, Part 15 §15.203	Antenna Requirement	Compliant
Title 47 of the CFR, Part 15 §15.207(a)	Conducted Emission Limits	Compliant
Title 47 of the CFR, Part 15 §15.247(a)(1)	20 dB Occupied Bandwidth	Compliant
Title 47 of the CFR, Part 15 §15.247(a)(1)	Average Time of Occupancy (Dwell Time)	Compliant
Title 47 of the CFR, Part 15 §15.247(a)(1)	Number of RF Channels	Compliant
Title 47 of the CFR, Part 15 §15.247(a)(1)	RF Channel Separation	Compliant
Title 47 of the CFR, Part 15 §15.247(b)	Peak Power Output	Compliant
Title 47 of the CFR, Part 15 §15.247(d); §15.209; §15.205	Radiated Spurious Emissions	Compliant
Title 47 of the CFR, Part 15 §15.247(d)	Spurious Conducted Emissions	Compliant
Title 47 of the CFR, Part 15 §15.247(f)	Power Density	Not Applicable – Transmitter was tested to FHSS requirements.
Title 47 of the CFR, Part 15 §15.247(i)	Maximum Permissible Exposure (MPE)	Compliant

Table 1. Executive Summary of EMC Part 15.247 ComplianceTesting

Carnegie Technologies Longview Electromagnetic Compatibility Equipment Configuration CFR Title 47, 15.247

II. Equipment Configuration

Carnegie Technologies Longview

A. Overview

Eurofins | MET Labs, Inc. was contracted by Carnegie Technologies to perform testing on the Longview, under Carnegie Technologies's purchase order number POLABS1654

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the Carnegie Technologies, Longview.

Model(s) Tested:	Longview (ANG-171)		
Model(s) Covered:	Longview (ANG-171)		
	Primary Power: 15VDC		
	FCC ID: 2ARIP-0001		
EUT	Type of Modulations:	DSSS, OFDM	
Specifications:	Equipment Code:	DSS	
	Peak RF Output Power:	14.68 dBm	
	EUT Frequency Ranges: 902.6-915.4 MHz		
Analysis:	The results obtained relate only to the item(s) tested.		
	Temperature: 15-35° C		
Environmental Test Conditions:	Relative Humidity: 30-60	%	
	Barometric Pressure: 860-1060 mbar		
Evaluated by:	Giuliano Messina		
Report Date(s):	December 26, 2018		

The results obtained relate only to the item(s) tested.

 Table 2. EUT Summary Table

Carnegie Technologies Longview

B. References

CFR 47, Part 15, Subpart C	Federal Communication Commission, Code of Federal Regulations, Title 47, Part 15: General Rules and Regulations, Allocation, Assignment, and Use of Radio Frequencies	
ANSI C63.4:2014	Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical And Electronic Equipment in the Range of 9 kHz to 40 GHz	
ISO/IEC 17025:2005	General Requirements for the Competence of Testing and Calibration Laboratories	
ANSI C63.10-2013 American National Standard for Testing Unlicensed Wireless D		

Table 3. References

C. Test Site

All testing was performed at Eurofins | MET Labs, Inc., 13501 McCallen Pass, Austin, TX 78753. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

Radiated Emissions measurements were performed in a 10 meter semi-anechoic chamber (equivalent to an Open Area Test Site). In accordance with §2.948(a)(3), a complete site description is contained at MET Laboratories.

D. Measurement Uncertainty

Test Method	Typical Expanded Uncertainty	К	Confidence Level
RF Frequencies	±4.52 Hz	2	95%
RF Power Conducted Emissions	±2.97 dB	2	95%
RF Power Radiated Emissions, >1GHz	±3.54 dB	2	95%
RF Power Radiated Emissions, <1GHz	±2.95 dB	2	95%

Table 4. Uncertainty Calculations Summary

E. Description of Test Sample

The Carnegie Technologies Longview, Equipment Under Test (EUT), is an Access Node is used to gather data from tags in the field and then send that data to a hub.

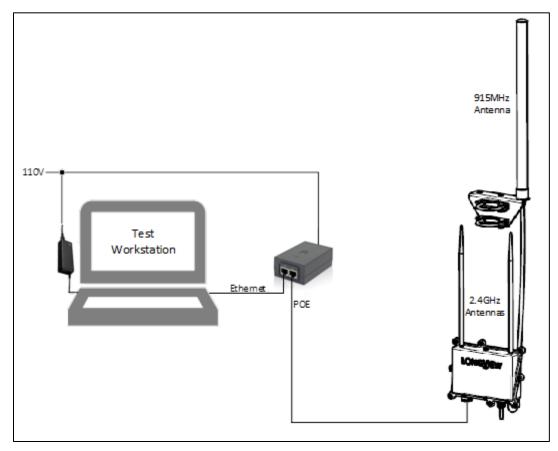


Figure 1. Block Diagram of Test Configuration 1

F. Equipment Configuration

The EUT was set up as outlined in Figure 1, Block Diagram of Test Setup. All cards, racks, etc., incorporated as part of the EUT is included in the following list.

Ref. ID	Slot #	Name / Description	Model Number	Part Number	Serial Number	Rev. #
N/A	N/A	Access Node	ANG-171	N/A	N/A	N/A
N/A	N/A	2.4GHz Antenna	N/A	N/A	N/A	N/A
N/A	N/A	2.4GHz Antenna	N/A	N/A	N/A	N/A
N/A	N/A	900Mhz Antenna	N/A	N/A	N/A	N/A

Table 5. Equipment Configuration

G. Support Equipment

Support equipment necessary for the operation and testing of the EUT is included in the following list.

Ref. ID	Name / Description	Manufacturer	Model Number	*Customer Supplied Calibration Data
N/A	laptop	N/A	N/A	N/A
N/A	РоЕ	N/A	N/A	N/A
		•		

The 'Customer Supplied Calibration Data' column will be marked as either not applicable, not available, or will contain the calibration date supplied by the customer.

 Table 6.
 Support Equipment

H. Ports and Cabling Information

Ref. ID	Port name on EUT	Cable Description or reason for no cable	Qty	Length as tested (m)	Max Length (m)	Shielded? (Y/N)	Termination Box ID & Port Name
1	Ethernet Port 0	CAT 5E Shielded Ethernet	1	5	100	Y	(A) J18
3	2.4GHz Antenna	SMA Direct Mount Antenna	1	N/A	N/A	N/A	(A) J10
4	2.4GHz Antenna	SMA Direct Mount Antenna	1	N/A	N/A	N/A	(A) J11
6	900Mhz Antenna	Type N Direct Mount Antenna	1	N/A	N/A	N/A	(A) J1

Table 7. Ports and Cabling Information

I. Mode of Operation

Power to the unit will be supplied via Power-Over-Ethernet (POE) to properly stress this portion of the circuit. The EUT was connected via ethernet to a laptop where a TeraTerm connection provided transmitter parameter control.

J. Method of Monitoring EUT Operation

A software utility (util_tx_test1) is used to generate the 900MHz LoRa test packet transmission. Failure to communicate with the LoRa subsystem results in an appropriate message being displayed on the test laptop. General Ethernet communication between the test laptop and the EUT indicates that power is applied via POE and the primary host controller and all associated circuits are performing as expected.

K. Modifications

a) Modifications to EUT

No modifications were made to the EUT.

b) Modifications to Test Standard

No modifications were made to the test standard.

L. Disposition of EUT

The test sample including all support equipment submitted to the Electro-Magnetic Compatibility Lab for testing was returned to Carnegie Technologies upon completion of testing.

Carnegie Technologies Longview Electromagnetic Compatibility Intentional Radiators CFR Title 47, 15.247

III. Electromagnetic Compatibility Criteria for Intentional Radiators

Longview

Carnegie Technologies

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.203 Antenna Requirement

Test Requirement: § 15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

The structure and application of the EUT were analyzed to determine compliance with Section 15.203 of the Rules. Section 15.203 states that the subject device must meet at least one of the following criteria:

- a.) Antenna must be permanently attached to the unit.
- b.) Antenna must use a unique type of connector to attach to the EUT.

c.) Unit must be professionally installed. Installer shall be responsible for verifying that the correct antenna is employed with the unit.

- **Results:** The EUT as tested is compliant the criteria of §15.203. Unit contains an N type of connector. However, the unit will be professionally installed.
- **Test Engineer(s):** Kristine Song

Test Date(s): September 5, 2018

Gain	Туре	Model	Manufacturer
6 dBi	Omni	HGV-906U	L-Com

 Table 8. Antenna List

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.207(a) Conducted Emissions Limits

Test Requirement(s): § 15.207 (a): For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency range	§ 15.207(a), Conducted Limit (dBµV)			
(MHz)	Quasi-Peak	Average		
* 0.15 - 0.5	66 - 56	56 - 46		
0.5 - 5	56	46		
5 - 30	60	50		

Note: *Decreases with the logarithm of the frequency.

Test Procedure: The EUT was placed on a 0.8 m-high wooden table. The EUT was situated such that the back of the EUT was 0.4 m from one wall of the vertical ground plane, and the remaining sides of the EUT were no closer than 0.8 m from any other conductive surface. The EUT was powered from a 50 Ω /50 μ H Line Impedance Stabilization Network (LISN). The EMC receiver scanned the frequency range from 150 kHz to 30 MHz. Conducted Emissions measurements were made in accordance with ANSI C63.4-2014 "Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40 GHz". For the purpose of this testing, the transmitter was turned on.

Test Results: The EUT was compliant with this requirement. Measured emissions were within applicable limits.

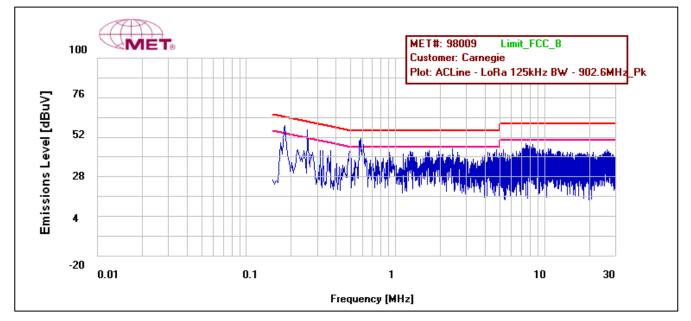
Test Engineer(s): Giuliano Messina

Test Date(s): December 7, 2018

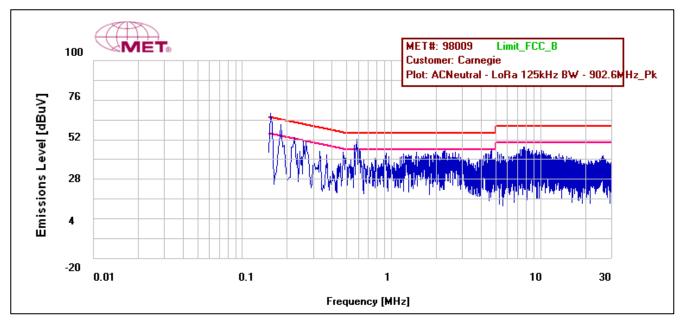
Meas. Location	Meas. m	Limit	Pass/Fail
Bonding measurement from LISN ground to ground plane	1.14	$< 2.5 \text{ m}\Omega$	Pass

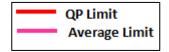
 Table 10. Conducted Emissions, Bonding Measurements

Carnegie Technologies Longview Electromagnetic Compatibility Intentional Radiators CFR Title 47, 15.247

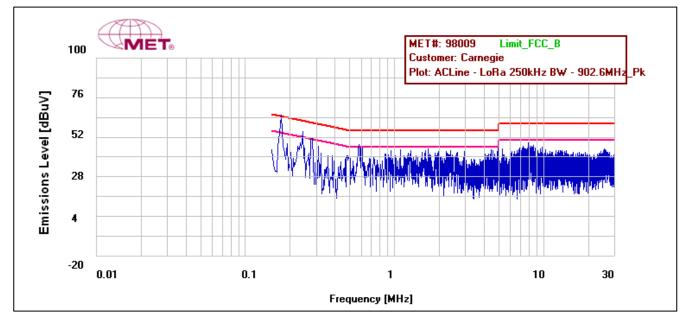

15.207(a) Conducted Emissions Test Results

Line	Freq (MHz)	QP Amplitude	QP Limit	Delta	Pass	Average Amplitude	Average Limit	Delta	Pass
ACLine - LoRa 125kHz BW - 902.6MHz	0.170	57.7	64.963	-7.263	Pass	38.3	54.963	-16.663	Pass
ACLine - LoRa 125kHz BW - 902.6MHz	0.182	61.7	64.398	-2.698	Pass	47.9	54.398	-6.498	Pass
ACLine - LoRa 125kHz BW - 902.6MHz	0.258	48.6	61.508	-12.908	Pass	32.5	51.508	-19.008	Pass
ACLine - LoRa 125kHz BW - 902.6MHz	0.586	49.9	56	-6.1	Pass	41	46	-5	Pass
ACLine - LoRa 125kHz BW - 902.6MHz	7.482	42.7	60	-17.3	Pass	34.6	50	-15.4	Pass
ACLine - LoRa 125kHz BW - 902.6MHz	8.334	43.3	60	-16.7	Pass	35.5	50	-14.5	Pass
ACNeutral - LoRa 125kHz BW - 902.6MHz	0.154	55	65.782	-10.782	Pass	36.7	55.782	-19.082	Pass
ACNeutral - LoRa 125kHz BW - 902.6MHz	0.182	61.8	64.398	-2.598	Pass	49	54.398	-5.398	Pass
ACNeutral - LoRa 125kHz BW - 902.6MHz	0.226	56.1	62.605	-6.505	Pass	44.8	52.605	-7.805	Pass
ACNeutral - LoRa 125kHz BW - 902.6MHz	0.258	49.2	61.508	-12.308	Pass	34.2	51.508	-17.308	Pass
ACNeutral - LoRa 125kHz BW - 902.6MHz	0.586	50.4	56	-5.6	Pass	42.3	46	-3.7	Pass
ACNeutral - LoRa 125kHz BW - 902.6MHz	7.694	43.5	60	-16.5	Pass	35.6	50	-14.4	Pass
ACLine - LoRa 250kHz BW - 902.6MHz	0.174	60.3	64.771	-4.471	Pass	42.6	54.771	-12.171	Pass
ACLine - LoRa 250kHz BW - 902.6MHz	0.190	59.2	64.042	-4.842	Pass	45.2	54.042	-8.842	Pass
ACLine - LoRa 250kHz BW - 902.6MHz	0.242	53.9	62.038	-8.138	Pass	41.6	52.038	-10.438	Pass
ACLine - LoRa 250kHz BW - 902.6MHz	0.278	48.5	60.889	-12.389	Pass	34.4	50.889	-16.489	Pass
ACLine - LoRa 250kHz BW - 902.6MHz	7.982	44.5	60	-15.5	Pass	36	50	-14	Pass
ACLine - LoRa 250kHz BW - 902.6MHz	9.818	40.8	60	-19.2	Pass	33.4	50	-16.6	Pass
ACNeutral - LoRa 250kHz BW - 902.6MHz	0.150	62.3	66	-3.7	Pass	45.6	56	-10.4	Pass
ACNeutral - LoRa 250kHz BW - 902.6MHz	0.170	57.9	64.963	-7.063	Pass	35.5	54.963	-19.463	Pass
ACNeutral - LoRa 250kHz BW - 902.6MHz	0.194	60	63.869	-3.869	Pass	42.4	53.869	-11.469	Pass
ACNeutral - LoRa 250kHz BW - 902.6MHz	0.230	54.8	62.459	-7.659	Pass	42.9	52.459	-9.559	Pass
ACNeutral - LoRa 250kHz BW - 902.6MHz	0.278	48.6	60.889	-12.289	Pass	36.7	50.889	-14.189	Pass
ACNeutral - LoRa 250kHz BW - 902.6MHz	8.286	44.5	60	-15.5	Pass	36.8	50	-13.2	Pass

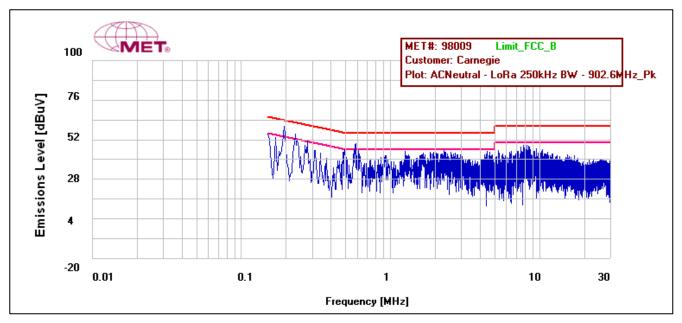

Table 11. Conducted Emissions, Test Results


Carnegie Technologies Longview Electromagnetic Compatibility Intentional Radiators CFR Title 47, 15.247

Plot 1. Conducted Emissions, 125 kHz, Phase Line



Plot 2. Conducted Emissions, 125 kHz, Neutral Line



Carnegie Technologies Longview Electromagnetic Compatibility Intentional Radiators CFR Title 47, 15.247

Plot 3. Conducted Emissions, 250 kHz, Phase Line

Plot 4. Conducted Emissions, 250 kHz, Neutral Line

Carnegie Technologies Longview Electromagnetic Compatibility Intentional Radiators CFR Title 47, 15.247

15.207(a) Conducted Emissions Test Setup Photo

Photograph 1. Conducted Emissions, Test Setup

Photograph 2. Conducted Emissions, LISN Connection

Carnegie Technologies

Longview

MET Labs

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(a)(1) 20 dB Occupied Bandwidth

Test Requirements:§ 15.247(a): Operation under the provisions of this section is limited to frequency hopping and
digitally modulated intentional radiators that comply with the following provisions:

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequencies and the average time of occupancy on any frequencies and the average time of occupancy on any frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

- **Test Procedure:** The bandwidth of the fundamental frequency was measured with the spectrum analyzer using a RBW approximately equal to 1% of the total emission bandwidth. The 20 dB bandwidth was measured and recorded.
- **Test Results** The EUT was compliant with § 15.247 (a)(1).
- Test Engineer(s): Giuliano Messina
- Test Date(s): December 5, 2018

FUT	Spectrum
LUI	Analyzer

Figure 2. Block Diagram, Occupied Bandwidth Test Setup

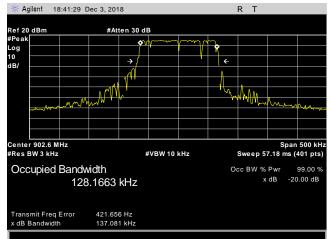
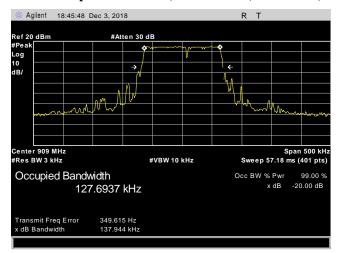
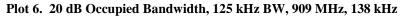
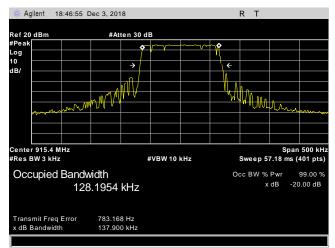

		OBW Table		
Bandwidth Mode	Channel	Freq (MHz)	-20dB (kHz)	99% (kHz)
125kHz	Low	902.6	137.081	128.1663
125kHz	Mid	909	137.944	127.6937
125kHz	High	915.4	137.900	128.1954
250kHz	Low	902.6	283.171	258.7564
250kHz	Mid	909	281.864	259.9660
250kHz	High	915.4	293.514	261.1608

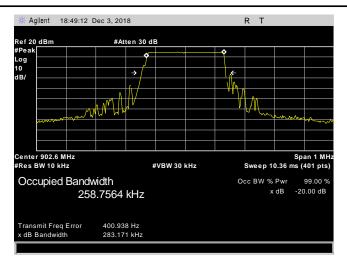
 Table 12. Occupied Bandwidth measurements



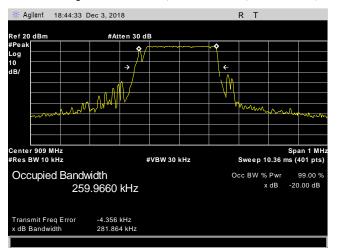

Carnegie Technologies Longview Electromagnetic Compatibility Intentional Radiators CFR Title 47, 15.247


20 dB Occupied Bandwidth Test Results

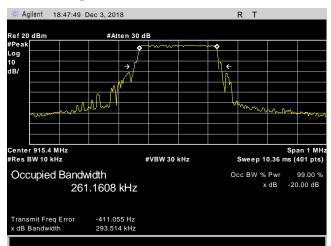
Plot 5. 20 dB Occupied Bandwidth, 125 kHz BW, 902.6 MHz, 137 kHz



Plot 7. 20 dB Occupied Bandwidth, 125 kHz BW, 915.4 MHz, 138 kHz



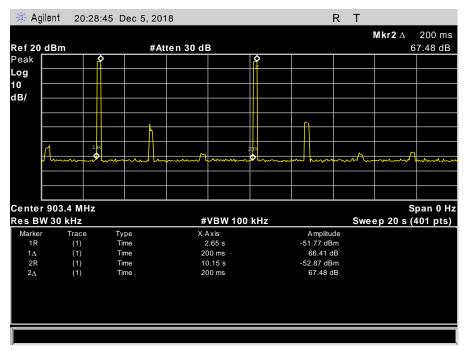
MET Labs


Electromagnetic Compatibility Intentional Radiators CFR Title 47, 15.247

Plot 8. 20 dB Occupied Bandwidth, 250 kHz BW, 902.6 MHz, 283 kHz

Plot 9. 20 dB Occupied Bandwidth, 250 kHz BW, 909 MHz, 281 kHz

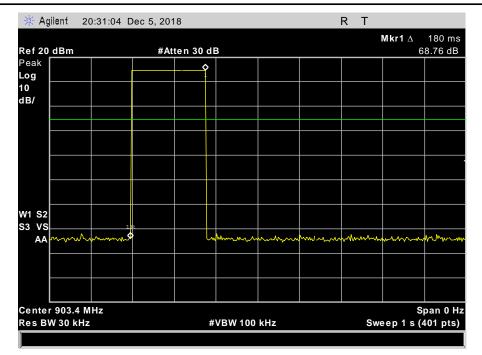
Plot 10. 20 dB Occupied Bandwidth, 250 kHz BW, 915.4 MHz, 293 kHz

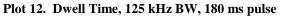

Electromagnetic Compatibility Criteria for Intentional Radiators

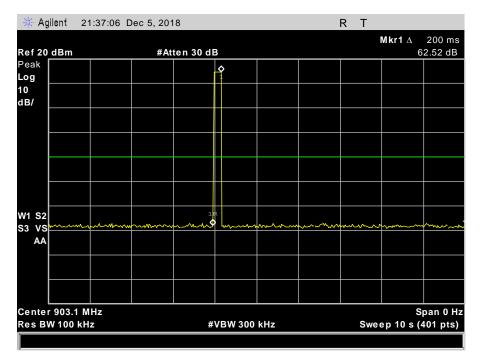
§ 15.247(a)(1) Average Time of Occupancy (Dwell Time)

Remarks: The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period.

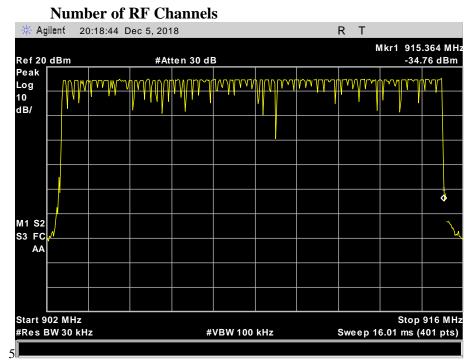
Total hopping channels is 64 for the 125kHz bandwidth setting, and 32 for the 250kHz bandwidth setting. Dwell time in both instances is <0.4s for the required time span. The EUT meets the specifications of Section 15.247(a) (1) (i) for Number of Hopping Channels.


Dwell Time

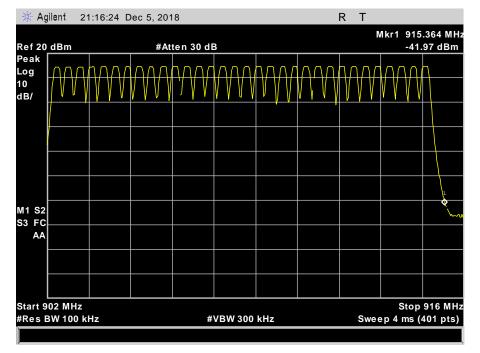



Plot 11. Dwell Time, 125 kHz BW, 20s span

Electromagnetic Compatibility Intentional Radiators CFR Title 47, 15.247



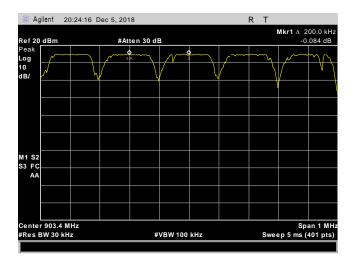
Plot 13. Dwell Time, 250 kHz BW, 200 ms pulse

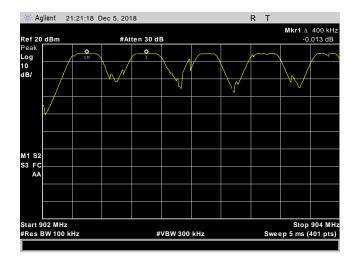


Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(a)(1)

Plot 14. Number of Channels, 125 kHz BW, 64


Plot 15. Number of Channels, 250 kHz BW, 32


Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(a)(1) RF Channel Separation

- **Requirement:** Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.
- Remarks: Maximum 20dB bandwidth for 125kHz: 137.94kHz Maximum 20 dB bandwidth for 250kHz: 293.51kHz

Plot 16. Minimum Channel Separation, 125 kHz BW, 200 kHz

Plot 17. Minimum Channel Separation, 250 kHz BW, 400 kHz

Electromagnetic Compatibility Criteria for Intentional Radiators

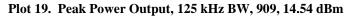
§ 15.247(b)	Peak Power Output				
Test Requirements:	§15.247(b)(2): The maximum peak conducted output power of the intentional radiator shall not exceed the following:				
	For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph $(a)(1)(i)$ of this section.				
Test Procedure:	The transmitter was connected to a calibrated spectrum analyzer. The EUT was measured at the low, mid and high channels of each band.				
	The EUT utilizes a 6dBi Omni Antenna, so the maximum power allowed is 30dBm at 125kHz bandwidth and 23.97dBm at 250kHz bandwidth.				
Test Results:	The EUT was compliant with the Peak Power Output limits of §15.247(b).				
Test Engineer(s):	Giuliano Messina				
Test Date(s):	December 15, 2018				
	EUT Spectrum Analyzer				

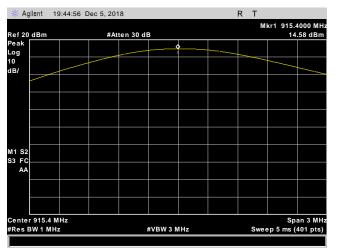
Figure 3. Peak Power Output Test Setup

Peak Power Output Test Results

	Peak Conducted Output Power					
Bandwidth Mode	Carrier Channel	Frequency (MHz)	Measured Peak Output Power dBm			
125kHz	Low	902.6	14.34			
125kHz	Mid	909	14.54			
125kHz	High	915.4	14.58			
250kHz	Low	902.6	14.38			
250kHz	Mid	909	14.63			
250kHz	High	915.4	14.68			

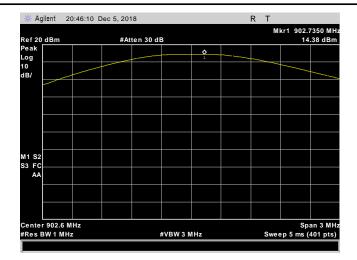
Table 13. Peak Power Output, Test Results

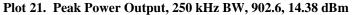

Electromagnetic Compatibility Intentional Radiators CFR Title 47, 15.247


Peak Power Output Test Results

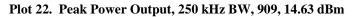
Plot 18. Peak Power Output, 125 kHz BW, 902.6, 14.34 dBm

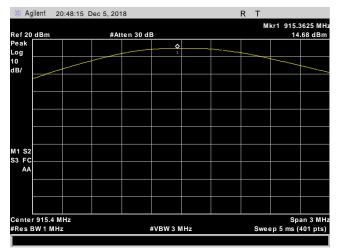
Ref 20 dBm	#At	ten 30 dE	3		IVI	kr1 909.(14	.54 dBi
eak .og				¢			
0 B/							
1 S2 3 FC							
AA							
enter 909 MHz Res BW 1 MHz			≠VBW 3 Μ	Hz	Swe	Spa ep 5 ms (-	an 3 M 401 nts





Plot 20. Peak Power Output, 125 kHz BW, 915.4, 14.58 dBm




Electromagnetic Compatibility Intentional Radiators CFR Title 47, 15.247

Ref 20 dBm	#Atten 30 dB			Mkr1 909.0225 MH 14.63 dBn				
Peak Log				¢				
0 IB/								
11 S2								
AA								
enter 909 MHz Res BW 1 MHz			#VBW 3 N	IHz		Swee	Spa Sp 5 ms (+	an 3 M 401 pt:

Plot 23. Peak Power Output, 250 kHz BW, 915.4, 14.68 dBm

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(d) Radiated Spurious Emissions Requirements and Band Edge

Test Requirements: §15.247(d); §15.205: Emissions outside the frequency band.

§15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a).

§15.205(a): Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15
¹ 0.495–0.505	16.69475–16.69525	608–614	5.35–5.46
2.1735–2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125-4.128	25.5–25.67	1300–1427	8.025-8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215-6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9–150.05	2310–2390	15.35–16.2
8.362-8.366	156.52475-156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7–156.9	2655–2900	22.01–23.12
8.41425-8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358 36.	43–36.5
12.57675–12.57725	322–335.4	3600-4400	(²)

Table 14. Restricted Bands of Operation

 $^1\,$ Until February 1, 1999, this restricted band shall be $0.490-0.510\,$ MHz.

² Above 38.6

Electromagnetic Compatibility Intentional Radiators CFR Title 47, 15.247

Carnegie Technologies Longview

Test Requirement(s):

§ 15.209 (a): Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in Table 15.

Frequency (MHz)	§ 15.209(a),Radiated Emission Limits (dBµV) @ 3m
30 - 88	40.00
88 - 216	43.50
216 - 960	46.00
Above 960	54.00

Table 15. Radiated Emissions Limits Calculated from FCC Part 15, § 15.209 (a)

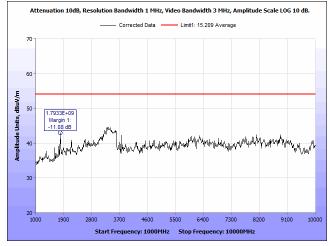
Test Procedure: The transmitter was set to the low, mid, and high channel at the highest output power and placed on a 0.8 m high wooden table inside in a semi-anechoic chamber. Measurements were performed with the EUT rotated 360 degrees and varying the adjustable antenna mast with 1 m to 4 m height to determine worst case orientation for maximum emissions.

For intentional radiators with a digital device portion which operates below 10 GHz, the spectrum was investigated as per \$15.33(a)(1) and \$15.33(a)(4); i.e., the lowest RF signal generated or used in the device up to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

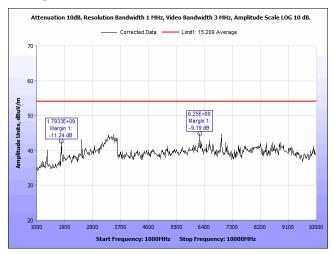
In accordance with §15.35(b) the limit on the radio frequency emissions as measured using instrumentation with a peak detector function shall be 20 dB above the maximum permitted average limit for the frequency being investigated unless a different peak emission limit is otherwise specified in the rules.

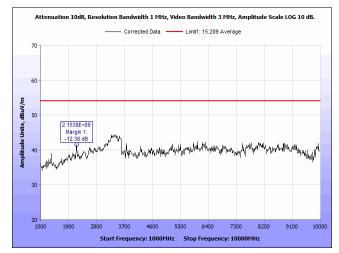
For frequencies from 30 MHz to 1 GHz, measurements were made using a quasi-peak detector with a 120 kHz bandwidth. For frequencies above 1GHz, measurements were made using a peak detector against the average limit, simultaneously satisfying the peak and average requirements above.

EUT Field Strength Final Amplitude = Raw Amplitude – Preamp gain + Antenna Factor + Cable Loss – Distance Correction Factor

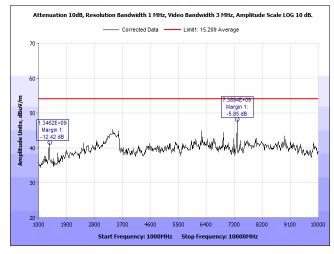

Test Results:The EUT was compliant with the Radiated Spurious Emission limits of §15.247(d). Measured
emissions were within applicable limits. Worst case mode plots are shown below.

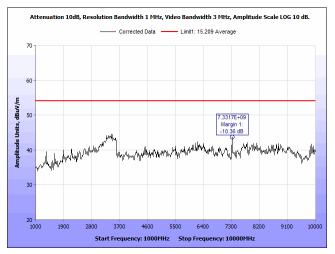
- **Test Engineer(s):** Giuliano Messina
- Test Date(s): December 3, 2018

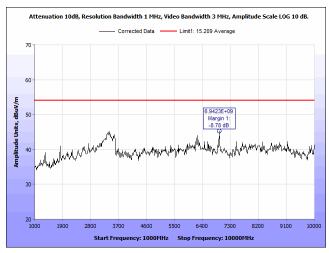

Test Note(s): All emissions above the limit were investigated. A consistent emission in the 900MHz range is caused by the intentional transmitter and is not subject to the limitations of this section. All other emissions over the limit were compared to the EUT in standby mode (shown below) to determine that they were not caused by the intentional transmitter.


Radiated Spurious Emissions Test Results

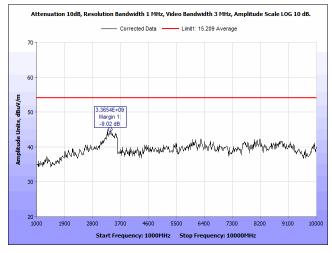
Plot 24. Radiated Spurious Emissions, 1 - 10 GHz, 902.6 MHz, Horizontal, Average

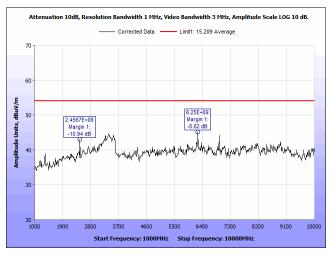

Plot 25. Radiated Spurious Emissions, 1 - 10 GHz, 902.6 MHz, Vertical, Average

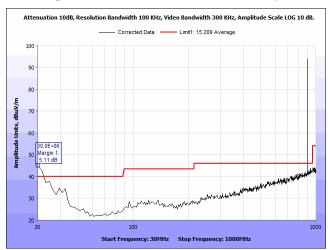

Plot 26. Radiated Spurious Emissions, 1 - 10 GHz, 909 MHz, Horizontal, Average


Carnegie Technologies Longview

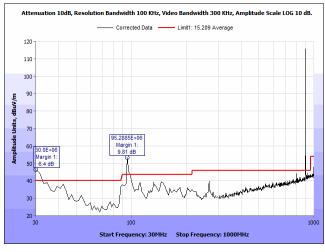
Plot 27. Radiated Spurious Emissions, 1 - 10 GHz, 909 MHz, Vertical, Average

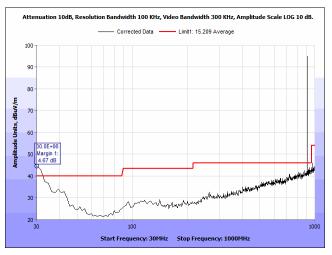

Plot 28. Radiated Spurious Emissions, 1 - 10 GHz, 915.4 MHz, Horizontal, Average


Plot 29. Radiated Spurious Emissions, 1 - 10 GHz, 915.4 MHz, Vertical, Average


Carnegie Technologies Longview

Plot 30. Radiated Spurious Emissions, 1 - 10 GHz, Standby, Horizontal, Average

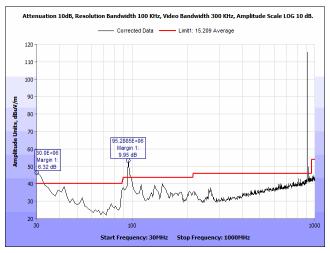

Plot 31. Radiated Spurious Emissions, 1 - 10 GHz, Standby, Vertical, Average

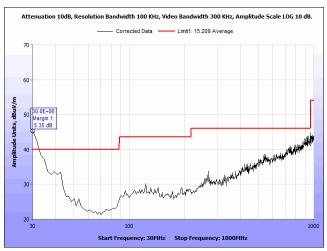

Plot 32. Radiated Spurious Emissions, 30 - 1000 MHz, 902.6 MHz, Horizontal


Carnegie Technologies Longview

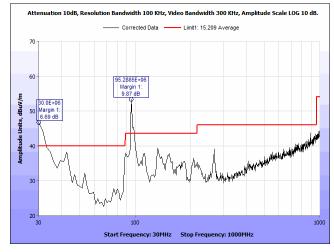
Plot 33. Radiated Spurious Emissions, 30 - 1000 MHz, 902.6 MHz, Vertical

Plot 34. Radiated Spurious Emissions, 30 - 1000 MHz, 909 MHz, Horizontal


Plot 35. Radiated Spurious Emissions, 30 - 1000 MHz, 909 MHz, Vertical


Carnegie Technologies Longview

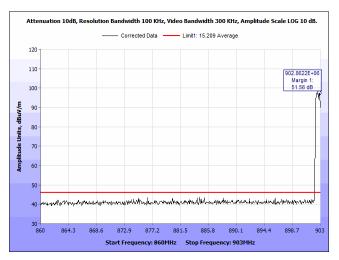
Plot 36. Radiated Spurious Emissions, 30 - 1000 MHz, 915.4 MHz, Horizontal


Plot 37. Radiated Spurious Emissions, 30 - 1000 MHz, 915.4 MHz, Vertical

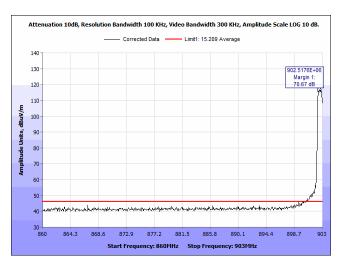
Plot 38. Radiated Spurious Emissions, 30 - 1000 MHz, Standby, Horizontal

Carnegie Technologies Longview

Plot 39. Radiated Spurious Emissions, 30 - 1000 MHz, Standby, Vertical

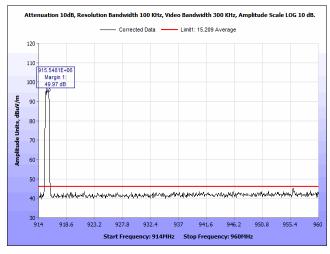


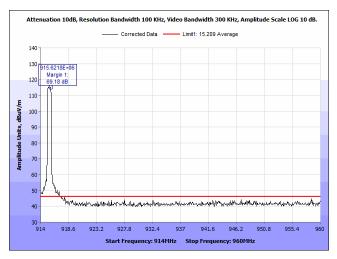
Electromagnetic Compatibility Intentional Radiators CFR Title 47, 15.247


Radiated Band Edge Measurements

Test Procedures:

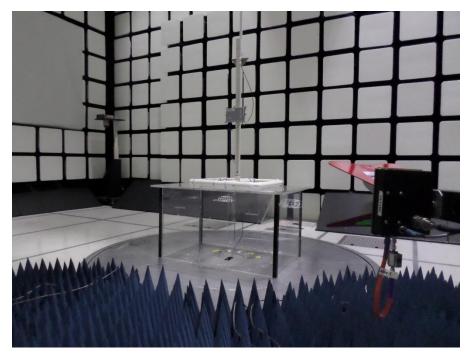
The transmitter was turned. Measurements were performed of the low and high Channels. The EUT was rotated orthogonally through all three axes. Plots shown are corrected for both antenna correction factor and distance.


Plot 40. Radiated Restricted Band Edge, 902.6 MHz, Horizontal, Average

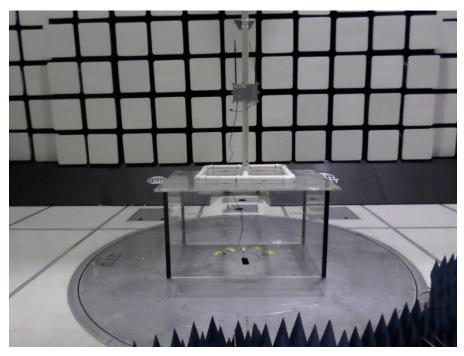

Plot 41. Radiated Restricted Band Edge, 902.6 MHz, Vertical, Average

Carnegie Technologies Longview

Plot 42. Radiated Restricted Band Edge, 915 MHz, Horizontal, Average



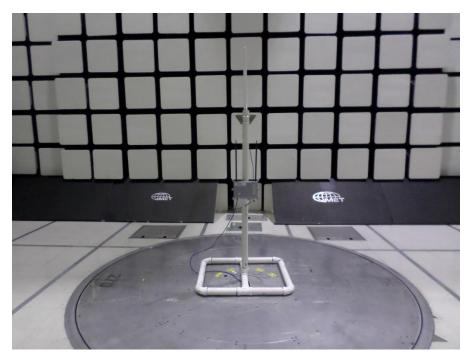
Plot 43. Radiated Restricted Band Edge, 915.4 MHz, Vertical, Average



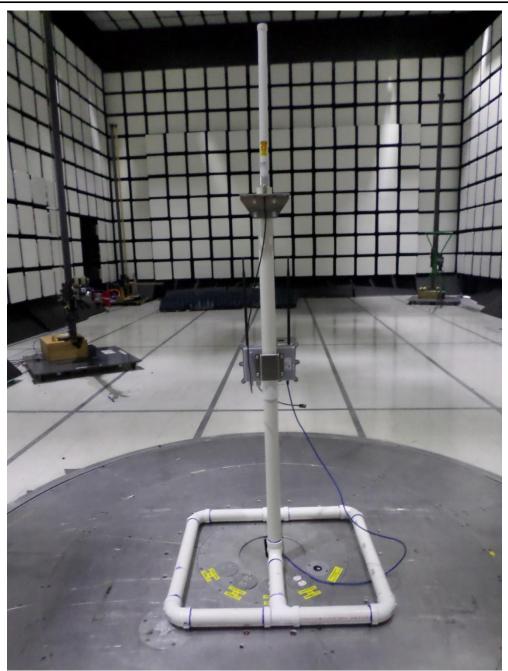
Carnegie Technologies Longview Electromagnetic Compatibility Intentional Radiators CFR Title 47, 15.247

Radiated Spurious Emissions Test Setup

Photograph 3. Radiated Spurious Emissions, Above 1 GHz, Antenna, Test Setup



Photograph 4. Radiated Spurious Emissions, Above 1 GHz, Front, Test Setup


Photograph 5. Radiated Spurious Emissions, Below 1 GHz, Antenna, Test Setup

Photograph 6. Radiated Spurious Emissions, Below 1 GHz, Front, Test Setup

Carnegie Technologies Longview Electromagnetic Compatibility Intentional Radiators CFR Title 47, 15.247

Photograph 7. Radiated Spurious Emissions, Below 1 GHz, Rear, Test Setup

Carnegie Technologies

Longview

MET Labs

Electromagnetic Compatibility Criteria for Intentional Radiators

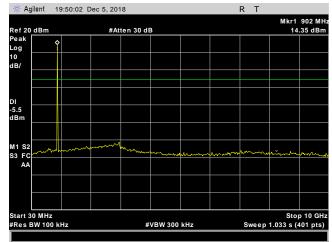
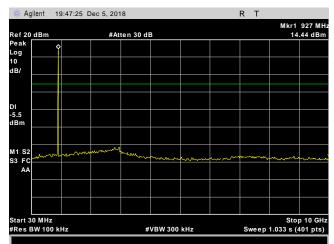

§ 15.247(d)	RF Conducted Spurious Emissions Requirements and Band Edge						
Test Requirement:	15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.						
Test Procedure:	For intentional radiators with a digital device portion which operates below 10 GHz, the spectrum was investigated as per §15.33(a)(1) and §15.33(a)(4); i.e., the lowest RF signal generated or used in the device up to the 10 th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower. See following pages for detailed test results with RF Conducted Spurious Emissions.						
Test Results:	The EUT was compliant with the Conducted Spurious Emission limits of §15.247(d) . Measured emissions were within applicable limits.						
Test Engineer(s):	Giuliano Messina						
Test Date(s):	December 5, 2018						
	EUT Spectrum Analyzer						

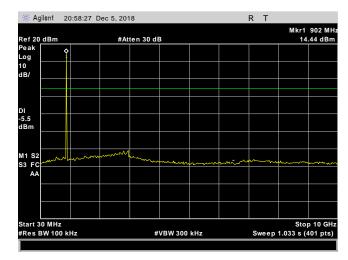
Figure 4. Block Diagram, Conducted Spurious Emissions Test Setup

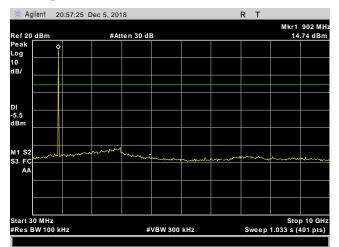
Analyzer

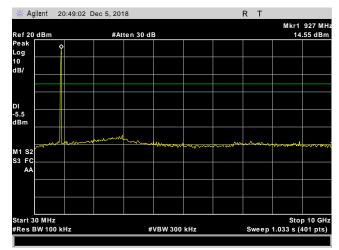

Conducted Spurious Emissions Test Results

Plot 44. Conducted Spurious Emissions, 125 kHz BW, 902.6, 30 MHz - 10 GHz

									902 M
Ref 20 d	Bm		#At	ten 30 di	3	 		14	.61 dBi
Peak _og	\$								
10 1B/									
	_								
DI 5.5 iBm									
M1 S2	استسب	~~~~~~		·	m	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ž	
63 FC									
Start 30 #Res BV					VBW 300			Sto 1.033 s (4	p 10 Gł

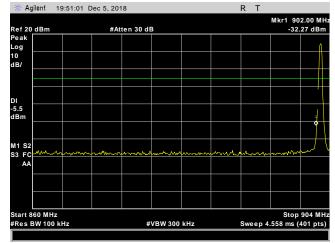

Plot 45. Conducted Spurious Emissions, 125 kHz BW, 909, 30 MHz - 10 GHz


Plot 46. Conducted Spurious Emissions, 125 kHz BW, 915.4, 30 MHz - 1 GHz

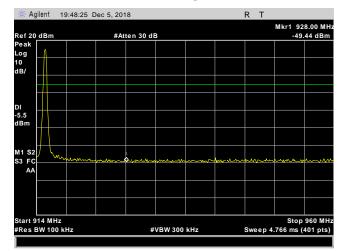

Carnegie Technologies Longview

Plot 47. Conducted Spurious Emissions, 250 kHz BW, 902.6 MHz, 30 MHz - 10 GHz

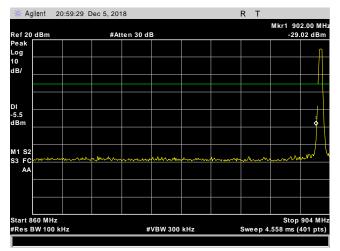
Plot 48. Conducted Spurious Emissions, 250 kHz BW, 909 MHz, 30 MHz - 10 GHz

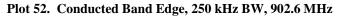


Plot 49. Conducted Spurious Emissions, 250 kHz BW, 915.4 MHz, 30 MHz - 10 GHz

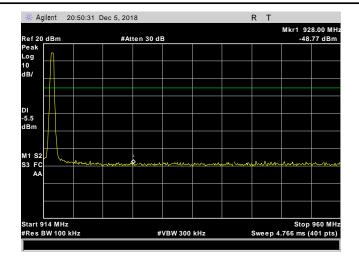


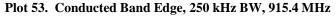

Electromagnetic Compatibility Intentional Radiators CFR Title 47, 15.247

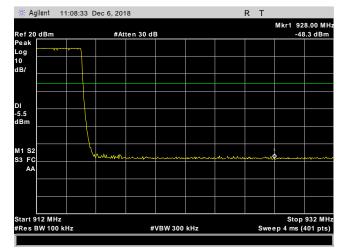

Conducted Band Edge Test Results

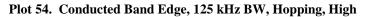


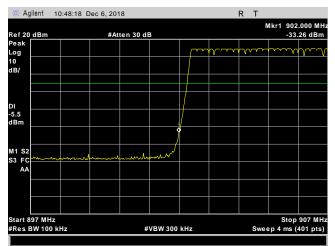
Plot 50. Conducted Band Edge, 125 kHz BW, 902.6

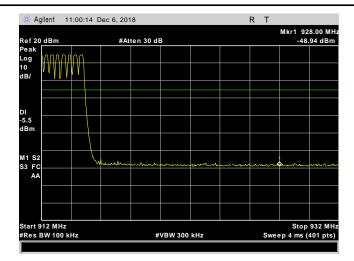


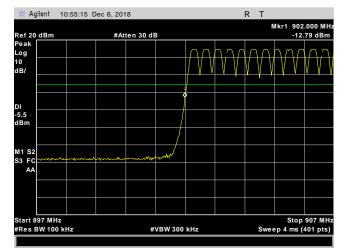



Carnegie Technologies


MET Labs


Longview




Plot 55. Conducted Band Edge, 125 kHz BW, Hopping, Low

Carnegie Technologies Longview

Plot 56. Conducted Band Edge, 250 kHz BW, Hopping, High

Plot 57. Conducted Band Edge, 250 kHz BW, Hopping, Low

Electromagnetic Compatibility Criteria for Intentional Radiators § 15.247(g)(h) Declaration Statements for FHSS

The Longview Gateway is a wireless base station which operates using LoRa modulation in the North American ISM band of 902 MHz – 928 MHz with TDD operation across the entire band. LoRa is a long range, low power wireless standard for Internet of Things (IoT) application (<u>https://www.lora-alliance.org/</u>). The Gateway and its LoRa protocol is designed to be compliant with FCC Part 15.247 as a frequency hopping spreads spectrum (FHSS) System. The device has a transmitter capable of approximately +14 dBm maximum for the fixed gateway (conducted at the antenna).

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.247(i) Maximum Permissible Exposure

- **RF Exposure Requirements:** §1.1307(b)(1) and §1.1307(b)(2): Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines.
- **RF Radiation Exposure Limit: §1.1310:** As specified in this section, the Maximum Permissible Exposure (MPE) Limit shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in Sec. 1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of Sec. 2.1093 of this chapter.

Example equation from page 18 of OET 65, Edition 97-01

 $S = PG / 4\pi R^2$ or $R = \int PG / 4\pi S$

where, R = Distance (20cm) P = Power Input to antenna (29.376mW)G = Antenna Gain (4 numeric)

 $S = (29.376*4)/4\pi(20)^2 = 0.0237$

FCC										
Frequency (MHz)	Con. Pwr. (dBm)	Con. Pwr. (mW)	Ant. Gain (dBi)	Ant. Gain numeric	Pwr. Density (mW/cm2)	Limit (mW/cm2)	Margin	Distance (cm)	Result	
915.4	14.68	29.376	6	3.981	0.0237	0.61	0.5863	20	Pass	

Carnegie Technologies Longview Electromagnetic Compatibility Test Equipment CFR Title 47, 15.247

IV. Test Equipment

Carnegie Technologies Longview

Test Equipment

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ISO/IEC 17025:2005.

MET Asset #	Nomenclature	Manufacturer	Model	Last Cal Date	Cal Due Date	
1A1184	Spectrum Analyzer	Agilent	E4407B	4/20/2018	4/20/2019	
1A1083	EMI Test Receiver	Rohde & Schwarz ESU40 10/17/2018		10/17/2019		
1A1106	10m Chamber (FCC)	ETS	Semi- Anechoic	See Note		
1A1050	Bilog Antenna (30MHz to 1GHz)	Schaffner	CBL 6112D	CBL 6112D 8/29/2018		
1A1050-A	Attenuator	Fairview Microwave	SA6N5WA-04	8/29/2018	2/29/2020	
1A1047	Horn Antenna	ETS	3117	10/30/2018	4/30/2020	
1A1099	Generator	COM-Power Corp	CGO-51000	See Note		
1A1088	Pre-Amp	Rohde & Schwarz	TS-PR1	See Note		
1A1044	Generator	COM-Power Corp	CG-520	See Note		
1A1073	Multi Device Controller	ETS EMCO	2090	See Note		
1A1074	System Controller	Panasonic	WV-CU101	See Note		
1A1080	Multi Device Controller	ETS EMCO	2090	See Note		
1A1180	Pre-Amp	Miteq	AMF-7D- 01001800-22- 10P	See Note		

Table 16. Test Equipment List

Note: Functionally tested equipment is verified using calibrated instrumentation at the time of testing.

Carnegie Technologies Longview Electromagnetic Compatibility Certification & User's Manual Information CFR Title 47, 15.247

V. Certification & User's Manual Information

Certification & User's Manual Information

A. Certification Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 2, Subpart I — Marketing of Radio frequency devices:

§ 2.801 Radio-frequency device defined.

As used in this part, a radio-frequency device is any device which in its operation is capable of Emitting radio-frequency energy by radiation, conduction, or other means. Radio- frequency devices include, but are not limited to:

- (a) The various types of radio communication transmitting devices described throughout this chapter.
- (b) The incidental, unintentional and intentional radiators defined in Part 15 of this chapter.
- (c) The industrial, scientific, and medical equipment described in Part 18 of this chapter.
- (d) Any part or component thereof which in use emits radio-frequency energy by radiation, conduction, or other means.

§ 2.803 Marketing of radio frequency devices prior to equipment authorization.

- (a) Except as provided elsewhere in this chapter, no person shall sell or lease, or offer for sale or lease (including advertising for sale or lease), or import, ship or distribute for the purpose of selling or leasing or offering for sale or lease, any radio frequency device unless:
 - (1) In the case of a device subject to certification, such device has been authorized by the Commission in accordance with the rules in this chapter and is properly identified and labeled as required by §2.925 and other relevant sections in this chapter; or
 - (2) In the case of a device that is not required to have a grant of equipment authorization issued by the Commission, but which must comply with the specified technical standards prior to use, such device also complies with all applicable administrative (including verification of the equipment or authorization under a Declaration of Conformity, where required), technical, labeling and identification requirements specified in this chapter.
- (d) Notwithstanding the provisions of paragraph (a) of this section, the offer for sale solely to business, commercial, industrial, scientific or medical users (but not an offer for sale to other parties or to end users located in a residential environment) of a radio frequency device that is in the conceptual, developmental, design or preproduction stage is permitted prior to equipment authorization or, for devices not subject to the equipment authorization requirements, prior to a determination of compliance with the applicable technical requirements *provided* that the prospective buyer is advised in writing at the time of the offer for sale that the equipment is subject to the FCC rules and that the equipment will comply with the appropriate rules before delivery to the buyer or to centers of distribution.

- (e)(1) Notwithstanding the provisions of paragraph (a) of this section, prior to equipment authorization or determination of compliance with the applicable technical requirements any radio frequency device may be operated, but not marketed, for the following purposes and under the following conditions:
 - (*i*) *Compliance testing;*
 - (ii) Demonstrations at a trade show provided the notice contained in paragraph (c) of this section is displayed in a conspicuous location on, or immediately adjacent to, the device;
 - (iii) Demonstrations at an exhibition conducted at a business, commercial, industrial, scientific or medical location, but excluding locations in a residential environment, provided the notice contained in paragraphs (c) or (d) of this section, as appropriate, is displayed in a conspicuous location on, or immediately adjacent to, the device;
 - (iv) Evaluation of product performance and determination of customer acceptability, provided such operation takes place at the manufacturer's facilities during developmental, design or pre-production states; or
 - (v) Evaluation of product performance and determination of customer acceptability where customer acceptability of a radio frequency device cannot be determined at the manufacturer's facilities because of size or unique capability of the device, provided the device is operated at a business, commercial, industrial, scientific or medical user's site, but not at a residential site, during the development, design or pre-production stages.
- (e)(2) For the purpose of paragraphs (e)(1)(iv) and (e)(1)(v) of this section, the term *manufacturer's facilities* includes the facilities of the party responsible for compliance with the regulations and the manufacturer's premises, as well as the facilities of other entities working under the authorization of the responsible party in connection with the development and manufacture, but not the marketing, of the equipment.
- (f) For radio frequency devices subject to verification and sold solely to business, commercial, industrial, scientific and medical users (excluding products sold to other parties or for operation in a residential environment), parties responsible for verification of the devices shall have the option of ensuring compliance with the applicable technical specifications of this chapter at each end user's location after installation, provided that the purchase or lease agreement includes a proviso that such a determination of compliance be made and is the responsibility of the party responsible for verification of the equipment.

Certification & User's Manual Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 2, Subpart J — Equipment Authorization Procedures:

§ 2.901 Basis and Purpose

- (a) In order to carry out its responsibilities under the Communications Act and the various treaties and international regulations, and in order to promote efficient use of the radio spectrum, the Commission has developed technical standards for radio frequency equipment and parts or components thereof. The technical standards applicable to individual types of equipment are found in that part of the rules governing the service wherein the equipment is to be operated.¹ In addition to the technical standards provided, the rules governing the service may require that such equipment be verified by the manufacturer or importer, be authorized under a Declaration of Conformity, or receive an equipment authorization from the Commission by one of the following procedures: certification or registration.
- (b) The following sections describe the verification procedure, the procedure for a Declaration of Conformity, and the procedures to be followed in obtaining certification from the Commission and the conditions attendant to such a grant.

§ 2.907 Certification.

- (a) Certification is an equipment authorization issued by the Commission, based on representation and test data submitted by the applicant.
- (b) Certification attaches to all units subsequently marketed by the grantee which are identical (see Section 2.908) to the sample tested except for permissive changes or other variations authorized by the Commission pursuant to Section 2.1043.

¹ In this case, the equipment is subject to the rules of Part 15. More specifically, the equipment falls under Subpart B (of Part 15), which deals with unintentional radiators.

Certification & User's Manual Information

§ 2.948 Description of measurement facilities.

(a) Each party making measurements of equipment that is subject to an equipment authorization under Part 15 or Part 18 of this chapter, regardless of whether the measurements are filed with the Commission or kept on file by the party responsible for compliance of equipment marketed within the U.S. or its possessions, shall compile a description of the measurement facilities employed.

(1) If the measured equipment is subject to the verification procedure, the description of the measurement facilities shall be retained by the party responsible for verification of the equipment.

- (i) If the equipment is verified through measurements performed by an independent laboratory, it is acceptable for the party responsible for verification of the equipment to rely upon the description of the measurement facilities retained by or placed on file with the Commission by that laboratory. In this situation, the party responsible for the verification of the equipment is not required to retain a duplicate copy of the description of the measurement facilities.
- (ii) If the equipment is verified based on measurements performed at the installation site of the equipment, no specific site calibration data is required. It is acceptable to retain the description of the measurement facilities at the site at which the measurements were performed.
- (2) If the equipment is to be authorized by the Commission under the certification procedure, the description of the measurement facilities shall be filed with the Commission's Laboratory in Columbia, Maryland. The data describing the measurement facilities need only be filed once but must be updated as changes are made to the measurement facilities or as otherwise described in this section. At least every three years, the organization responsible for filing the data with the Commission shall certify that the data on file is current.

Certification & User's Manual Information

1. Label and User's Manual Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 15, Subpart A — General:

§ 15.19 Labeling requirements.

- (a) In addition to the requirements in Part 2 of this chapter, a device subject to certification or verification shall be labeled as follows:
 - (1) Receivers associated with the operation of a licensed radio service, e.g., FM broadcast under Part 73 of this chapter, land mobile operation under Part 90, etc., shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the condition that this device does not cause harmful interference.

(2) A stand-alone cable input selector switch, shall bear the following statement in a conspicuous location on the device:

This device is verified to comply with Part 15 of the FCC Rules for use with cable television service.

(3) All other devices shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

- (4) Where a device is constructed in two or more sections connected by wires and marketed together, the statement specified under paragraph (a) of this section is required to be affixed only to the main control unit.
- (5) When the device is so small or for such use that it is not practicable to place the statement specified under paragraph (a) of this section on it, the information required by this paragraph shall be placed in a prominent location in the instruction manual or pamphlet supplied to the user or, alternatively, shall be placed on the container in which the device is marketed. However, the FCC identifier or the unique identifier, as appropriate, must be displayed on the device.

§ 15.21 Information to user.

The users manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Verification & User's Manual Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 15, Subpart B — Unintentional Radiators:

§ 15.105 Information to the user.

(a) For a Class A digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at own expense.

(b) For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Electromagnetic Compatibility End of Report CFR Title 47, 15.247

End of Report